Reviewing the 2017 BRFSS data.
Examining the relationship between social determinants of health and sleep in older adults (age 50+). We want to look at this relationship between AA and Caucasian Also, we want to examine the mediating role of HRQL on this relationship.
Variables of interest: Demographics, Sleep Disorders, Social Determinants of Health.
Identify which state(s) participated in the optional modules
#Identify variables from optional modules
#Find states that have answers to desired optional modules
StateCounts<-LLCP_2017 %>%
filter(SLEPTIM1 >= 1 & HOWSAFE1 >= 1) %>%
group_by(X_STATE) %>%
summarise()
#Subset States with optional modules
#27 = Minnesota. The only state that participated
LLCP_2017<- LLCP_2017 %>%
filter(X_STATE %in% StateCounts) #Study variables necessary for analysis and weighting
StudyVars<-c("X_PSU","X_STSTR","X_LLCPWT","IMONTH")#Demographic Variables
DemoVars<-c("SEX","MARITAL","EDUCA","EMPLOY1","INCOME2","X_BMI5CAT",
"X_RACE","X_AGEG5YR","CHILDREN","MSCODE","X_STATE")#Illness Modules
ILLNESSVars<-c("SMOKDAY2","ECIGNOW","CVDSTRK3","CVDCRHD4","DIABETE3","ADDEPEV2","HAVARTH3","CHCCOPD1")#Identify variables with 9- "Refused" . Convert to NA
Remove_9<- c("SEX", "MARITAL", "EDUCA", "EMPLOY1", "X_RACE")
#Function to recode "9" as NA
Remove_9_fun<-function(x){ifelse(x==9,NA,x)}
#Identify variables with 77- "Don't Know/Not Sure", 88- "None", and 99- "Refused".
Remove_77_88_99<- c("INCOME2", "CHILDREN","SLEPTIM1", "ADSLEEP",
"PHYSHLTH","MENTHLTH","POORHLTH")
# Function to recode "77" and "99" as NA, "88" as 0
Remove_77_88_99_fun<-function(x){ifelse(x %in% c(77,99),NA,ifelse(x==88,0,x))}
#Identify variables with 14- "Don't Know/Refused/Missing" . Convert to NA
Remove_14<- c("X_AGEG5YR")
#Function to recode "14" as NA
Remove_14_fun<-function(x){ifelse(x==14,NA,x)}
#Identify variables with 7,8,9- "Don't Know/Not Sure" or "Refused".
Remove_7_8_9<- c("SDHBILLS", "HOWSAFE1","SDHFOOD", "SDHMEALS","SDHMONEY",
"SDHSTRES","GENHLTH", "SMOKDAY2","ECIGNOW","CVDSTRK3","CVDCRHD4",
"DIABETE3","ADDEPEV2", "HAVARTH3", "CHCCOPD1", "DEAF","BLIND","DECIDE",
"DIFFWALK", "DIFFDRES", "DIFFALON")
# Function to recode "7","8", and "9" as NA
Remove_7_8_9_fun<-function(x){ifelse(x %in% c(7:9),NA,x)}# Identify variables with a 14 day scale
Day_Vars<-c("ADSLEEP")
Group_Days<-function(x){
cut(x,breaks = c(-Inf,0,3,6,7,10,13,14),labels=c(0:6))
}New Values. Will convert to Binary as well for 7 days and greater. - 0 = 0 days - 1 = 1-3 days - 2 = 4-6 days - 3 = 7 days - 4 = 8-10 days - 5 = 11-13 days - 6 = 14 days
Month_Vars<-c("PHYSHLTH","MENTHLTH","POORHLTH")
Group_Month_Fun<-function(x){
cut(x,breaks = c(-Inf,0,6,13,20,29,Inf),labels=c(0:5))
}New Values - 0 = 0 days - 1 = 1-6 days - 2 = 7-13 days - 3 = 14-20 days - 4 = 21-28 days - 5 = 29-31 days
Yes_No_Group<- c("SDHBILLS","CVDSTRK3","CVDCRHD4","DIABETE3","ADDEPEV2","HAVARTH3","CHCCOPD1",
"DEAF","BLIND","DECIDE","DIFFWALK","DIFFDRES","DIFFALON")
Yes_1_Fun<-function(x){
as.numeric(recode(x, "1" = "1", .default = "0"))}New Values - 1 = 1 - All else = 0
#Recoding for binary/logistic regressions
ref0<-c("CHILDREN")
fun0<- function(x){as.factor(recode(x,"88"="ref",.default="com",.missing="com"))}
ref1<-c("SEX","MARITAL","EMPLOY1","X_RACE","MSCODE","SDHBILLS","CVDSTRK3",
"CVDCRHD4","DIABETE3","ADDEPEV2","HAVARTH3","CHCCOPD1",
"DEAF","BLIND","DECIDE","DIFFWALK","DIFFDRES","DIFFALON")
fun1<- function(x){as.factor(recode(x,"1"="ref",.default="com",.missing="com"))}
ref2<-c("X_BMI5CAT")
fun2<- function(x){as.factor(recode(x,"2"="ref",.default="com",.missing="com"))}
ref4<-c("EDUCA")
fun4<- function(x){as.factor(recode(x,"4"="ref",.default="com",.missing="com"))}
ref6<-c("INCOME2")
fun6<- function(x){as.factor(recode(x,"6"="ref",.default="com",.missing="com"))}
ref7<-c("X_AGEG5YR")
fun7<- function(x){as.factor(recode(x,"7"="ref",.default="com",.missing="com"))}
ref12<-c("SDHFOOD","SDHMEALS","SMOKDAY2","ECIGNOW")
fun12<- function(x){as.factor(recode(x,"1"="ref","2"="ref",
.default="com",.missing="com"))}
ref23<-c("SDHMONEY")
fun23<- function(x){as.factor(recode(x,"2"="ref","3"="ref",
.default="com",.missing="com"))}
ref34<-c("HOWSAFE1")
fun34<- function(x){as.factor(recode(x,"3"="ref","4"="ref",
.default="com",.missing="com"))}
ref45<-c("SDHSTRES","GENHLTH")
fun45<- function(x){as.factor(recode(x,"4"="ref","5"="ref",
.default="com",.missing="com"))}
ref30<-c("PHYSHLTH","POORHLTH","MENTHLTH")
fun30<- function(x){as.factor(ifelse(x==88,"ref",ifelse(x<=13,"ref","com")))}
ref14<-c("ADSLEEP")
fun14<- function(x){as.factor(ifelse(x==88,"ref",ifelse(x<=6,"ref","com")))}
ref79<-c("SLEPTIM1")
fun79<- function(x){as.factor(ifelse(x %in% c(7:9),"ref","com"))}#Clean all variables
brfss_2017<- LLCP_2017 %>%
dplyr::select(KeepVars, -X_STATE) %>%
mutate_at(Remove_9,Remove_9_fun) %>%
mutate_at(Remove_77_88_99,Remove_77_88_99_fun) %>%
mutate_at(Remove_14,Remove_14_fun) %>%
mutate_at(Remove_7_8_9,Remove_7_8_9_fun) %>%
mutate_at(Day_Vars,Group_Days) %>%
mutate_at(Yes_No_Group,Yes_1_Fun) %>%
mutate_at(Month_Vars,Group_Month_Fun) %>%
mutate(SEX= as.factor(ifelse(SEX==1,"Male","Female")),
MARITAL= factor(MARITAL,
levels = c(1:6),
labels = c("Married","Divorced","Widowed","Separated",
"Never Married","Unmarried Couple")),
EDUCA= factor(EDUCA,
levels= c(1:6),
labels = c("Never attended school or only kindergarten" ,
"Grades 1 through 8 (Elementary)" ,
"Grades 9 through 11 (Some high school)",
"Grade 12 or GED (High school graduate)",
"College 1 year to 3 years (Some college or technical school)",
"College 4 years or more (College graduate)"), ordered=TRUE),
EMPLOY1= factor(EMPLOY1,
levels=c(1:8),
labels=c("Employed for wages","Self-Employed","Out of work for less than 1 year",
"Out of work for 1 year or more", "A homemaker", "A student",
"Retired","Unable to Work")),
INCOME2=factor(INCOME2,
levels= c(1:8),
labels= c("Less than 10K","10 to 15K", "15 to 20K",
"20 to 25K","25 to 35K","35 to 50K", "50 to 75K",
"greater than 75K"), ordered=TRUE),
X_RACE=factor(X_RACE,
levels=c(1:8),
labels=c("White only, non-Hispanic", "Black only, non-Hispanic",
"American Indian or Alaskan Native Only, non-Hispanic", "Asian only, non-Hispanic",
"Native Hawaiian or other Pacific Islander only, non-Hispanic",
"Other race only, non-Hispanic","Multiracial, non-Hispanic","Hispanic")),
MSCODE= factor(MSCODE,
levels=c(1:4),
labels= c("In the center of an MSA",
"Outside MSA center city but inside the center city county",
"Inside a suburban county of the MSA", "Not in an MSA")),
X_BMI5CAT= factor(X_BMI5CAT,
levels= c(1:4),
labels=c("Underweight","Normal Weight","Overweight","Obese")),
X_AGEG5YR= factor(X_AGEG5YR,
levels= c(1:13),
labels=c( "18 to 24", "25 to 29", "30 to 34", "35 to 39", "40 to 44",
"45 to 49", "50 to 54", "55 to 59", "60 to 64","65 to 69","70 to 74",
"75 to 79", "80+"), ordered=TRUE),
CHILDREN=as.numeric(CHILDREN),
SLEPTIM_B=ifelse(SLEPTIM1 %in% c(7:9),1,0),
SLEPTIM1=ifelse(SLEPTIM1 %in% c(0:6),0,
ifelse(SLEPTIM1 %in% c(7:9),1,
ifelse(SLEPTIM1>=10,2,0))),
SLEPTIM1=factor(SLEPTIM1,
levels=c(0:2),
labels=c("Less than 7 hours","7-9 hours","Greater than 9 hours")),
ADSLEEP=factor(ADSLEEP,
levels=c(0:6),
labels=c("0 days","1-3 days","4-6 days","7 days",
"8-10 days","11-13 days","14 days"),ordered = T),
ADSLEEP_B= ifelse(ADSLEEP<"7 days",1,0),
HOWSAFE1= factor(HOWSAFE1,
levels=c(1:4),
labels=c("Extremely safe", "Safe", "Unsafe", "Extremely Unsafe") ,
ordered= TRUE),
SDHFOOD= factor(SDHFOOD,
levels=c(1:3),
labels=c("Often True","Sometimes True","Never True"), ordered= TRUE),
SDHMEALS= factor(SDHMEALS,
levels=c(1:3),
labels=c("Often True","Sometimes True","Never True"), ordered= TRUE),
SDHMONEY= factor(SDHMONEY,
levels=c(1:3),
labels=c("Often True","Sometimes True","Never True"), ordered= TRUE),
SDHSTRES= factor(SDHSTRES,
levels=c(1:5),
labels=c("None of the time","A little of the time","Some of the time",
"Most of the time","All of the time"), ordered= TRUE),
GENHLTH= factor(GENHLTH,
levels=c(1:5),
labels=c("Excellent","Very Good","Good","Fair","Poor"), ordered= TRUE),
SMOKDAY2= factor(SMOKDAY2,
levels=c(1:3),
labels=c("Every day","Some days","Not at all"), ordered= TRUE),
ECIGNOW= factor(ECIGNOW,
levels=c(1:3),
labels=c("Every day","Some days","Not at all"), ordered= TRUE))
#Create weighted survey
options(survey.lonely.psu = "adjust")
des<-svydesign(id=~X_PSU,strata=~X_STSTR,weights =~X_LLCPWT,data=brfss_2017,nest=T)# Build survey based on selected variables and binary functions
brfss2017B<- LLCP_2017 %>%
dplyr::select(KeepVars,-X_STATE) %>%
mutate(RACE=factor(X_RACE,
levels=c(1:8),
labels=c("White only, non-Hispanic", "Black only, non-Hispanic",
"American Indian or Alaskan Native Only, non-Hispanic", "Asian only, non-Hispanic",
"Native Hawaiian or other Pacific Islander only, non-Hispanic",
"Other race only, non-Hispanic","Multiracial, non-Hispanic","Hispanic"))) %>%
mutate_at(ref0,fun0) %>%
mutate_at(ref1,fun1) %>%
mutate_at(ref2,fun2) %>%
mutate_at(ref4,fun4) %>%
mutate_at(ref6,fun6) %>%
mutate_at(ref7,fun7) %>%
mutate_at(ref12,fun12) %>%
mutate_at(ref23,fun23) %>%
mutate_at(ref34,fun34) %>%
mutate_at(ref45,fun45) %>%
mutate_at(ref30,fun30) %>%
mutate_at(ref14,fun14) %>%
mutate_at(ref79,fun79)
#Create weighted survey
options(survey.lonely.psu = "adjust")
svydes<-svydesign(id=~X_PSU,strata=~X_STSTR,weights =~X_LLCPWT,data=brfss2017B,nest=T)Unweighted_table<- tableby(X_RACE~., data= brfss_2017[,-c(37:42)], control = my_controls)
summary(Unweighted_table,labelTranslations = my_labels,
title="Unweighted Statistics")| White only, non-Hispanic (N=14917) | Black only, non-Hispanic (N=466) | American Indian or Alaskan Native Only, non-Hispanic (N=222) | Asian only, non-Hispanic (N=308) | Native Hawaiian or other Pacific Islander only, non-Hispanic (N=14) | Other race only, non-Hispanic (N=55) | Multiracial, non-Hispanic (N=176) | Hispanic (N=645) | Total (N=16803) | p value | |
|---|---|---|---|---|---|---|---|---|---|---|
| Sex | 0.012 | |||||||||
| Female | 7896 (52.9%) | 231 (49.6%) | 129 (58.1%) | 141 (45.8%) | 7 (50.0%) | 22 (40.0%) | 80 (45.5%) | 336 (52.1%) | 8842 (52.6%) | |
| Male | 7021 (47.1%) | 235 (50.4%) | 93 (41.9%) | 167 (54.2%) | 7 (50.0%) | 33 (60.0%) | 96 (54.5%) | 309 (47.9%) | 7961 (47.4%) | |
| Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| Marital Status | < 0.001 | |||||||||
| Married | 8511 (57.4%) | 171 (37.0%) | 69 (31.2%) | 151 (49.2%) | 5 (35.7%) | 28 (53.8%) | 61 (35.1%) | 313 (48.8%) | 9309 (55.7%) | |
| Divorced | 1911 (12.9%) | 64 (13.9%) | 30 (13.6%) | 12 (3.9%) | 2 (14.3%) | 6 (11.5%) | 29 (16.7%) | 51 (8.0%) | 2105 (12.6%) | |
| Widowed | 1471 (9.9%) | 17 (3.7%) | 14 (6.3%) | 6 (2.0%) | 1 (7.1%) | 4 (7.7%) | 10 (5.7%) | 19 (3.0%) | 1542 (9.2%) | |
| Separated | 129 (0.9%) | 16 (3.5%) | 9 (4.1%) | 1 (0.3%) | 0 (0.0%) | 2 (3.8%) | 3 (1.7%) | 30 (4.7%) | 190 (1.1%) | |
| Never Married | 2432 (16.4%) | 188 (40.7%) | 84 (38.0%) | 129 (42.0%) | 6 (42.9%) | 11 (21.2%) | 61 (35.1%) | 162 (25.3%) | 3073 (18.4%) | |
| Unmarried Couple | 380 (2.6%) | 6 (1.3%) | 15 (6.8%) | 8 (2.6%) | 0 (0.0%) | 1 (1.9%) | 10 (5.7%) | 66 (10.3%) | 486 (2.9%) | |
| Missing | 83 | 4 | 1 | 1 | 0 | 3 | 2 | 4 | 98 | |
| Education Level | < 0.001 | |||||||||
| Missing | 34 | 0 | 3 | 3 | 0 | 4 | 0 | 5 | 49 | |
| Never attended school or only kindergarten | 3 (0.0%) | 3 (0.6%) | 1 (0.5%) | 1 (0.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 18 (2.8%) | 26 (0.2%) | |
| Grades 1 through 8 (Elementary) | 84 (0.6%) | 10 (2.1%) | 3 (1.4%) | 5 (1.6%) | 0 (0.0%) | 1 (2.0%) | 0 (0.0%) | 112 (17.5%) | 215 (1.3%) | |
| Grades 9 through 11 (Some high school) | 321 (2.2%) | 31 (6.7%) | 27 (12.3%) | 5 (1.6%) | 0 (0.0%) | 1 (2.0%) | 7 (4.0%) | 86 (13.4%) | 478 (2.9%) | |
| Grade 12 or GED (High school graduate) | 3597 (24.2%) | 140 (30.0%) | 70 (32.0%) | 56 (18.4%) | 3 (21.4%) | 19 (37.3%) | 40 (22.7%) | 165 (25.8%) | 4090 (24.4%) | |
| College 1 year to 3 years (Some college or technical school) | 4647 (31.2%) | 145 (31.1%) | 63 (28.8%) | 67 (22.0%) | 4 (28.6%) | 16 (31.4%) | 54 (30.7%) | 138 (21.6%) | 5134 (30.6%) | |
| College 4 years or more (College graduate) | 6231 (41.9%) | 137 (29.4%) | 55 (25.1%) | 171 (56.1%) | 7 (50.0%) | 14 (27.5%) | 75 (42.6%) | 121 (18.9%) | 6811 (40.7%) | |
| Employment | < 0.001 | |||||||||
| Employed for wages | 7003 (47.3%) | 253 (55.2%) | 98 (46.2%) | 187 (62.8%) | 6 (42.9%) | 24 (44.4%) | 101 (57.7%) | 349 (55.0%) | 8021 (48.2%) | |
| Self-Employed | 1451 (9.8%) | 34 (7.4%) | 11 (5.2%) | 19 (6.4%) | 3 (21.4%) | 9 (16.7%) | 8 (4.6%) | 60 (9.5%) | 1595 (9.6%) | |
| Out of work for less than 1 year | 363 (2.5%) | 17 (3.7%) | 16 (7.5%) | 8 (2.7%) | 2 (14.3%) | 2 (3.7%) | 3 (1.7%) | 15 (2.4%) | 426 (2.6%) | |
| Out of work for 1 year or more | 233 (1.6%) | 27 (5.9%) | 14 (6.6%) | 7 (2.3%) | 0 (0.0%) | 1 (1.9%) | 8 (4.6%) | 26 (4.1%) | 316 (1.9%) | |
| A homemaker | 475 (3.2%) | 11 (2.4%) | 13 (6.1%) | 8 (2.7%) | 1 (7.1%) | 1 (1.9%) | 1 (0.6%) | 73 (11.5%) | 583 (3.5%) | |
| A student | 318 (2.1%) | 32 (7.0%) | 5 (2.4%) | 47 (15.8%) | 2 (14.3%) | 0 (0.0%) | 14 (8.0%) | 38 (6.0%) | 456 (2.7%) | |
| Retired | 4441 (30.0%) | 55 (12.0%) | 28 (13.2%) | 11 (3.7%) | 0 (0.0%) | 14 (25.9%) | 25 (14.3%) | 40 (6.3%) | 4614 (27.7%) | |
| Unable to Work | 516 (3.5%) | 29 (6.3%) | 27 (12.7%) | 11 (3.7%) | 0 (0.0%) | 3 (5.6%) | 15 (8.6%) | 33 (5.2%) | 634 (3.8%) | |
| Missing | 117 | 8 | 10 | 10 | 0 | 1 | 1 | 11 | 158 | |
| Income | < 0.001 | |||||||||
| Missing | 2301 | 62 | 30 | 57 | 2 | 11 | 20 | 91 | 2574 | |
| Less than 10K | 301 (2.4%) | 36 (8.9%) | 24 (12.5%) | 17 (6.8%) | 0 (0.0%) | 2 (4.5%) | 5 (3.2%) | 45 (8.1%) | 430 (3.0%) | |
| 10 to 15K | 387 (3.1%) | 20 (5.0%) | 19 (9.9%) | 8 (3.2%) | 0 (0.0%) | 3 (6.8%) | 4 (2.6%) | 42 (7.6%) | 483 (3.4%) | |
| 15 to 20K | 634 (5.0%) | 50 (12.4%) | 18 (9.4%) | 10 (4.0%) | 2 (16.7%) | 1 (2.3%) | 11 (7.1%) | 81 (14.6%) | 807 (5.7%) | |
| 20 to 25K | 964 (7.6%) | 67 (16.6%) | 15 (7.8%) | 28 (11.2%) | 1 (8.3%) | 5 (11.4%) | 17 (10.9%) | 86 (15.5%) | 1183 (8.3%) | |
| 25 to 35K | 1214 (9.6%) | 50 (12.4%) | 25 (13.0%) | 27 (10.8%) | 0 (0.0%) | 8 (18.2%) | 20 (12.8%) | 88 (15.9%) | 1432 (10.1%) | |
| 35 to 50K | 1853 (14.7%) | 63 (15.6%) | 27 (14.1%) | 24 (9.6%) | 3 (25.0%) | 13 (29.5%) | 26 (16.7%) | 78 (14.1%) | 2087 (14.7%) | |
| 50 to 75K | 2275 (18.0%) | 47 (11.6%) | 33 (17.2%) | 40 (15.9%) | 3 (25.0%) | 6 (13.6%) | 21 (13.5%) | 47 (8.5%) | 2472 (17.4%) | |
| greater than 75K | 4988 (39.5%) | 71 (17.6%) | 31 (16.1%) | 97 (38.6%) | 3 (25.0%) | 6 (13.6%) | 52 (33.3%) | 87 (15.7%) | 5335 (37.5%) | |
| BMI Category | < 0.001 | |||||||||
| Underweight | 188 (1.4%) | 6 (1.5%) | 6 (3.1%) | 16 (6.0%) | 1 (7.1%) | 2 (4.1%) | 2 (1.2%) | 7 (1.6%) | 228 (1.5%) | |
| Normal Weight | 4296 (31.4%) | 133 (32.6%) | 35 (17.9%) | 132 (49.6%) | 8 (57.1%) | 16 (32.7%) | 34 (21.0%) | 110 (24.7%) | 4764 (31.3%) | |
| Overweight | 5128 (37.4%) | 141 (34.6%) | 74 (37.8%) | 80 (30.1%) | 3 (21.4%) | 18 (36.7%) | 65 (40.1%) | 173 (38.9%) | 5682 (37.3%) | |
| Obese | 4082 (29.8%) | 128 (31.4%) | 81 (41.3%) | 38 (14.3%) | 2 (14.3%) | 13 (26.5%) | 61 (37.7%) | 155 (34.8%) | 4560 (29.9%) | |
| Missing | 1223 | 58 | 26 | 42 | 0 | 6 | 14 | 200 | 1569 | |
| Age Group | < 0.001 | |||||||||
| Missing | 138 | 4 | 2 | 4 | 0 | 1 | 1 | 6 | 156 | |
| 18 to 24 | 854 (5.8%) | 64 (13.9%) | 25 (11.4%) | 66 (21.7%) | 1 (7.1%) | 1 (1.9%) | 25 (14.3%) | 81 (12.7%) | 1117 (6.7%) | |
| 25 to 29 | 687 (4.6%) | 49 (10.6%) | 16 (7.3%) | 50 (16.4%) | 4 (28.6%) | 5 (9.3%) | 31 (17.7%) | 70 (11.0%) | 912 (5.5%) | |
| 30 to 34 | 849 (5.7%) | 57 (12.3%) | 21 (9.5%) | 46 (15.1%) | 3 (21.4%) | 6 (11.1%) | 6 (3.4%) | 72 (11.3%) | 1060 (6.4%) | |
| 35 to 39 | 878 (5.9%) | 51 (11.0%) | 14 (6.4%) | 41 (13.5%) | 0 (0.0%) | 6 (11.1%) | 22 (12.6%) | 90 (14.1%) | 1102 (6.6%) | |
| 40 to 44 | 828 (5.6%) | 40 (8.7%) | 13 (5.9%) | 21 (6.9%) | 3 (21.4%) | 5 (9.3%) | 16 (9.1%) | 76 (11.9%) | 1002 (6.0%) | |
| 45 to 49 | 946 (6.4%) | 46 (10.0%) | 21 (9.5%) | 25 (8.2%) | 2 (14.3%) | 2 (3.7%) | 13 (7.4%) | 73 (11.4%) | 1128 (6.8%) | |
| 50 to 54 | 1327 (9.0%) | 39 (8.4%) | 31 (14.1%) | 20 (6.6%) | 0 (0.0%) | 7 (13.0%) | 12 (6.9%) | 49 (7.7%) | 1485 (8.9%) | |
| 55 to 59 | 1616 (10.9%) | 36 (7.8%) | 24 (10.9%) | 14 (4.6%) | 0 (0.0%) | 2 (3.7%) | 14 (8.0%) | 45 (7.0%) | 1751 (10.5%) | |
| 60 to 64 | 1805 (12.2%) | 33 (7.1%) | 24 (10.9%) | 8 (2.6%) | 0 (0.0%) | 3 (5.6%) | 11 (6.3%) | 32 (5.0%) | 1916 (11.5%) | |
| 65 to 69 | 1673 (11.3%) | 21 (4.5%) | 18 (8.2%) | 2 (0.7%) | 0 (0.0%) | 6 (11.1%) | 10 (5.7%) | 19 (3.0%) | 1749 (10.5%) | |
| 70 to 74 | 1295 (8.8%) | 13 (2.8%) | 8 (3.6%) | 3 (1.0%) | 0 (0.0%) | 3 (5.6%) | 5 (2.9%) | 13 (2.0%) | 1340 (8.0%) | |
| 75 to 79 | 894 (6.0%) | 4 (0.9%) | 1 (0.5%) | 3 (1.0%) | 0 (0.0%) | 0 (0.0%) | 7 (4.0%) | 10 (1.6%) | 919 (5.5%) | |
| 80+ | 1127 (7.6%) | 9 (1.9%) | 4 (1.8%) | 5 (1.6%) | 1 (7.1%) | 8 (14.8%) | 3 (1.7%) | 9 (1.4%) | 1166 (7.0%) | |
| Number of Children | < 0.001 | |||||||||
| Mean (SD) | 0 (1) | 1 (2) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 2) | 0 (0, 2) | 0 (0, 2) | 0 (0, 1) | 0 (0, 1) | 0 (0, 1) | 1 (0, 2) | 0 (0, 1) | |
| Min - Max | 0 - 11 | 0 - 10 | 0 - 8 | 0 - 6 | 0 - 3 | 0 - 7 | 0 - 6 | 0 - 12 | 0 - 12 | |
| Missing | 69 | 4 | 0 | 3 | 0 | 2 | 0 | 4 | 82 | |
| Metropolitan Status | ||||||||||
| In the center of an MSA | 2270 (59.7%) | 75 (87.2%) | 16 (64.0%) | 40 (81.6%) | 2 (100.0%) | 8 (66.7%) | 13 (59.1%) | 46 (69.7%) | 2470 (60.7%) | |
| Outside MSA center city but inside the center city county | 391 (10.3%) | 0 (0.0%) | 2 (8.0%) | 0 (0.0%) | 0 (0.0%) | 1 (8.3%) | 1 (4.5%) | 2 (3.0%) | 397 (9.8%) | |
| Inside a suburban county of the MSA | 1144 (30.1%) | 11 (12.8%) | 7 (28.0%) | 9 (18.4%) | 0 (0.0%) | 3 (25.0%) | 8 (36.4%) | 18 (27.3%) | 1200 (29.5%) | |
| Not in an MSA | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | |
| Missing | 11112 | 380 | 197 | 259 | 12 | 43 | 154 | 579 | 12736 | |
| Hours of Sleep per Night | < 0.001 | |||||||||
| Less than 7 hours | 3571 (27.3%) | 165 (44.7%) | 63 (36.8%) | 68 (28.8%) | 2 (22.2%) | 18 (41.9%) | 60 (40.3%) | 156 (28.5%) | 4103 (28.1%) | |
| 7-9 hours | 9145 (70.0%) | 189 (51.2%) | 102 (59.6%) | 162 (68.6%) | 7 (77.8%) | 24 (55.8%) | 84 (56.4%) | 358 (65.3%) | 10071 (69.0%) | |
| Greater than 9 hours | 347 (2.7%) | 15 (4.1%) | 6 (3.5%) | 6 (2.5%) | 0 (0.0%) | 1 (2.3%) | 5 (3.4%) | 34 (6.2%) | 414 (2.8%) | |
| Missing | 1854 | 97 | 51 | 72 | 5 | 12 | 27 | 97 | 2215 | |
| Days with difficulty sleeping | < 0.001 | |||||||||
| Missing | 1993 | 99 | 49 | 76 | 5 | 11 | 31 | 102 | 2366 | |
| 0 days | 6971 (53.9%) | 214 (58.3%) | 73 (42.2%) | 140 (60.3%) | 5 (55.6%) | 16 (36.4%) | 62 (42.8%) | 315 (58.0%) | 7796 (54.0%) | |
| 1-3 days | 2610 (20.2%) | 63 (17.2%) | 34 (19.7%) | 55 (23.7%) | 2 (22.2%) | 13 (29.5%) | 23 (15.9%) | 83 (15.3%) | 2883 (20.0%) | |
| 4-6 days | 1057 (8.2%) | 24 (6.5%) | 14 (8.1%) | 13 (5.6%) | 0 (0.0%) | 5 (11.4%) | 21 (14.5%) | 44 (8.1%) | 1178 (8.2%) | |
| 7 days | 385 (3.0%) | 8 (2.2%) | 8 (4.6%) | 4 (1.7%) | 0 (0.0%) | 1 (2.3%) | 5 (3.4%) | 26 (4.8%) | 437 (3.0%) | |
| 8-10 days | 450 (3.5%) | 5 (1.4%) | 8 (4.6%) | 8 (3.4%) | 1 (11.1%) | 3 (6.8%) | 8 (5.5%) | 15 (2.8%) | 498 (3.4%) | |
| 11-13 days | 129 (1.0%) | 6 (1.6%) | 2 (1.2%) | 1 (0.4%) | 0 (0.0%) | 0 (0.0%) | 2 (1.4%) | 2 (0.4%) | 142 (1.0%) | |
| 14 days | 1322 (10.2%) | 47 (12.8%) | 34 (19.7%) | 11 (4.7%) | 1 (11.1%) | 6 (13.6%) | 24 (16.6%) | 58 (10.7%) | 1503 (10.4%) | |
| Bill Security | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 1888 | 102 | 49 | 72 | 6 | 11 | 29 | 101 | 2258 | |
| How safe from crime do you consider your neighborhood to be? | < 0.001 | |||||||||
| Missing | 1922 | 103 | 53 | 71 | 6 | 11 | 31 | 108 | 2305 | |
| Extremely safe | 6621 (51.0%) | 121 (33.3%) | 48 (28.4%) | 69 (29.1%) | 1 (12.5%) | 10 (22.7%) | 66 (45.5%) | 181 (33.7%) | 7117 (49.1%) | |
| Safe | 6097 (46.9%) | 213 (58.7%) | 96 (56.8%) | 157 (66.2%) | 6 (75.0%) | 32 (72.7%) | 63 (43.4%) | 320 (59.6%) | 6984 (48.2%) | |
| Unsafe | 245 (1.9%) | 21 (5.8%) | 16 (9.5%) | 11 (4.6%) | 1 (12.5%) | 2 (4.5%) | 12 (8.3%) | 32 (6.0%) | 340 (2.3%) | |
| Extremely Unsafe | 32 (0.2%) | 8 (2.2%) | 9 (5.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 4 (2.8%) | 4 (0.7%) | 57 (0.4%) | |
| Food Security | < 0.001 | |||||||||
| Missing | 1958 | 105 | 53 | 71 | 6 | 12 | 31 | 104 | 2340 | |
| Often True | 264 (2.0%) | 25 (6.9%) | 19 (11.2%) | 12 (5.1%) | 0 (0.0%) | 2 (4.7%) | 8 (5.5%) | 25 (4.6%) | 355 (2.5%) | |
| Sometimes True | 756 (5.8%) | 84 (23.3%) | 27 (16.0%) | 28 (11.8%) | 1 (12.5%) | 8 (18.6%) | 23 (15.9%) | 99 (18.3%) | 1026 (7.1%) | |
| Never True | 11939 (92.1%) | 252 (69.8%) | 123 (72.8%) | 197 (83.1%) | 7 (87.5%) | 33 (76.7%) | 114 (78.6%) | 417 (77.1%) | 13082 (90.5%) | |
| Balanced Meals | < 0.001 | |||||||||
| Missing | 1957 | 101 | 53 | 72 | 6 | 12 | 32 | 110 | 2343 | |
| Often True | 443 (3.4%) | 34 (9.3%) | 16 (9.5%) | 11 (4.7%) | 0 (0.0%) | 2 (4.7%) | 13 (9.0%) | 28 (5.2%) | 547 (3.8%) | |
| Sometimes True | 935 (7.2%) | 80 (21.9%) | 34 (20.1%) | 37 (15.7%) | 1 (12.5%) | 11 (25.6%) | 29 (20.1%) | 100 (18.7%) | 1227 (8.5%) | |
| Never True | 11582 (89.4%) | 251 (68.8%) | 119 (70.4%) | 188 (79.7%) | 7 (87.5%) | 30 (69.8%) | 102 (70.8%) | 407 (76.1%) | 12686 (87.7%) | |
| Financial Security | < 0.001 | |||||||||
| Missing | 2195 | 112 | 52 | 80 | 6 | 12 | 32 | 116 | 2605 | |
| Often True | 7933 (62.4%) | 134 (37.9%) | 60 (35.3%) | 122 (53.5%) | 2 (25.0%) | 19 (44.2%) | 66 (45.8%) | 201 (38.0%) | 8537 (60.1%) | |
| Sometimes True | 4180 (32.9%) | 166 (46.9%) | 79 (46.5%) | 91 (39.9%) | 6 (75.0%) | 17 (39.5%) | 65 (45.1%) | 257 (48.6%) | 4861 (34.2%) | |
| Never True | 609 (4.8%) | 54 (15.3%) | 31 (18.2%) | 15 (6.6%) | 0 (0.0%) | 7 (16.3%) | 13 (9.0%) | 71 (13.4%) | 800 (5.6%) | |
| Within the last 30 days, how often have you felt stress? | < 0.001 | |||||||||
| Missing | 2014 | 104 | 54 | 70 | 6 | 11 | 31 | 103 | 2393 | |
| None of the time | 6310 (48.9%) | 162 (44.8%) | 59 (35.1%) | 106 (44.5%) | 4 (50.0%) | 13 (29.5%) | 54 (37.2%) | 224 (41.3%) | 6932 (48.1%) | |
| A little of the time | 3755 (29.1%) | 86 (23.8%) | 61 (36.3%) | 67 (28.2%) | 1 (12.5%) | 18 (40.9%) | 37 (25.5%) | 138 (25.5%) | 4163 (28.9%) | |
| Some of the time | 1854 (14.4%) | 60 (16.6%) | 17 (10.1%) | 45 (18.9%) | 2 (25.0%) | 7 (15.9%) | 29 (20.0%) | 124 (22.9%) | 2138 (14.8%) | |
| Most of the time | 686 (5.3%) | 34 (9.4%) | 17 (10.1%) | 13 (5.5%) | 1 (12.5%) | 3 (6.8%) | 13 (9.0%) | 35 (6.5%) | 802 (5.6%) | |
| All of the time | 298 (2.3%) | 20 (5.5%) | 14 (8.3%) | 7 (2.9%) | 0 (0.0%) | 3 (6.8%) | 12 (8.3%) | 21 (3.9%) | 375 (2.6%) | |
| General Health | < 0.001 | |||||||||
| Missing | 27 | 2 | 1 | 0 | 0 | 1 | 0 | 2 | 33 | |
| Excellent | 2723 (18.3%) | 109 (23.5%) | 24 (10.9%) | 70 (22.7%) | 4 (28.6%) | 12 (22.2%) | 12 (6.8%) | 116 (18.0%) | 3070 (18.3%) | |
| Very Good | 5631 (37.8%) | 100 (21.6%) | 50 (22.6%) | 92 (29.9%) | 3 (21.4%) | 9 (16.7%) | 51 (29.0%) | 132 (20.5%) | 6068 (36.2%) | |
| Good | 4608 (30.9%) | 171 (36.9%) | 86 (38.9%) | 114 (37.0%) | 6 (42.9%) | 23 (42.6%) | 76 (43.2%) | 240 (37.3%) | 5324 (31.7%) | |
| Fair | 1438 (9.7%) | 60 (12.9%) | 43 (19.5%) | 27 (8.8%) | 1 (7.1%) | 6 (11.1%) | 24 (13.6%) | 126 (19.6%) | 1725 (10.3%) | |
| Poor | 490 (3.3%) | 24 (5.2%) | 18 (8.1%) | 5 (1.6%) | 0 (0.0%) | 4 (7.4%) | 13 (7.4%) | 29 (4.5%) | 583 (3.5%) | |
| How many days during the past 30 days was your physical health not good? | < 0.001 | |||||||||
| 0 | 9845 (67.1%) | 331 (71.8%) | 123 (56.4%) | 216 (72.0%) | 12 (85.7%) | 38 (69.1%) | 100 (57.5%) | 465 (74.3%) | 11130 (67.4%) | |
| 1 | 2786 (19.0%) | 59 (12.8%) | 42 (19.3%) | 55 (18.3%) | 1 (7.1%) | 11 (20.0%) | 46 (26.4%) | 83 (13.3%) | 3083 (18.7%) | |
| 2 | 524 (3.6%) | 22 (4.8%) | 12 (5.5%) | 9 (3.0%) | 0 (0.0%) | 1 (1.8%) | 6 (3.4%) | 16 (2.6%) | 590 (3.6%) | |
| 3 | 498 (3.4%) | 19 (4.1%) | 11 (5.0%) | 10 (3.3%) | 1 (7.1%) | 1 (1.8%) | 6 (3.4%) | 26 (4.2%) | 572 (3.5%) | |
| 4 | 152 (1.0%) | 5 (1.1%) | 6 (2.8%) | 1 (0.3%) | 0 (0.0%) | 0 (0.0%) | 1 (0.6%) | 3 (0.5%) | 168 (1.0%) | |
| 5 | 862 (5.9%) | 25 (5.4%) | 24 (11.0%) | 9 (3.0%) | 0 (0.0%) | 4 (7.3%) | 15 (8.6%) | 33 (5.3%) | 972 (5.9%) | |
| Missing | 250 | 5 | 4 | 8 | 0 | 0 | 2 | 19 | 288 | |
| How many days during the past 30 days was your mental health not good? | < 0.001 | |||||||||
| 0 | 10440 (70.9%) | 321 (69.3%) | 124 (56.4%) | 215 (71.0%) | 8 (57.1%) | 36 (65.5%) | 90 (51.7%) | 437 (68.9%) | 11671 (70.3%) | |
| 1 | 2538 (17.2%) | 59 (12.7%) | 37 (16.8%) | 53 (17.5%) | 3 (21.4%) | 11 (20.0%) | 35 (20.1%) | 82 (12.9%) | 2818 (17.0%) | |
| 2 | 560 (3.8%) | 26 (5.6%) | 15 (6.8%) | 14 (4.6%) | 1 (7.1%) | 2 (3.6%) | 14 (8.0%) | 40 (6.3%) | 672 (4.1%) | |
| 3 | 584 (4.0%) | 24 (5.2%) | 22 (10.0%) | 14 (4.6%) | 2 (14.3%) | 3 (5.5%) | 16 (9.2%) | 35 (5.5%) | 700 (4.2%) | |
| 4 | 109 (0.7%) | 7 (1.5%) | 4 (1.8%) | 3 (1.0%) | 0 (0.0%) | 0 (0.0%) | 3 (1.7%) | 6 (0.9%) | 132 (0.8%) | |
| 5 | 497 (3.4%) | 26 (5.6%) | 18 (8.2%) | 4 (1.3%) | 0 (0.0%) | 3 (5.5%) | 16 (9.2%) | 34 (5.4%) | 598 (3.6%) | |
| Missing | 189 | 3 | 2 | 5 | 0 | 0 | 2 | 11 | 212 | |
| Poor health days | 0.002 | |||||||||
| 0 | 4183 (59.5%) | 91 (45.7%) | 63 (46.3%) | 72 (56.2%) | 3 (50.0%) | 15 (51.7%) | 63 (58.3%) | 154 (55.6%) | 4644 (58.7%) | |
| 1 | 1551 (22.1%) | 48 (24.1%) | 29 (21.3%) | 29 (22.7%) | 3 (50.0%) | 6 (20.7%) | 25 (23.1%) | 64 (23.1%) | 1755 (22.2%) | |
| 2 | 348 (5.0%) | 18 (9.0%) | 16 (11.8%) | 13 (10.2%) | 0 (0.0%) | 2 (6.9%) | 5 (4.6%) | 17 (6.1%) | 419 (5.3%) | |
| 3 | 428 (6.1%) | 18 (9.0%) | 12 (8.8%) | 10 (7.8%) | 0 (0.0%) | 3 (10.3%) | 7 (6.5%) | 23 (8.3%) | 501 (6.3%) | |
| 4 | 91 (1.3%) | 6 (3.0%) | 4 (2.9%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 2 (1.9%) | 2 (0.7%) | 105 (1.3%) | |
| 5 | 425 (6.0%) | 18 (9.0%) | 12 (8.8%) | 4 (3.1%) | 0 (0.0%) | 3 (10.3%) | 6 (5.6%) | 17 (6.1%) | 485 (6.1%) | |
| Missing | 7891 | 267 | 86 | 180 | 8 | 26 | 68 | 368 | 8894 | |
| Do you smoke cigarettes every day, some days, or not at all? | < 0.001 | |||||||||
| Missing | 8689 | 335 | 83 | 262 | 9 | 29 | 90 | 435 | 9932 | |
| Every day | 1319 (21.2%) | 51 (38.9%) | 52 (37.4%) | 16 (34.8%) | 1 (20.0%) | 10 (38.5%) | 25 (29.1%) | 52 (24.8%) | 1526 (22.2%) | |
| Some days | 532 (8.5%) | 34 (26.0%) | 29 (20.9%) | 5 (10.9%) | 0 (0.0%) | 0 (0.0%) | 11 (12.8%) | 44 (21.0%) | 655 (9.5%) | |
| Not at all | 4377 (70.3%) | 46 (35.1%) | 58 (41.7%) | 25 (54.3%) | 4 (80.0%) | 16 (61.5%) | 50 (58.1%) | 114 (54.3%) | 4690 (68.3%) | |
| Do you use vaping products every day, some days, or not at all? | 0.617 | |||||||||
| Missing | 12856 | 388 | 166 | 266 | 10 | 44 | 121 | 540 | 14391 | |
| Every day | 152 (7.4%) | 3 (3.8%) | 2 (3.6%) | 1 (2.4%) | 0 (0.0%) | 0 (0.0%) | 3 (5.5%) | 5 (4.8%) | 166 (6.9%) | |
| Some days | 251 (12.2%) | 15 (19.2%) | 10 (17.9%) | 6 (14.3%) | 0 (0.0%) | 0 (0.0%) | 5 (9.1%) | 13 (12.4%) | 300 (12.4%) | |
| Not at all | 1658 (80.4%) | 60 (76.9%) | 44 (78.6%) | 35 (83.3%) | 4 (100.0%) | 11 (100.0%) | 47 (85.5%) | 87 (82.9%) | 1946 (80.7%) | |
| (Ever told) you had a stroke. | 0.100 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 32 | 0 | 1 | 1 | 0 | 1 | 0 | 7 | 42 | |
| (Ever told) you had angina or coronary heart disease? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 101 | 1 | 2 | 6 | 0 | 1 | 1 | 6 | 118 | |
| (Ever told) you have diabetes | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 13 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 18 | |
| (Ever told) you that you have a depressive disorder? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 50 | 2 | 2 | 3 | 0 | 3 | 1 | 6 | 67 | |
| (Ever told) you have some form of arthritis? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 1) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 1) | 0 (0, 0) | 0 (0, 1) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 65 | 1 | 3 | 4 | 0 | 3 | 1 | 4 | 81 | |
| (Ever told) you have COPD, emphysema or chronic bronchitis? | 0.019 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 51 | 0 | 3 | 4 | 0 | 4 | 1 | 3 | 66 | |
| Are you deaf or do you have serious difficulty hearing? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 302 | 17 | 14 | 16 | 2 | 2 | 7 | 17 | 377 | |
| Are you blind or do you have serious difficulty seeing, even when wearing glasses? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 329 | 18 | 13 | 20 | 2 | 2 | 7 | 17 | 408 | |
| Because of a physical, mental, or emotional condition, do you have serious difficulty concentrating, remembering, or making decisions? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 365 | 24 | 15 | 17 | 2 | 2 | 10 | 20 | 455 | |
| Do you have serious difficulty walking or climbing stairs? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 361 | 27 | 13 | 18 | 2 | 3 | 7 | 23 | 454 | |
| Do you have difficulty dressing or bathing? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 365 | 26 | 14 | 19 | 2 | 3 | 7 | 24 | 460 | |
| Because of a physical, mental, or emotional condition, do you have difficulty doing errands alone? | < 0.001 | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | |
| Missing | 407 | 29 | 14 | 20 | 2 | 3 | 9 | 25 | 509 |
Weighted_Table<- tableby(X_RACE~., data=brfss_2017[,-c(37,38,40:42)], control = my_controls,
weights = X_LLCPWT)
summary(Weighted_Table,labelTranslations = my_labels,
title="Weighted Statistics")| White only, non-Hispanic (N=3501803) | Black only, non-Hispanic (N=216193) | American Indian or Alaskan Native Only, non-Hispanic (N=41207) | Asian only, non-Hispanic (N=198660) | Native Hawaiian or other Pacific Islander only, non-Hispanic (N=4531) | Other race only, non-Hispanic (N=11248) | Multiracial, non-Hispanic (N=44054) | Hispanic (N=183148) | Total (N=4200845) | |
|---|---|---|---|---|---|---|---|---|---|
| Sex | |||||||||
| Female | 1791248 (51.2%) | 112199 (51.9%) | 24276 (58.9%) | 100861 (50.8%) | 2470 (54.5%) | 4795 (42.6%) | 20200 (45.9%) | 85074 (46.5%) | 2141123 (51.0%) |
| Male | 1710556 (48.8%) | 103993 (48.1%) | 16931 (41.1%) | 97799 (49.2%) | 2062 (45.5%) | 6453 (57.4%) | 23853 (54.1%) | 98074 (53.5%) | 2059722 (49.0%) |
| Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Marital Status | |||||||||
| Married | 1992074 (57.2%) | 77640 (36.5%) | 13709 (33.7%) | 86012 (43.3%) | 1663 (36.7%) | 6510 (59.0%) | 13252 (30.8%) | 87479 (47.9%) | 2278338 (54.6%) |
| Divorced | 377418 (10.8%) | 31135 (14.6%) | 4689 (11.5%) | 6895 (3.5%) | 364 (8.0%) | 965 (8.8%) | 5227 (12.2%) | 10594 (5.8%) | 437287 (10.5%) |
| Widowed | 228935 (6.6%) | 6572 (3.1%) | 2889 (7.1%) | 4365 (2.2%) | 278 (6.1%) | 415 (3.8%) | 2058 (4.8%) | 3450 (1.9%) | 248964 (6.0%) |
| Separated | 26336 (0.8%) | 7521 (3.5%) | 1342 (3.3%) | 745 (0.4%) | 0 (0.0%) | 269 (2.4%) | 459 (1.1%) | 8527 (4.7%) | 45198 (1.1%) |
| Never Married | 735487 (21.1%) | 86588 (40.7%) | 15325 (37.7%) | 93789 (47.3%) | 2226 (49.1%) | 2663 (24.1%) | 19073 (44.4%) | 45797 (25.1%) | 1000949 (24.0%) |
| Unmarried Couple | 121376 (3.5%) | 3374 (1.6%) | 2742 (6.7%) | 6681 (3.4%) | 0 (0.0%) | 210 (1.9%) | 2888 (6.7%) | 26797 (14.7%) | 164067 (3.9%) |
| Missing | 20177 | 3363 | 512 | 172 | 0 | 215 | 1097 | 505 | 26041 |
| Education Level | |||||||||
| Missing | 6833 | 0 | 401 | 1103 | 0 | 367 | 0 | 1232 | 9936 |
| Never attended school or only kindergarten | 1708 (0.0%) | 3091 (1.4%) | 380 (0.9%) | 940 (0.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 6187 (3.4%) | 12306 (0.3%) |
| Grades 1 through 8 (Elementary) | 33100 (0.9%) | 9324 (4.3%) | 59 (0.1%) | 7334 (3.7%) | 0 (0.0%) | 284 (2.6%) | 0 (0.0%) | 46866 (25.8%) | 96967 (2.3%) |
| Grades 9 through 11 (Some high school) | 146516 (4.2%) | 25100 (11.6%) | 9601 (23.5%) | 7039 (3.6%) | 0 (0.0%) | 585 (5.4%) | 3892 (8.8%) | 41333 (22.7%) | 234066 (5.6%) |
| Grade 12 or GED (High school graduate) | 911647 (26.1%) | 70480 (32.6%) | 13768 (33.7%) | 50896 (25.8%) | 888 (19.6%) | 3867 (35.5%) | 12644 (28.7%) | 38673 (21.3%) | 1102861 (26.3%) |
| College 1 year to 3 years (Some college or technical school) | 1263036 (36.1%) | 66929 (31.0%) | 10349 (25.4%) | 50512 (25.6%) | 2311 (51.0%) | 4439 (40.8%) | 12927 (29.3%) | 31708 (17.4%) | 1442210 (34.4%) |
| College 4 years or more (College graduate) | 1138964 (32.6%) | 41269 (19.1%) | 6650 (16.3%) | 80836 (40.9%) | 1333 (29.4%) | 1706 (15.7%) | 14591 (33.1%) | 17149 (9.4%) | 1302498 (31.1%) |
| Employment | |||||||||
| Employed for wages | 1885983 (54.4%) | 118052 (55.5%) | 18140 (46.3%) | 113427 (59.1%) | 1702 (37.6%) | 4355 (41.3%) | 24207 (55.0%) | 97391 (54.1%) | 2263257 (54.6%) |
| Self-Employed | 338369 (9.8%) | 18865 (8.9%) | 3222 (8.2%) | 14928 (7.8%) | 529 (11.7%) | 2115 (20.1%) | 2600 (5.9%) | 20843 (11.6%) | 401472 (9.7%) |
| Out of work for less than 1 year | 80345 (2.3%) | 6653 (3.1%) | 2172 (5.5%) | 6403 (3.3%) | 489 (10.8%) | 617 (5.9%) | 542 (1.2%) | 3194 (1.8%) | 100415 (2.4%) |
| Out of work for 1 year or more | 57251 (1.7%) | 13685 (6.4%) | 2203 (5.6%) | 3369 (1.8%) | 0 (0.0%) | 342 (3.2%) | 2638 (6.0%) | 6525 (3.6%) | 86013 (2.1%) |
| A homemaker | 120193 (3.5%) | 5519 (2.6%) | 3689 (9.4%) | 6996 (3.6%) | 770 (17.0%) | 422 (4.0%) | 3 (0.0%) | 23139 (12.9%) | 160731 (3.9%) |
| A student | 138155 (4.0%) | 17522 (8.2%) | 783 (2.0%) | 34826 (18.2%) | 1040 (23.0%) | 0 (0.0%) | 4861 (11.0%) | 12272 (6.8%) | 209460 (5.0%) |
| Retired | 742711 (21.4%) | 20410 (9.6%) | 3824 (9.8%) | 4093 (2.1%) | 0 (0.0%) | 2463 (23.4%) | 3810 (8.7%) | 8051 (4.5%) | 785362 (18.9%) |
| Unable to Work | 102052 (2.9%) | 12053 (5.7%) | 5146 (13.1%) | 7778 (4.1%) | 0 (0.0%) | 220 (2.1%) | 5375 (12.2%) | 8565 (4.8%) | 141189 (3.4%) |
| Missing | 36745 | 3432 | 2028 | 6839 | 0 | 714 | 17 | 3169 | 52943 |
| Income | |||||||||
| Missing | 535283 | 30837 | 8505 | 34419 | 287 | 2522 | 7310 | 27852 | 647015 |
| Less than 10K | 68250 (2.3%) | 18639 (10.1%) | 4589 (14.0%) | 12020 (7.3%) | 0 (0.0%) | 269 (3.1%) | 768 (2.1%) | 13250 (8.5%) | 117786 (3.3%) |
| 10 to 15K | 71544 (2.4%) | 11045 (6.0%) | 3329 (10.2%) | 6070 (3.7%) | 0 (0.0%) | 745 (8.5%) | 887 (2.4%) | 10928 (7.0%) | 104549 (2.9%) |
| 15 to 20K | 126466 (4.3%) | 24376 (13.2%) | 2164 (6.6%) | 8851 (5.4%) | 905 (21.3%) | 284 (3.2%) | 2894 (7.9%) | 25461 (16.4%) | 191402 (5.4%) |
| 20 to 25K | 212524 (7.2%) | 31198 (16.8%) | 3271 (10.0%) | 24506 (14.9%) | 278 (6.6%) | 697 (8.0%) | 3921 (10.7%) | 26461 (17.0%) | 302856 (8.5%) |
| 25 to 35K | 261969 (8.8%) | 18297 (9.9%) | 3582 (11.0%) | 15936 (9.7%) | 0 (0.0%) | 1135 (13.0%) | 3951 (10.8%) | 28512 (18.4%) | 333382 (9.4%) |
| 35 to 50K | 409972 (13.8%) | 29424 (15.9%) | 5619 (17.2%) | 17280 (10.5%) | 998 (23.5%) | 3466 (39.7%) | 6285 (17.1%) | 22791 (14.7%) | 495835 (14.0%) |
| 50 to 75K | 534070 (18.0%) | 20708 (11.2%) | 4845 (14.8%) | 22563 (13.7%) | 1221 (28.8%) | 796 (9.1%) | 5361 (14.6%) | 9975 (6.4%) | 599540 (16.9%) |
| greater than 75K | 1281724 (43.2%) | 31668 (17.1%) | 5303 (16.2%) | 57015 (34.7%) | 842 (19.8%) | 1336 (15.3%) | 12675 (34.5%) | 17917 (11.5%) | 1408481 (39.6%) |
| BMI Category | |||||||||
| Underweight | 46541 (1.4%) | 2336 (1.3%) | 1511 (4.3%) | 10990 (6.3%) | 500 (11.0%) | 168 (1.6%) | 468 (1.1%) | 2381 (2.0%) | 64895 (1.7%) |
| Normal Weight | 1063252 (33.0%) | 62399 (33.8%) | 6826 (19.4%) | 83460 (48.0%) | 1988 (43.9%) | 3606 (35.2%) | 7643 (18.4%) | 30497 (25.8%) | 1259670 (33.3%) |
| Overweight | 1194439 (37.1%) | 59527 (32.2%) | 13026 (37.0%) | 50244 (28.9%) | 1223 (27.0%) | 4458 (43.5%) | 17589 (42.3%) | 43066 (36.4%) | 1383572 (36.5%) |
| Obese | 913025 (28.4%) | 60413 (32.7%) | 13845 (39.3%) | 29070 (16.7%) | 821 (18.1%) | 2020 (19.7%) | 15914 (38.2%) | 42397 (35.8%) | 1077505 (28.5%) |
| Missing | 284547 | 31519 | 6000 | 24895 | 0 | 996 | 2440 | 64806 | 415202 |
| Age Group | |||||||||
| Missing | 32265 | 3104 | 246 | 2600 | 0 | 15 | 340 | 1732 | 40302 |
| 18 to 24 | 373807 (10.8%) | 37212 (17.5%) | 6814 (16.6%) | 56270 (28.7%) | 389 (8.6%) | 7 (0.1%) | 11094 (25.4%) | 25055 (13.8%) | 510649 (12.3%) |
| 25 to 29 | 226209 (6.5%) | 22010 (10.3%) | 3285 (8.0%) | 31599 (16.1%) | 1496 (33.0%) | 1161 (10.3%) | 5935 (13.6%) | 20135 (11.1%) | 311830 (7.5%) |
| 30 to 34 | 310213 (8.9%) | 31118 (14.6%) | 4253 (10.4%) | 29081 (14.8%) | 1341 (29.6%) | 2078 (18.5%) | 1408 (3.2%) | 21926 (12.1%) | 401419 (9.6%) |
| 35 to 39 | 276330 (8.0%) | 22080 (10.4%) | 1882 (4.6%) | 26600 (13.6%) | 0 (0.0%) | 1125 (10.0%) | 7446 (17.0%) | 28735 (15.8%) | 364199 (8.8%) |
| 40 to 44 | 251319 (7.2%) | 19768 (9.3%) | 1926 (4.7%) | 10042 (5.1%) | 731 (16.1%) | 1559 (13.9%) | 3507 (8.0%) | 24905 (13.7%) | 313757 (7.5%) |
| 45 to 49 | 235493 (6.8%) | 19914 (9.3%) | 3648 (8.9%) | 11624 (5.9%) | 497 (11.0%) | 277 (2.5%) | 1401 (3.2%) | 17668 (9.7%) | 290523 (7.0%) |
| 50 to 54 | 328689 (9.5%) | 16472 (7.7%) | 5049 (12.3%) | 12309 (6.3%) | 0 (0.0%) | 1350 (12.0%) | 2216 (5.1%) | 12086 (6.7%) | 378170 (9.1%) |
| 55 to 59 | 314909 (9.1%) | 15132 (7.1%) | 3980 (9.7%) | 8615 (4.4%) | 0 (0.0%) | 716 (6.4%) | 4506 (10.3%) | 11705 (6.5%) | 359563 (8.6%) |
| 60 to 64 | 342717 (9.9%) | 13911 (6.5%) | 5338 (13.0%) | 5518 (2.8%) | 0 (0.0%) | 533 (4.7%) | 2389 (5.5%) | 8245 (4.5%) | 378649 (9.1%) |
| 65 to 69 | 261477 (7.5%) | 6686 (3.1%) | 2490 (6.1%) | 715 (0.4%) | 0 (0.0%) | 744 (6.6%) | 1565 (3.6%) | 4169 (2.3%) | 277845 (6.7%) |
| 70 to 74 | 203406 (5.9%) | 4363 (2.0%) | 1572 (3.8%) | 1310 (0.7%) | 0 (0.0%) | 594 (5.3%) | 843 (1.9%) | 2902 (1.6%) | 214991 (5.2%) |
| 75 to 79 | 151771 (4.4%) | 562 (0.3%) | 132 (0.3%) | 1058 (0.5%) | 0 (0.0%) | 0 (0.0%) | 986 (2.3%) | 2234 (1.2%) | 156743 (3.8%) |
| 80+ | 193200 (5.6%) | 3860 (1.8%) | 594 (1.4%) | 1319 (0.7%) | 77 (1.7%) | 1089 (9.7%) | 418 (1.0%) | 1650 (0.9%) | 202206 (4.9%) |
| Number of Children | |||||||||
| Mean (SD) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) |
| Median (Q1, Q3) | 0 (0, 1) | 1 (0, 2) | 0 (0, 2) | 1 (0, 2) | 1 (0, 3) | 0 (0, 1) | 0 (0, 1) | 1 (0, 2) | 0 (0, 1) |
| Min - Max | 0 - 11 | 0 - 10 | 0 - 8 | 0 - 6 | 0 - 3 | 0 - 7 | 0 - 6 | 0 - 12 | 0 - 12 |
| Missing | 19040 | 3577 | 0 | 2165 | 0 | 728 | 0 | 1039 | 26549 |
| Metropolitan Status | |||||||||
| In the center of an MSA | 449781 (55.7%) | 21117 (84.9%) | 2870 (38.4%) | 19867 (77.0%) | 287 (100.0%) | 1877 (72.7%) | 2723 (65.9%) | 9853 (65.0%) | 508375 (57.2%) |
| Outside MSA center city but inside the center city county | 95126 (11.8%) | 0 (0.0%) | 710 (9.5%) | 0 (0.0%) | 0 (0.0%) | 146 (5.7%) | 205 (5.0%) | 542 (3.6%) | 96729 (10.9%) |
| Inside a suburban county of the MSA | 263022 (32.6%) | 3760 (15.1%) | 3903 (52.2%) | 5920 (23.0%) | 0 (0.0%) | 559 (21.6%) | 1205 (29.2%) | 4766 (31.4%) | 283135 (31.9%) |
| Not in an MSA | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
| Missing | 2693874 | 191316 | 33725 | 172874 | 4244 | 8666 | 39920 | 167987 | 3312605 |
| Hours of Sleep per Night | |||||||||
| Less than 7 hours | 870879 (28.5%) | 73155 (43.6%) | 9591 (31.0%) | 44672 (29.4%) | 753 (23.9%) | 3911 (47.4%) | 15116 (41.1%) | 41728 (26.6%) | 1059803 (29.4%) |
| 7-9 hours | 2114591 (69.2%) | 89135 (53.2%) | 18603 (60.2%) | 101733 (66.9%) | 2402 (76.1%) | 4296 (52.1%) | 19967 (54.2%) | 104331 (66.5%) | 2455060 (68.0%) |
| Greater than 9 hours | 69664 (2.3%) | 5310 (3.2%) | 2723 (8.8%) | 5648 (3.7%) | 0 (0.0%) | 40 (0.5%) | 1729 (4.7%) | 10782 (6.9%) | 95896 (2.7%) |
| Missing | 446669 | 48592 | 10291 | 46607 | 1377 | 3001 | 7243 | 26307 | 590086 |
| Days with difficulty sleeping | |||||||||
| Missing | 480498 | 51438 | 9933 | 47495 | 1377 | 2804 | 8521 | 29224 | 631290 |
| 0 days | 1605295 (53.1%) | 98303 (59.7%) | 13662 (43.7%) | 92409 (61.1%) | 1132 (35.9%) | 3009 (35.6%) | 14035 (39.5%) | 96948 (63.0%) | 1924792 (53.9%) |
| 1-3 days | 601393 (19.9%) | 26430 (16.0%) | 6098 (19.5%) | 36571 (24.2%) | 601 (19.1%) | 1528 (18.1%) | 5251 (14.8%) | 20276 (13.2%) | 698150 (19.6%) |
| 4-6 days | 265813 (8.8%) | 10344 (6.3%) | 4131 (13.2%) | 6745 (4.5%) | 0 (0.0%) | 1344 (15.9%) | 7043 (19.8%) | 12211 (7.9%) | 307630 (8.6%) |
| 7 days | 94054 (3.1%) | 2819 (1.7%) | 1001 (3.2%) | 1273 (0.8%) | 0 (0.0%) | 765 (9.1%) | 1297 (3.6%) | 6919 (4.5%) | 108126 (3.0%) |
| 8-10 days | 114739 (3.8%) | 1680 (1.0%) | 1809 (5.8%) | 4846 (3.2%) | 651 (20.6%) | 120 (1.4%) | 1148 (3.2%) | 3495 (2.3%) | 128489 (3.6%) |
| 11-13 days | 30131 (1.0%) | 3301 (2.0%) | 54 (0.2%) | 884 (0.6%) | 0 (0.0%) | 0 (0.0%) | 289 (0.8%) | 405 (0.3%) | 35065 (1.0%) |
| 14 days | 309880 (10.3%) | 21879 (13.3%) | 4519 (14.4%) | 8437 (5.6%) | 770 (24.4%) | 1677 (19.9%) | 6470 (18.2%) | 13669 (8.9%) | 367302 (10.3%) |
| Bill Security | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 464166 | 51109 | 9479 | 46205 | 1766 | 2804 | 7580 | 28651 | 611759 |
| How safe from crime do you consider your neighborhood to be? | |||||||||
| Missing | 473537 | 51169 | 10134 | 45022 | 1766 | 2804 | 8186 | 29064 | 621684 |
| Extremely safe | 1498980 (49.5%) | 53616 (32.5%) | 9553 (30.7%) | 45948 (29.9%) | 500 (18.1%) | 1832 (21.7%) | 14887 (41.5%) | 49330 (32.0%) | 1674646 (46.8%) |
| Safe | 1459253 (48.2%) | 97343 (59.0%) | 17796 (57.3%) | 100773 (65.6%) | 1614 (58.4%) | 5570 (66.0%) | 17353 (48.4%) | 93027 (60.4%) | 1792728 (50.1%) |
| Unsafe | 60213 (2.0%) | 10252 (6.2%) | 2555 (8.2%) | 6917 (4.5%) | 651 (23.5%) | 1041 (12.3%) | 3041 (8.5%) | 10762 (7.0%) | 95433 (2.7%) |
| Extremely Unsafe | 9820 (0.3%) | 3814 (2.3%) | 1169 (3.8%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 587 (1.6%) | 964 (0.6%) | 16354 (0.5%) |
| Food Security | |||||||||
| Missing | 478911 | 53169 | 9765 | 44873 | 1766 | 2865 | 8118 | 28481 | 627948 |
| Often True | 69410 (2.3%) | 12380 (7.6%) | 3782 (12.0%) | 8433 (5.5%) | 0 (0.0%) | 589 (7.0%) | 1883 (5.2%) | 6732 (4.4%) | 103209 (2.9%) |
| Sometimes True | 202443 (6.7%) | 42573 (26.1%) | 5692 (18.1%) | 19722 (12.8%) | 770 (27.9%) | 1897 (22.6%) | 6792 (18.9%) | 28138 (18.2%) | 308028 (8.6%) |
| Never True | 2751039 (91.0%) | 108071 (66.3%) | 21968 (69.9%) | 125632 (81.7%) | 1995 (72.1%) | 5897 (70.3%) | 27261 (75.9%) | 119797 (77.5%) | 3161660 (88.5%) |
| Balanced Meals | |||||||||
| Missing | 478990 | 50242 | 9765 | 44835 | 1766 | 3029 | 8593 | 30475 | 627694 |
| Often True | 113176 (3.7%) | 15365 (9.3%) | 1702 (5.4%) | 5904 (3.8%) | 0 (0.0%) | 592 (7.2%) | 3891 (11.0%) | 6144 (4.0%) | 146775 (4.1%) |
| Sometimes True | 264022 (8.7%) | 38254 (23.1%) | 6835 (21.7%) | 27453 (17.8%) | 500 (18.1%) | 2216 (27.0%) | 7655 (21.6%) | 27339 (17.9%) | 374273 (10.5%) |
| Never True | 2645616 (87.5%) | 112333 (67.7%) | 22905 (72.8%) | 120468 (78.3%) | 2266 (81.9%) | 5411 (65.8%) | 23915 (67.4%) | 119190 (78.1%) | 3052102 (85.4%) |
| Financial Security | |||||||||
| Missing | 533114 | 55515 | 10021 | 52988 | 1766 | 2865 | 8459 | 31477 | 696204 |
| Often True | 1810315 (61.0%) | 56604 (35.2%) | 12237 (39.2%) | 75430 (51.8%) | 269 (9.7%) | 3027 (36.1%) | 17547 (49.3%) | 53128 (35.0%) | 2028557 (57.9%) |
| Sometimes True | 1010346 (34.0%) | 76979 (47.9%) | 13909 (44.6%) | 61889 (42.5%) | 2496 (90.3%) | 4096 (48.9%) | 14891 (41.8%) | 80114 (52.8%) | 1264720 (36.1%) |
| Never True | 148029 (5.0%) | 27095 (16.9%) | 5040 (16.2%) | 8354 (5.7%) | 0 (0.0%) | 1259 (15.0%) | 3157 (8.9%) | 18429 (12.2%) | 211363 (6.0%) |
| Within the last 30 days, how often have you felt stress? | |||||||||
| Missing | 497774 | 51341 | 10385 | 43751 | 1766 | 2236 | 7748 | 28442 | 643441 |
| None of the time | 1399472 (46.6%) | 73182 (44.4%) | 11356 (36.8%) | 65660 (42.4%) | 557 (20.1%) | 2978 (33.0%) | 15132 (41.7%) | 66044 (42.7%) | 1634380 (45.9%) |
| A little of the time | 894627 (29.8%) | 36479 (22.1%) | 11250 (36.5%) | 46058 (29.7%) | 287 (10.4%) | 3475 (38.6%) | 7780 (21.4%) | 39995 (25.9%) | 1039951 (29.2%) |
| Some of the time | 465804 (15.5%) | 27345 (16.6%) | 3656 (11.9%) | 27003 (17.4%) | 1270 (45.9%) | 797 (8.8%) | 6051 (16.7%) | 36738 (23.7%) | 568665 (16.0%) |
| Most of the time | 173489 (5.8%) | 15650 (9.5%) | 2301 (7.5%) | 9656 (6.2%) | 651 (23.5%) | 515 (5.7%) | 3566 (9.8%) | 7912 (5.1%) | 213740 (6.0%) |
| All of the time | 70638 (2.4%) | 12196 (7.4%) | 2260 (7.3%) | 6531 (4.2%) | 0 (0.0%) | 1247 (13.8%) | 3777 (10.4%) | 4018 (2.6%) | 100667 (2.8%) |
| General Health | |||||||||
| Missing | 4944 | 834 | 59 | 0 | 0 | 7 | 0 | 360 | 6205 |
| Excellent | 667712 (19.1%) | 51150 (23.8%) | 7218 (17.5%) | 42893 (21.6%) | 1310 (28.9%) | 2136 (19.0%) | 3584 (8.1%) | 34129 (18.7%) | 810132 (19.3%) |
| Very Good | 1350959 (38.6%) | 46697 (21.7%) | 8684 (21.1%) | 57317 (28.9%) | 857 (18.9%) | 1053 (9.4%) | 11390 (25.9%) | 31829 (17.4%) | 1508787 (36.0%) |
| Good | 1077042 (30.8%) | 80654 (37.5%) | 14824 (36.0%) | 77715 (39.1%) | 2229 (49.2%) | 6074 (54.0%) | 21186 (48.1%) | 68173 (37.3%) | 1347898 (32.1%) |
| Fair | 302942 (8.7%) | 28064 (13.0%) | 7366 (17.9%) | 19066 (9.6%) | 135 (3.0%) | 1440 (12.8%) | 5031 (11.4%) | 40650 (22.2%) | 404694 (9.6%) |
| Poor | 98205 (2.8%) | 8792 (4.1%) | 3055 (7.4%) | 1670 (0.8%) | 0 (0.0%) | 538 (4.8%) | 2863 (6.5%) | 8006 (4.4%) | 123130 (2.9%) |
| How many days during the past 30 days was your physical health not good? | |||||||||
| 0 | 2316184 (67.1%) | 157275 (73.4%) | 24611 (61.0%) | 135250 (69.4%) | 3864 (85.3%) | 7870 (70.0%) | 26134 (61.2%) | 137350 (77.0%) | 2808539 (67.8%) |
| 1 | 705480 (20.4%) | 26773 (12.5%) | 6268 (15.5%) | 40332 (20.7%) | 278 (6.1%) | 2482 (22.1%) | 10892 (25.5%) | 20228 (11.3%) | 812733 (19.6%) |
| 2 | 112996 (3.3%) | 10435 (4.9%) | 2046 (5.1%) | 7005 (3.6%) | 0 (0.0%) | 74 (0.7%) | 874 (2.0%) | 3391 (1.9%) | 136822 (3.3%) |
| 3 | 110759 (3.2%) | 7825 (3.7%) | 3826 (9.5%) | 5151 (2.6%) | 389 (8.6%) | 31 (0.3%) | 1382 (3.2%) | 6505 (3.6%) | 135869 (3.3%) |
| 4 | 29828 (0.9%) | 2098 (1.0%) | 752 (1.9%) | 2381 (1.2%) | 0 (0.0%) | 0 (0.0%) | 340 (0.8%) | 1353 (0.8%) | 36751 (0.9%) |
| 5 | 177793 (5.1%) | 9934 (4.6%) | 2848 (7.1%) | 4876 (2.5%) | 0 (0.0%) | 790 (7.0%) | 3092 (7.2%) | 9517 (5.3%) | 208850 (5.0%) |
| Missing | 48764 | 1852 | 856 | 3666 | 0 | 0 | 1340 | 4803 | 61282 |
| How many days during the past 30 days was your mental health not good? | |||||||||
| 0 | 2337776 (67.7%) | 145976 (68.2%) | 25447 (61.8%) | 134536 (69.4%) | 2747 (60.6%) | 7433 (66.1%) | 23665 (54.4%) | 128874 (71.6%) | 2806454 (67.7%) |
| 1 | 666528 (19.3%) | 26256 (12.3%) | 6182 (15.0%) | 36830 (19.0%) | 1040 (22.9%) | 2244 (20.0%) | 7837 (18.0%) | 21344 (11.9%) | 768261 (18.5%) |
| 2 | 154482 (4.5%) | 12900 (6.0%) | 1265 (3.1%) | 9749 (5.0%) | 77 (1.7%) | 773 (6.9%) | 2594 (6.0%) | 10305 (5.7%) | 192146 (4.6%) |
| 3 | 152568 (4.4%) | 11891 (5.6%) | 5401 (13.1%) | 6670 (3.4%) | 667 (14.7%) | 113 (1.0%) | 3872 (8.9%) | 8016 (4.5%) | 189198 (4.6%) |
| 4 | 26714 (0.8%) | 3243 (1.5%) | 945 (2.3%) | 4187 (2.2%) | 0 (0.0%) | 0 (0.0%) | 660 (1.5%) | 1404 (0.8%) | 37153 (0.9%) |
| 5 | 116866 (3.4%) | 13695 (6.4%) | 1926 (4.7%) | 1837 (0.9%) | 0 (0.0%) | 685 (6.1%) | 4845 (11.1%) | 9953 (5.5%) | 149807 (3.6%) |
| Missing | 46869 | 2232 | 41 | 4852 | 0 | 0 | 581 | 3250 | 57825 |
| Poor health days | |||||||||
| 0 | 1034161 (60.2%) | 43728 (48.3%) | 13131 (53.6%) | 43701 (50.3%) | 568 (31.8%) | 3944 (64.4%) | 14072 (57.7%) | 39641 (55.4%) | 1192945 (58.9%) |
| 1 | 398138 (23.2%) | 21603 (23.9%) | 5214 (21.3%) | 23768 (27.4%) | 1217 (68.2%) | 1062 (17.3%) | 5176 (21.2%) | 16226 (22.7%) | 472404 (23.3%) |
| 2 | 83986 (4.9%) | 7650 (8.4%) | 2377 (9.7%) | 7705 (8.9%) | 0 (0.0%) | 38 (0.6%) | 1437 (5.9%) | 5226 (7.3%) | 108419 (5.4%) |
| 3 | 96104 (5.6%) | 7954 (8.8%) | 1690 (6.9%) | 10574 (12.2%) | 0 (0.0%) | 681 (11.1%) | 1518 (6.2%) | 5222 (7.3%) | 123743 (6.1%) |
| 4 | 18279 (1.1%) | 976 (1.1%) | 975 (4.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 712 (2.9%) | 454 (0.6%) | 21396 (1.1%) |
| 5 | 87180 (5.1%) | 8658 (9.6%) | 1119 (4.6%) | 1122 (1.3%) | 0 (0.0%) | 400 (6.5%) | 1468 (6.0%) | 4822 (6.7%) | 104767 (5.2%) |
| Missing | 1783956 | 125624 | 16702 | 111790 | 2747 | 5123 | 19671 | 111558 | 2177169 |
| Do you smoke cigarettes every day, some days, or not at all? | |||||||||
| Missing | 2050881 | 162422 | 16938 | 168026 | 3097 | 6068 | 26072 | 125699 | 2559203 |
| Every day | 329568 (22.7%) | 23436 (43.6%) | 8987 (37.0%) | 9275 (30.3%) | 135 (9.4%) | 2482 (47.9%) | 6335 (35.2%) | 13835 (24.1%) | 394053 (24.0%) |
| Some days | 143534 (9.9%) | 14988 (27.9%) | 5593 (23.0%) | 6320 (20.6%) | 0 (0.0%) | 0 (0.0%) | 1677 (9.3%) | 13391 (23.3%) | 185502 (11.3%) |
| Not at all | 977820 (67.4%) | 15347 (28.5%) | 9689 (39.9%) | 15040 (49.1%) | 1300 (90.6%) | 2698 (52.1%) | 9970 (55.4%) | 30223 (52.6%) | 1062087 (64.7%) |
| Do you use vaping products every day, some days, or not at all? | |||||||||
| Missing | 2891422 | 180511 | 30107 | 165823 | 3574 | 8366 | 30303 | 153899 | 3464005 |
| Every day | 44960 (7.4%) | 1231 (3.4%) | 643 (5.8%) | 2381 (7.2%) | 0 (0.0%) | 0 (0.0%) | 381 (2.8%) | 1101 (3.8%) | 50696 (6.9%) |
| Some days | 76843 (12.6%) | 6301 (17.7%) | 2620 (23.6%) | 4891 (14.9%) | 0 (0.0%) | 0 (0.0%) | 955 (6.9%) | 4312 (14.7%) | 95922 (13.0%) |
| Not at all | 488579 (80.0%) | 28151 (78.9%) | 7838 (70.6%) | 25566 (77.9%) | 958 (100.0%) | 2882 (100.0%) | 12414 (90.3%) | 23835 (81.5%) | 590222 (80.1%) |
| (Ever told) you had a stroke. | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 6189 | 0 | 562 | 644 | 0 | 140 | 0 | 1267 | 8801 |
| (Ever told) you had angina or coronary heart disease? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 20810 | 212 | 191 | 2930 | 0 | 140 | 118 | 2161 | 26562 |
| (Ever told) you have diabetes | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 2915 | 212 | 478 | 0 | 0 | 349 | 0 | 210 | 4165 |
| (Ever told) you that you have a depressive disorder? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 12463 | 834 | 100 | 2215 | 0 | 401 | 453 | 1486 | 17952 |
| (Ever told) you have some form of arthritis? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 1) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 12485 | 436 | 509 | 1635 | 0 | 494 | 118 | 1603 | 17280 |
| (Ever told) you have COPD, emphysema or chronic bronchitis? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 10938 | 0 | 342 | 2971 | 0 | 719 | 245 | 860 | 16075 |
| Are you deaf or do you have serious difficulty hearing? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 69348 | 10161 | 2912 | 10096 | 821 | 423 | 1753 | 5368 | 100882 |
| Are you blind or do you have serious difficulty seeing, even when wearing glasses? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 74961 | 10488 | 3156 | 11550 | 821 | 423 | 1753 | 5581 | 108732 |
| Because of a physical, mental, or emotional condition, do you have serious difficulty concentrating, remembering, or making decisions? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 83761 | 12953 | 3309 | 10462 | 821 | 423 | 2266 | 6903 | 120897 |
| Do you have serious difficulty walking or climbing stairs? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 81916 | 16366 | 2807 | 12104 | 821 | 686 | 1753 | 6999 | 123450 |
| Do you have difficulty dressing or bathing? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 83816 | 13803 | 2883 | 12788 | 821 | 686 | 1753 | 7836 | 124385 |
| Because of a physical, mental, or emotional condition, do you have difficulty doing errands alone? | |||||||||
| Mean (SD) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
| Median (Q1, Q3) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) | 0 (0, 0) |
| Min - Max | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 0 | 0 - 1 | 0 - 1 | 0 - 1 | 0 - 1 |
| Missing | 93344 | 15097 | 2940 | 14028 | 821 | 686 | 2207 | 7439 | 136562 |
| X_LLCPWT | |||||||||
| Mean (SD) | 383 (276) | 660 (369) | 375 (332) | 905 (520) | 465 (223) | 365 (216) | 421 (283) | 429 (253) | 425 (321) |
| Median (Q1, Q3) | 313 (194, 492) | 556 (385, 889) | 268 (163, 475) | 753 (533, 1134) | 500 (287, 651) | 342 (182, 526) | 343 (220, 531) | 377 (231, 552) | 340 (208, 538) |
| Min - Max | 2 - 2296 | 4 - 1857 | 4 - 1434 | 4 - 2589 | 70 - 770 | 3 - 765 | 3 - 1315 | 4 - 1256 | 2 - 2589 |
| Missing | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
stargazer(data.frame(prop.table(svytable(~SLEPTIM1+X_RACE,design= des),
margin=2)), summary = FALSE,
title="Descriptive Statistics",
type = "html", digits= 3)| SLEPTIM1 | X_RACE | Freq | |
| 1 | Less than 7 hours | White only, non-Hispanic | 0.285 |
| 2 | 7-9 hours | White only, non-Hispanic | 0.692 |
| 3 | Greater than 9 hours | White only, non-Hispanic | 0.023 |
| 4 | Less than 7 hours | Black only, non-Hispanic | 0.436 |
| 5 | 7-9 hours | Black only, non-Hispanic | 0.532 |
| 6 | Greater than 9 hours | Black only, non-Hispanic | 0.032 |
| 7 | Less than 7 hours | American Indian or Alaskan Native Only, non-Hispanic | 0.310 |
| 8 | 7-9 hours | American Indian or Alaskan Native Only, non-Hispanic | 0.602 |
| 9 | Greater than 9 hours | American Indian or Alaskan Native Only, non-Hispanic | 0.088 |
| 10 | Less than 7 hours | Asian only, non-Hispanic | 0.294 |
| 11 | 7-9 hours | Asian only, non-Hispanic | 0.669 |
| 12 | Greater than 9 hours | Asian only, non-Hispanic | 0.037 |
| 13 | Less than 7 hours | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0.239 |
| 14 | 7-9 hours | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0.761 |
| 15 | Greater than 9 hours | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0 |
| 16 | Less than 7 hours | Other race only, non-Hispanic | 0.474 |
| 17 | 7-9 hours | Other race only, non-Hispanic | 0.521 |
| 18 | Greater than 9 hours | Other race only, non-Hispanic | 0.005 |
| 19 | Less than 7 hours | Multiracial, non-Hispanic | 0.411 |
| 20 | 7-9 hours | Multiracial, non-Hispanic | 0.542 |
| 21 | Greater than 9 hours | Multiracial, non-Hispanic | 0.047 |
| 22 | Less than 7 hours | Hispanic | 0.266 |
| 23 | 7-9 hours | Hispanic | 0.665 |
| 24 | Greater than 9 hours | Hispanic | 0.069 |
stargazer(svyby(formula= ~SLEPTIM1, by = ~X_RACE,
design=des,FUN =svymean,na.rm=T),
title="Descriptive Statistics",
summary = F, type="html",digits = 2)| X_RACE | SLEPTIM1Less than 7 hours | SLEPTIM17-9 hours | SLEPTIM1Greater than 9 hours | se.SLEPTIM1Less than 7 hours | se.SLEPTIM17-9 hours | se.SLEPTIM1Greater than 9 hours | |
| White only, non-Hispanic | White only, non-Hispanic | 0.29 | 0.69 | 0.02 | 0.01 | 0.01 | 0.002 |
| Black only, non-Hispanic | Black only, non-Hispanic | 0.44 | 0.53 | 0.03 | 0.03 | 0.03 | 0.01 |
| American Indian or Alaskan Native Only, non-Hispanic | American Indian or Alaskan Native Only, non-Hispanic | 0.31 | 0.60 | 0.09 | 0.05 | 0.06 | 0.05 |
| Asian only, non-Hispanic | Asian only, non-Hispanic | 0.29 | 0.67 | 0.04 | 0.04 | 0.04 | 0.02 |
| Native Hawaiian or other Pacific Islander only, non-Hispanic | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0.24 | 0.76 | 0 | 0.18 | 0.18 | 0 |
| Other race only, non-Hispanic | Other race only, non-Hispanic | 0.47 | 0.52 | 0.005 | 0.11 | 0.10 | 0.005 |
| Multiracial, non-Hispanic | Multiracial, non-Hispanic | 0.41 | 0.54 | 0.05 | 0.05 | 0.05 | 0.02 |
| Hispanic | Hispanic | 0.27 | 0.67 | 0.07 | 0.02 | 0.02 | 0.01 |
Over the last 2 weeks, how many days have you had trouble falling asleep or sleeping too much??
stargazer(data.frame(prop.table(svytable(~ADSLEEP_B+X_RACE,design= des),
margin=2)),title="Descriptive Statistics",
summary = FALSE,type = "html", digits= 3)| ADSLEEP_B | X_RACE | Freq | |
| 1 | 0 | White only, non-Hispanic | 0.182 |
| 2 | 1 | White only, non-Hispanic | 0.818 |
| 3 | 0 | Black only, non-Hispanic | 0.180 |
| 4 | 1 | Black only, non-Hispanic | 0.820 |
| 5 | 0 | American Indian or Alaskan Native Only, non-Hispanic | 0.236 |
| 6 | 1 | American Indian or Alaskan Native Only, non-Hispanic | 0.764 |
| 7 | 0 | Asian only, non-Hispanic | 0.102 |
| 8 | 1 | Asian only, non-Hispanic | 0.898 |
| 9 | 0 | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0.451 |
| 10 | 1 | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0.549 |
| 11 | 0 | Other race only, non-Hispanic | 0.303 |
| 12 | 1 | Other race only, non-Hispanic | 0.697 |
| 13 | 0 | Multiracial, non-Hispanic | 0.259 |
| 14 | 1 | Multiracial, non-Hispanic | 0.741 |
| 15 | 0 | Hispanic | 0.159 |
| 16 | 1 | Hispanic | 0.841 |
stargazer(svyby(formula= ~ADSLEEP_B, by = ~X_RACE,
design=des,FUN =svymean,na.rm=T),
title="Descriptive Statistics",
summary = F, type="html",digits = 2)| X_RACE | ADSLEEP_B | se | |
| White only, non-Hispanic | White only, non-Hispanic | 0.82 | 0.004 |
| Black only, non-Hispanic | Black only, non-Hispanic | 0.82 | 0.02 |
| American Indian or Alaskan Native Only, non-Hispanic | American Indian or Alaskan Native Only, non-Hispanic | 0.76 | 0.04 |
| Asian only, non-Hispanic | Asian only, non-Hispanic | 0.90 | 0.02 |
| Native Hawaiian or other Pacific Islander only, non-Hispanic | Native Hawaiian or other Pacific Islander only, non-Hispanic | 0.55 | 0.21 |
| Other race only, non-Hispanic | Other race only, non-Hispanic | 0.70 | 0.11 |
| Multiracial, non-Hispanic | Multiracial, non-Hispanic | 0.74 | 0.05 |
| Hispanic | Hispanic | 0.84 | 0.02 |
#Function to save odds ratio from each variable
or_fun <- function(y) {
or_table <- exp(cbind(OR = coef(or), confint(or)))[2, ]
or_table$hv <- c(y)
unlist(or_table)
as.data.frame(or_table)
}
#Binomial logistic regression for each variable
or<-svyglm(ADSLEEP~SEX, family=quasibinomial,design=svydes)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(ADSLEEP~ MARITAL, family = quasibinomial, design = svydes)
b <- or_fun("MARITAL")
or <- svyglm(ADSLEEP~ EDUCA, family = quasibinomial, design = svydes)
c <- or_fun("EDUCA")
or <- svyglm(ADSLEEP~ EMPLOY1, family = quasibinomial, design = svydes)
d <- or_fun("EMPLOY1")
or <- svyglm(ADSLEEP~ INCOME2, family = quasibinomial, design = svydes)
e <- or_fun("INCOME2")
or <- svyglm(ADSLEEP~ X_BMI5CAT, family = quasibinomial, design = svydes)
f <- or_fun("X_BMI5CAT")
or <- svyglm(ADSLEEP~ X_RACE, family = quasibinomial, design = svydes)
g <- or_fun("X_RACE")
or <- svyglm(ADSLEEP~ X_AGEG5YR, family = quasibinomial, design = svydes)
h <- or_fun("X_AGEG5YR")
or <- svyglm(ADSLEEP~ CHILDREN, family = quasibinomial, design = svydes)
i <- or_fun("CHILDREN")
or <- svyglm(ADSLEEP~ SDHBILLS, family = quasibinomial, design = svydes)
j <- or_fun("SDHBILLS")
or <- svyglm(ADSLEEP~ HOWSAFE1, family = quasibinomial, design = svydes)
k <- or_fun("HOWSAFE1")
or <- svyglm(ADSLEEP~ SDHFOOD, family = quasibinomial, design = svydes)
l <- or_fun("SDHFOOD")
or <- svyglm(ADSLEEP~ SDHMEALS, family = quasibinomial, design = svydes)
m <- or_fun("SDHMEALS")
or <- svyglm(ADSLEEP~ SDHMONEY, family = quasibinomial, design = svydes)
n <- or_fun("SDHMONEY")
or <- svyglm(ADSLEEP~ SDHSTRES, family = quasibinomial, design = svydes)
o <- or_fun("SDHSTRES")
or <- svyglm(ADSLEEP~ GENHLTH, family = quasibinomial, design = svydes)
p <- or_fun("GENHLTH")
or <- svyglm(ADSLEEP~ PHYSHLTH, family = quasibinomial, design = svydes)
q <- or_fun("PHYSHLTH")
or <- svyglm(ADSLEEP~ MENTHLTH, family = quasibinomial, design = svydes)
r <- or_fun("MENTHLTH")
or <- svyglm(ADSLEEP~ POORHLTH, family = quasibinomial, design = svydes)
s <- or_fun("POORHLTH")
or <- svyglm(ADSLEEP~ SMOKDAY2, family = quasibinomial, design = svydes)
t <- or_fun("SMOKDAY2")
or <- svyglm(ADSLEEP~ ECIGNOW, family = quasibinomial, design = svydes)
u <- or_fun("ECIGNOW")
or <- svyglm(ADSLEEP~ CVDSTRK3, family = quasibinomial, design = svydes)
v <- or_fun("CVDSTRK3")
or <- svyglm(ADSLEEP~ CVDCRHD4, family = quasibinomial, design = svydes)
w <- or_fun("CVDCRHD4")
or <- svyglm(ADSLEEP~ DIABETE3, family = quasibinomial, design = svydes)
x <- or_fun("DIABETE3")
or <- svyglm(ADSLEEP~ ADDEPEV2, family = quasibinomial, design = svydes)
y <- or_fun("ADDEPEV2")
or <- svyglm(ADSLEEP~ HAVARTH3, family = quasibinomial, design = svydes)
z <- or_fun("HAVARTH3")
or <- svyglm(ADSLEEP~ CHCCOPD1, family = quasibinomial, design = svydes)
aa <- or_fun("CHCCOPD1")
or <- svyglm(ADSLEEP~ DEAF, family = quasibinomial, design = svydes)
bb <- or_fun("DEAF")
or <- svyglm(ADSLEEP~ BLIND, family = quasibinomial, design = svydes)
cc <- or_fun("BLIND")
or <- svyglm(ADSLEEP~ DECIDE, family = quasibinomial, design = svydes)
dd <- or_fun("DECIDE")
or <- svyglm(ADSLEEP~ DIFFWALK, family = quasibinomial, design = svydes)
ee <- or_fun("DIFFWALK")
or <- svyglm(ADSLEEP~ DIFFDRES, family = quasibinomial, design = svydes)
ff <- or_fun("DIFFDRES")
or <- svyglm(ADSLEEP~ DIFFALON, family = quasibinomial, design = svydes)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, g, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 + X_BMI5CAT
+ X_RACE + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 + SDHFOOD +
SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH + MENTHLTH +
POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 + DIABETE3 +
ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND + DECIDE +
DIFFWALK + DIFFDRES + DIFFALON, family = quasibinomial,
design = svydes)
summary(alr)##
## Call:
## svyglm(formula = ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_RACE + X_AGEG5YR + CHILDREN + SDHBILLS +
## HOWSAFE1 + SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH +
## PHYSHLTH + MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 +
## CVDCRHD4 + DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF +
## BLIND + DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydes,
## family = quasibinomial)
##
## Survey design:
## svydesign(id = ~X_PSU, strata = ~X_STSTR, weights = ~X_LLCPWT,
## data = brfss2017B, nest = T)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.22876 0.20263 6.064 1.40e-09 ***
## SEXref 0.23258 0.08048 2.890 0.003866 **
## MARITALref -0.01702 0.08055 -0.211 0.832637
## EDUCAref -0.11168 0.08792 -1.270 0.204042
## EMPLOY1ref -0.09371 0.08488 -1.104 0.269623
## INCOME2ref 0.05052 0.11069 0.456 0.648123
## X_BMI5CATref 0.21380 0.08921 2.397 0.016576 *
## X_RACEref -0.26406 0.12051 -2.191 0.028470 *
## X_AGEG5YRref -0.05044 0.12524 -0.403 0.687161
## CHILDRENref -0.12839 0.09052 -1.418 0.156107
## SDHBILLSref -0.33833 0.14633 -2.312 0.020804 *
## HOWSAFE1ref 0.07706 0.19780 0.390 0.696860
## SDHFOODref -0.04931 0.14162 -0.348 0.727680
## SDHMEALSref -0.22102 0.12372 -1.787 0.074061 .
## SDHMONEYref 0.03728 0.08751 0.426 0.670134
## SDHSTRESref -1.19604 0.11196 -10.682 < 2e-16 ***
## GENHLTHref -0.37895 0.10304 -3.678 0.000237 ***
## PHYSHLTHref 0.41555 0.10389 4.000 6.40e-05 ***
## MENTHLTHref 0.32346 0.10505 3.079 0.002085 **
## POORHLTHref 0.16705 0.12399 1.347 0.177940
## SMOKDAY2ref -0.11691 0.11106 -1.053 0.292546
## ECIGNOWref -0.04889 0.19157 -0.255 0.798591
## CVDSTRK3ref 0.21287 0.20329 1.047 0.295079
## CVDCRHD4ref 0.20579 0.16232 1.268 0.204908
## DIABETE3ref -0.02922 0.11977 -0.244 0.807242
## ADDEPEV2ref -0.40113 0.08886 -4.514 6.47e-06 ***
## HAVARTH3ref -0.21351 0.08566 -2.492 0.012709 *
## CHCCOPD1ref -0.01844 0.14730 -0.125 0.900364
## DEAFref -0.11244 0.13053 -0.861 0.389074
## BLINDref -0.13190 0.17407 -0.758 0.448621
## DECIDEref -0.42124 0.11336 -3.716 0.000204 ***
## DIFFWALKref -0.07368 0.11632 -0.633 0.526469
## DIFFDRESref 0.02556 0.18117 0.141 0.887824
## DIFFALONref -0.18098 0.14857 -1.218 0.223232
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 1.008297)
##
## Number of Fisher Scoring iterations: 4
## 2.5 % 97.5 %
## (Intercept) 0.83162547 1.62590232
## SEXref 0.07483836 0.39032102
## MARITALref -0.17489396 0.14084959
## EDUCAref -0.28399424 0.06063963
## EMPLOY1ref -0.26008293 0.07265610
## INCOME2ref -0.16642450 0.26745653
## X_BMI5CATref 0.03894897 0.38864900
## X_RACEref -0.50025534 -0.02786605
## X_AGEG5YRref -0.29590750 0.19503090
## CHILDRENref -0.30579702 0.04901603
## SDHBILLSref -0.62514070 -0.05152191
## HOWSAFE1ref -0.31062481 0.46474321
## SDHFOODref -0.32687704 0.22824799
## SDHMEALSref -0.46350179 0.02146010
## SDHMONEYref -0.13424074 0.20879734
## SDHSTRESref -1.41548215 -0.97659071
## GENHLTHref -0.58089593 -0.17699937
## PHYSHLTHref 0.21193280 0.61915824
## MENTHLTHref 0.11755960 0.52935755
## POORHLTHref -0.07597198 0.41007866
## SMOKDAY2ref -0.33458955 0.10077158
## ECIGNOWref -0.42436541 0.32659313
## CVDSTRK3ref -0.18557174 0.61131249
## CVDCRHD4ref -0.11234688 0.52391735
## DIABETE3ref -0.26397792 0.20552911
## ADDEPEV2ref -0.57529862 -0.22696248
## HAVARTH3ref -0.38139947 -0.04561521
## CHCCOPD1ref -0.30714755 0.27026162
## DEAFref -0.36828013 0.14340719
## BLINDref -0.47307946 0.20927028
## DECIDEref -0.64342757 -0.19905690
## DIFFWALKref -0.30167731 0.15430820
## DIFFDRESref -0.32953171 0.38064459
## DIFFALONref -0.47217812 0.11022394
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 3.4170032 1.2618510 0.9831219 0.8943328 0.9105437 1.0518137
## X_BMI5CATref X_RACEref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref
## 1.2383737 0.7679269 0.9508126 0.8795099 0.7129590 1.0801060
## SDHFOODref SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref
## 0.9518817 0.8017000 1.0379819 0.3023904 0.6845815 1.5151971
## MENTHLTHref POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref
## 1.3818989 1.1818173 0.8896662 0.9522896 1.2372243 1.2284893
## DIABETE3ref ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref
## 0.9711985 0.6695626 0.8077462 0.9817261 0.8936541 0.8764246
## DECIDEref DIFFWALKref DIFFDRESref DIFFALONref
## 0.6562311 0.9289647 1.0258858 0.8344545
## AOR 2.5 % 97.5 %
## (Intercept) 3.4170032 2.2970495 5.0830035
## SEXref 1.2618510 1.0777099 1.4774550
## MARITALref 0.9831219 0.8395460 1.1512515
## EDUCAref 0.8943328 0.7527710 1.0625159
## EMPLOY1ref 0.9105437 0.7709876 1.0753607
## INCOME2ref 1.0518137 0.8466867 1.3066368
## X_BMI5CATref 1.2383737 1.0397174 1.4749867
## X_RACEref 0.7679269 0.6063758 0.9725186
## X_AGEG5YRref 0.9508126 0.7438562 1.2153485
## CHILDRENref 0.8795099 0.7365361 1.0502372
## SDHBILLSref 0.7129590 0.5351861 0.9497828
## HOWSAFE1ref 1.0801060 0.7329888 1.5916054
## SDHFOODref 0.9518817 0.7211724 1.2563969
## SDHMEALSref 0.8017000 0.6290769 1.0216920
## SDHMONEYref 1.0379819 0.8743795 1.2321953
## SDHSTRESref 0.3023904 0.2428085 0.3765928
## GENHLTHref 0.6845815 0.5593970 0.8377803
## PHYSHLTHref 1.5151971 1.2360648 1.8573639
## MENTHLTHref 1.3818989 1.1247487 1.6978412
## POORHLTHref 1.1818173 0.9268422 1.5069363
## SMOKDAY2ref 0.8896662 0.7156318 1.1060240
## ECIGNOWref 0.9522896 0.6541848 1.3862373
## CVDSTRK3ref 1.2372243 0.8306292 1.8428485
## CVDCRHD4ref 1.2284893 0.8937342 1.6886297
## DIABETE3ref 0.9711985 0.7679905 1.2281747
## ADDEPEV2ref 0.6695626 0.5625369 0.7969507
## HAVARTH3ref 0.8077462 0.6829050 0.9554095
## CHCCOPD1ref 0.9817261 0.7355421 1.3103072
## DEAFref 0.8936541 0.6919233 1.1541997
## BLINDref 0.8764246 0.6230806 1.2327781
## DECIDEref 0.6562311 0.5254882 0.8195033
## DIFFWALKref 0.9289647 0.7395767 1.1668505
## DIFFDRESref 1.0258858 0.7192605 1.4632275
## DIFFALONref 0.8344545 0.6236424 1.1165281
## AOR 2.5 % 97.5 %
## SEXref 1.2618510 1.0777099 1.4774550
## MARITALref 0.9831219 0.8395460 1.1512515
## EDUCAref 0.8943328 0.7527710 1.0625159
## EMPLOY1ref 0.9105437 0.7709876 1.0753607
## INCOME2ref 1.0518137 0.8466867 1.3066368
## X_BMI5CATref 1.2383737 1.0397174 1.4749867
## X_RACEref 0.7679269 0.6063758 0.9725186
## X_AGEG5YRref 0.9508126 0.7438562 1.2153485
## CHILDRENref 0.8795099 0.7365361 1.0502372
## SDHBILLSref 0.7129590 0.5351861 0.9497828
## HOWSAFE1ref 1.0801060 0.7329888 1.5916054
## SDHFOODref 0.9518817 0.7211724 1.2563969
## SDHMEALSref 0.8017000 0.6290769 1.0216920
## SDHMONEYref 1.0379819 0.8743795 1.2321953
## SDHSTRESref 0.3023904 0.2428085 0.3765928
## GENHLTHref 0.6845815 0.5593970 0.8377803
## PHYSHLTHref 1.5151971 1.2360648 1.8573639
## MENTHLTHref 1.3818989 1.1247487 1.6978412
## POORHLTHref 1.1818173 0.9268422 1.5069363
## SMOKDAY2ref 0.8896662 0.7156318 1.1060240
## ECIGNOWref 0.9522896 0.6541848 1.3862373
## CVDSTRK3ref 1.2372243 0.8306292 1.8428485
## CVDCRHD4ref 1.2284893 0.8937342 1.6886297
## DIABETE3ref 0.9711985 0.7679905 1.2281747
## ADDEPEV2ref 0.6695626 0.5625369 0.7969507
## HAVARTH3ref 0.8077462 0.6829050 0.9554095
## CHCCOPD1ref 0.9817261 0.7355421 1.3103072
## DEAFref 0.8936541 0.6919233 1.1541997
## BLINDref 0.8764246 0.6230806 1.2327781
## DECIDEref 0.6562311 0.5254882 0.8195033
## DIFFWALKref 0.9289647 0.7395767 1.1668505
## DIFFDRESref 1.0258858 0.7192605 1.4632275
## DIFFALONref 0.8344545 0.6236424 1.1165281
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 1.51 | 1.36 | 1.69 | SEX | 1.26 | 1.08 | 1.48 |
| MARITALref | 1.53 | 1.37 | 1.70 | MARITAL | 0.98 | 0.84 | 1.15 |
| EDUCAref | 0.89 | 0.79 | 1.00 | EDUCA | 0.89 | 0.75 | 1.06 |
| EMPLOY1ref | 1.26 | 1.13 | 1.40 | EMPLOY1 | 0.91 | 0.77 | 1.08 |
| INCOME2ref | 0.97 | 0.83 | 1.14 | INCOME2 | 1.05 | 0.85 | 1.31 |
| X_BMI5CATref | 1.27 | 1.12 | 1.43 | X_BMI5CAT | 1.24 | 1.04 | 1.47 |
| X_RACEref | 1.00 | 0.85 | 1.17 | X_RACE | 0.77 | 0.61 | 0.97 |
| X_AGEG5YRref | 0.93 | 0.79 | 1.10 | X_AGEG5YR | 0.95 | 0.74 | 1.22 |
| CHILDRENref | 0.85 | 0.75 | 0.96 | CHILDREN | 0.88 | 0.74 | 1.05 |
| SDHBILLSref | 0.29 | 0.24 | 0.34 | SDHBILLS | 0.71 | 0.54 | 0.95 |
| HOWSAFE1ref | 0.40 | 0.31 | 0.52 | HOWSAFE1 | 1.08 | 0.73 | 1.59 |
| SDHFOODref | 0.36 | 0.31 | 0.42 | SDHFOOD | 0.95 | 0.72 | 1.26 |
| SDHMEALSref | 0.39 | 0.34 | 0.45 | SDHMEALS | 0.80 | 0.63 | 1.02 |
| SDHMONEYref | 0.55 | 0.49 | 0.61 | SDHMONEY | 1.04 | 0.87 | 1.23 |
| SDHSTRESref | 0.13 | 0.11 | 0.16 | SDHSTRES | 0.30 | 0.24 | 0.38 |
| GENHLTHref | 0.29 | 0.25 | 0.33 | GENHLTH | 0.68 | 0.56 | 0.84 |
| PHYSHLTHref | 3.89 | 3.40 | 4.45 | PHYSHLTH | 1.52 | 1.24 | 1.86 |
| MENTHLTHref | 4.82 | 4.15 | 5.60 | MENTHLTH | 1.38 | 1.12 | 1.70 |
| POORHLTHref | 3.48 | 2.92 | 4.14 | POORHLTH | 1.18 | 0.93 | 1.51 |
| SMOKDAY2ref | 0.51 | 0.44 | 0.58 | SMOKDAY2 | 0.89 | 0.72 | 1.11 |
| ECIGNOWref | 0.57 | 0.43 | 0.76 | ECIGNOW | 0.95 | 0.65 | 1.39 |
| CVDSTRK3ref | 0.57 | 0.43 | 0.75 | CVDSTRK3 | 1.24 | 0.83 | 1.84 |
| CVDCRHD4ref | 0.68 | 0.55 | 0.84 | CVDCRHD4 | 1.23 | 0.89 | 1.69 |
| DIABETE3ref | 0.73 | 0.62 | 0.85 | DIABETE3 | 0.97 | 0.77 | 1.23 |
| ADDEPEV2ref | 0.29 | 0.25 | 0.32 | ADDEPEV2 | 0.67 | 0.56 | 0.80 |
| HAVARTH3ref | 0.50 | 0.44 | 0.55 | HAVARTH3 | 0.81 | 0.68 | 0.96 |
| CHCCOPD1ref | 0.38 | 0.31 | 0.46 | CHCCOPD1 | 0.98 | 0.74 | 1.31 |
| DEAFref | 0.58 | 0.49 | 0.70 | DEAF | 0.89 | 0.69 | 1.15 |
| BLINDref | 0.48 | 0.38 | 0.60 | BLIND | 0.88 | 0.62 | 1.23 |
| DECIDEref | 0.19 | 0.16 | 0.22 | DECIDE | 0.66 | 0.53 | 0.82 |
| DIFFWALKref | 0.33 | 0.29 | 0.38 | DIFFWALK | 0.93 | 0.74 | 1.17 |
| DIFFDRESref | 0.22 | 0.17 | 0.27 | DIFFDRES | 1.03 | 0.72 | 1.46 |
| DIFFALONref | 0.19 | 0.16 | 0.23 | DIFFALON | 0.83 | 0.62 | 1.12 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))#Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#Plot OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))#Binomial logistic regression for each variable
or<-svyglm(SLEPTIM1~SEX, family=quasibinomial,design=svydes)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(SLEPTIM1~ MARITAL, family = quasibinomial, design = svydes)
b <- or_fun("MARITAL")
or <- svyglm(SLEPTIM1~ EDUCA, family = quasibinomial, design = svydes)
c <- or_fun("EDUCA")
or <- svyglm(SLEPTIM1~ EMPLOY1, family = quasibinomial, design = svydes)
d <- or_fun("EMPLOY1")
or <- svyglm(SLEPTIM1~ INCOME2, family = quasibinomial, design = svydes)
e <- or_fun("INCOME2")
or <- svyglm(SLEPTIM1~ X_BMI5CAT, family = quasibinomial, design = svydes)
f <- or_fun("X_BMI5CAT")
or <- svyglm(SLEPTIM1~ X_RACE, family = quasibinomial, design = svydes)
g <- or_fun("X_RACE")
or <- svyglm(SLEPTIM1~ X_AGEG5YR, family = quasibinomial, design = svydes)
h <- or_fun("X_AGEG5YR")
or <- svyglm(SLEPTIM1~ CHILDREN, family = quasibinomial, design = svydes)
i <- or_fun("CHILDREN")
or <- svyglm(SLEPTIM1~ SDHBILLS, family = quasibinomial, design = svydes)
j <- or_fun("SDHBILLS")
or <- svyglm(SLEPTIM1~ HOWSAFE1, family = quasibinomial, design = svydes)
k <- or_fun("HOWSAFE1")
or <- svyglm(SLEPTIM1~ SDHFOOD, family = quasibinomial, design = svydes)
l <- or_fun("SDHFOOD")
or <- svyglm(SLEPTIM1~ SDHMEALS, family = quasibinomial, design = svydes)
m <- or_fun("SDHMEALS")
or <- svyglm(SLEPTIM1~ SDHMONEY, family = quasibinomial, design = svydes)
n <- or_fun("SDHMONEY")
or <- svyglm(SLEPTIM1~ SDHSTRES, family = quasibinomial, design = svydes)
o <- or_fun("SDHSTRES")
or <- svyglm(SLEPTIM1~ GENHLTH, family = quasibinomial, design = svydes)
p <- or_fun("GENHLTH")
or <- svyglm(SLEPTIM1~ PHYSHLTH, family = quasibinomial, design = svydes)
q <- or_fun("PHYSHLTH")
or <- svyglm(SLEPTIM1~ MENTHLTH, family = quasibinomial, design = svydes)
r <- or_fun("MENTHLTH")
or <- svyglm(SLEPTIM1~ POORHLTH, family = quasibinomial, design = svydes)
s <- or_fun("POORHLTH")
or <- svyglm(SLEPTIM1~ SMOKDAY2, family = quasibinomial, design = svydes)
t <- or_fun("SMOKDAY2")
or <- svyglm(SLEPTIM1~ ECIGNOW, family = quasibinomial, design = svydes)
u <- or_fun("ECIGNOW")
or <- svyglm(SLEPTIM1~ CVDSTRK3, family = quasibinomial, design = svydes)
v <- or_fun("CVDSTRK3")
or <- svyglm(SLEPTIM1~ CVDCRHD4, family = quasibinomial, design = svydes)
w <- or_fun("CVDCRHD4")
or <- svyglm(SLEPTIM1~ DIABETE3, family = quasibinomial, design = svydes)
x <- or_fun("DIABETE3")
or <- svyglm(SLEPTIM1~ ADDEPEV2, family = quasibinomial, design = svydes)
y <- or_fun("ADDEPEV2")
or <- svyglm(SLEPTIM1~ HAVARTH3, family = quasibinomial, design = svydes)
z <- or_fun("HAVARTH3")
or <- svyglm(SLEPTIM1~ CHCCOPD1, family = quasibinomial, design = svydes)
aa <- or_fun("CHCCOPD1")
or <- svyglm(SLEPTIM1~ DEAF, family = quasibinomial, design = svydes)
bb <- or_fun("DEAF")
or <- svyglm(SLEPTIM1~ BLIND, family = quasibinomial, design = svydes)
cc <- or_fun("BLIND")
or <- svyglm(SLEPTIM1~ DECIDE, family = quasibinomial, design = svydes)
dd <- or_fun("DECIDE")
or <- svyglm(SLEPTIM1~ DIFFWALK, family = quasibinomial, design = svydes)
ee <- or_fun("DIFFWALK")
or <- svyglm(SLEPTIM1~ DIFFDRES, family = quasibinomial, design = svydes)
ff <- or_fun("DIFFDRES")
or <- svyglm(SLEPTIM1~ DIFFALON, family = quasibinomial, design = svydes)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, g, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 +
X_BMI5CAT + X_RACE + X_AGEG5YR + CHILDREN + SDHBILLS +
HOWSAFE1 + SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH +
PHYSHLTH + MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW +
CVDSTRK3 + CVDCRHD4 + DIABETE3 + ADDEPEV2 + HAVARTH3 +
CHCCOPD1 + DEAF + BLIND + DECIDE + DIFFWALK + DIFFDRES +
DIFFALON, family = quasibinomial, design = svydes)
summary(alr)##
## Call:
## svyglm(formula = SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_RACE + X_AGEG5YR + CHILDREN + SDHBILLS +
## HOWSAFE1 + SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH +
## PHYSHLTH + MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 +
## CVDCRHD4 + DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF +
## BLIND + DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydes,
## family = quasibinomial)
##
## Survey design:
## svydesign(id = ~X_PSU, strata = ~X_STSTR, weights = ~X_LLCPWT,
## data = brfss2017B, nest = T)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.630022 0.172344 -3.656 0.000258 ***
## SEXref -0.077728 0.063435 -1.225 0.220488
## MARITALref 0.257943 0.063768 4.045 5.28e-05 ***
## EDUCAref -0.168772 0.072701 -2.321 0.020287 *
## EMPLOY1ref -0.163115 0.067362 -2.421 0.015480 *
## INCOME2ref -0.114752 0.093423 -1.228 0.219369
## X_BMI5CATref 0.079891 0.071506 1.117 0.263919
## X_RACEref 0.404703 0.095466 4.239 2.27e-05 ***
## X_AGEG5YRref -0.317459 0.099133 -3.202 0.001369 **
## CHILDRENref 0.418076 0.072892 5.736 1.01e-08 ***
## SDHBILLSref -0.131381 0.130492 -1.007 0.314056
## HOWSAFE1ref 0.112011 0.168495 0.665 0.506216
## SDHFOODref 0.380721 0.135520 2.809 0.004977 **
## SDHMEALSref -0.084301 0.118490 -0.711 0.476821
## SDHMONEYref 0.426318 0.072351 5.892 3.96e-09 ***
## SDHSTRESref -0.451402 0.109257 -4.132 3.64e-05 ***
## GENHLTHref -0.425845 0.088635 -4.804 1.58e-06 ***
## PHYSHLTHref -0.061632 0.088960 -0.693 0.488449
## MENTHLTHref 0.257765 0.087544 2.944 0.003245 **
## POORHLTHref 0.245183 0.107670 2.277 0.022802 *
## SMOKDAY2ref -0.373156 0.089999 -4.146 3.41e-05 ***
## ECIGNOWref 0.175950 0.160832 1.094 0.273989
## CVDSTRK3ref 0.118320 0.164820 0.718 0.472854
## CVDCRHD4ref -0.054346 0.135776 -0.400 0.688971
## DIABETE3ref -0.108432 0.097819 -1.108 0.267680
## ADDEPEV2ref 0.047199 0.074719 0.632 0.527612
## HAVARTH3ref -0.181609 0.072468 -2.506 0.012229 *
## CHCCOPD1ref -0.262680 0.117140 -2.242 0.024960 *
## DEAFref -0.005874 0.109725 -0.054 0.957311
## BLINDref -0.256423 0.159788 -1.605 0.108585
## DECIDEref -0.237306 0.103165 -2.300 0.021459 *
## DIFFWALKref 0.206776 0.101710 2.033 0.042086 *
## DIFFDRESref -0.249518 0.156452 -1.595 0.110785
## DIFFALONref -0.224213 0.133028 -1.685 0.091939 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 1.023553)
##
## Number of Fisher Scoring iterations: 4
## 2.5 % 97.5 %
## (Intercept) -0.967809080 -0.29223470
## SEXref -0.202058279 0.04660155
## MARITALref 0.132959785 0.38292703
## EDUCAref -0.311262106 -0.02628115
## EMPLOY1ref -0.295142236 -0.03108843
## INCOME2ref -0.297857895 0.06835400
## X_BMI5CATref -0.060258917 0.22004039
## X_RACEref 0.217592988 0.59181276
## X_AGEG5YRref -0.511757490 -0.12316139
## CHILDRENref 0.275210777 0.56094178
## SDHBILLSref -0.387141761 0.12437900
## HOWSAFE1ref -0.218233556 0.44225474
## SDHFOODref 0.115105721 0.64633546
## SDHMEALSref -0.316537885 0.14793596
## SDHMONEYref 0.284511848 0.56812355
## SDHSTRESref -0.665541753 -0.23726185
## GENHLTHref -0.599565688 -0.25212347
## PHYSHLTHref -0.235989669 0.11272553
## MENTHLTHref 0.086181978 0.42934832
## POORHLTHref 0.034154619 0.45621235
## SMOKDAY2ref -0.549549451 -0.19676175
## ECIGNOWref -0.139274978 0.49117438
## CVDSTRK3ref -0.204720310 0.44136111
## CVDCRHD4ref -0.320462453 0.21176946
## DIABETE3ref -0.300154164 0.08328952
## ADDEPEV2ref -0.099248063 0.19364570
## HAVARTH3ref -0.323643232 -0.03957411
## CHCCOPD1ref -0.492270436 -0.03308933
## DEAFref -0.220930370 0.20918320
## BLINDref -0.569602037 0.05675655
## DECIDEref -0.439505292 -0.03510761
## DIFFWALKref 0.007427802 0.40612398
## DIFFDRESref -0.556157868 0.05712206
## DIFFALONref -0.484943054 0.03651623
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 0.5325801 0.9252157 1.2942656 0.8447018 0.8494932 0.8915873
## X_BMI5CATref X_RACEref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref
## 1.0831687 1.4988571 0.7279962 1.5190365 0.8768833 1.1185247
## SDHFOODref SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref
## 1.4633387 0.9191546 1.5316073 0.6367350 0.6532179 0.9402288
## MENTHLTHref POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref
## 1.2940349 1.2778558 0.6885581 1.1923781 1.1256047 0.9471039
## DIABETE3ref ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref
## 0.8972396 1.0483304 0.8339276 0.7689880 0.9941436 0.7738148
## DECIDEref DIFFWALKref DIFFDRESref DIFFALONref
## 0.7887495 1.2297070 0.7791763 0.7991446
## AOR 2.5 % 97.5 %
## (Intercept) 0.5325801 0.3799145 0.7465933
## SEXref 0.9252157 0.8170473 1.0477045
## MARITALref 1.2942656 1.1422041 1.4665710
## EDUCAref 0.8447018 0.7325219 0.9740612
## EMPLOY1ref 0.8494932 0.7444257 0.9693898
## INCOME2ref 0.8915873 0.7424068 1.0707443
## X_BMI5CATref 1.0831687 0.9415207 1.2461271
## X_RACEref 1.4988571 1.2430810 1.8072616
## X_AGEG5YRref 0.7279962 0.5994411 0.8841210
## CHILDRENref 1.5190365 1.3168082 1.7523220
## SDHBILLSref 0.8768833 0.6789948 1.1324450
## HOWSAFE1ref 1.1185247 0.8039377 1.5562121
## SDHFOODref 1.4633387 1.1219920 1.9085341
## SDHMEALSref 0.9191546 0.7286674 1.1594386
## SDHMONEYref 1.5316073 1.3291131 1.7649521
## SDHSTRESref 0.6367350 0.5139950 0.7887847
## GENHLTHref 0.6532179 0.5490500 0.7771488
## PHYSHLTHref 0.9402288 0.7897888 1.1193247
## MENTHLTHref 1.2940349 1.0900047 1.5362561
## POORHLTHref 1.2778558 1.0347446 1.5780854
## SMOKDAY2ref 0.6885581 0.5772098 0.8213863
## ECIGNOWref 1.1923781 0.8699888 1.6342343
## CVDSTRK3ref 1.1256047 0.8148752 1.5548221
## CVDCRHD4ref 0.9471039 0.7258133 1.2358629
## DIABETE3ref 0.8972396 0.7407040 1.0868564
## ADDEPEV2ref 1.0483304 0.9055181 1.2136662
## HAVARTH3ref 0.8339276 0.7235083 0.9611987
## CHCCOPD1ref 0.7689880 0.6112370 0.9674521
## DEAFref 0.9941436 0.8017725 1.2326708
## BLINDref 0.7738148 0.5657505 1.0583981
## DECIDEref 0.7887495 0.6443551 0.9655015
## DIFFWALKref 1.2297070 1.0074555 1.5009886
## DIFFDRESref 0.7791763 0.5734079 1.0587850
## DIFFALONref 0.7991446 0.6157323 1.0371911
## AOR 2.5 % 97.5 %
## SEXref 0.9252157 0.8170473 1.0477045
## MARITALref 1.2942656 1.1422041 1.4665710
## EDUCAref 0.8447018 0.7325219 0.9740612
## EMPLOY1ref 0.8494932 0.7444257 0.9693898
## INCOME2ref 0.8915873 0.7424068 1.0707443
## X_BMI5CATref 1.0831687 0.9415207 1.2461271
## X_RACEref 1.4988571 1.2430810 1.8072616
## X_AGEG5YRref 0.7279962 0.5994411 0.8841210
## CHILDRENref 1.5190365 1.3168082 1.7523220
## SDHBILLSref 0.8768833 0.6789948 1.1324450
## HOWSAFE1ref 1.1185247 0.8039377 1.5562121
## SDHFOODref 1.4633387 1.1219920 1.9085341
## SDHMEALSref 0.9191546 0.7286674 1.1594386
## SDHMONEYref 1.5316073 1.3291131 1.7649521
## SDHSTRESref 0.6367350 0.5139950 0.7887847
## GENHLTHref 0.6532179 0.5490500 0.7771488
## PHYSHLTHref 0.9402288 0.7897888 1.1193247
## MENTHLTHref 1.2940349 1.0900047 1.5362561
## POORHLTHref 1.2778558 1.0347446 1.5780854
## SMOKDAY2ref 0.6885581 0.5772098 0.8213863
## ECIGNOWref 1.1923781 0.8699888 1.6342343
## CVDSTRK3ref 1.1256047 0.8148752 1.5548221
## CVDCRHD4ref 0.9471039 0.7258133 1.2358629
## DIABETE3ref 0.8972396 0.7407040 1.0868564
## ADDEPEV2ref 1.0483304 0.9055181 1.2136662
## HAVARTH3ref 0.8339276 0.7235083 0.9611987
## CHCCOPD1ref 0.7689880 0.6112370 0.9674521
## DEAFref 0.9941436 0.8017725 1.2326708
## BLINDref 0.7738148 0.5657505 1.0583981
## DECIDEref 0.7887495 0.6443551 0.9655015
## DIFFWALKref 1.2297070 1.0074555 1.5009886
## DIFFDRESref 0.7791763 0.5734079 1.0587850
## DIFFALONref 0.7991446 0.6157323 1.0371911
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 0.86 | 0.80 | 0.93 | SEX | 0.93 | 0.82 | 1.05 |
| MARITALref | 1.41 | 1.30 | 1.53 | MARITAL | 1.29 | 1.14 | 1.47 |
| EDUCAref | 0.81 | 0.74 | 0.89 | EDUCA | 0.84 | 0.73 | 0.97 |
| EMPLOY1ref | 0.88 | 0.82 | 0.96 | EMPLOY1 | 0.85 | 0.74 | 0.97 |
| INCOME2ref | 0.97 | 0.86 | 1.10 | INCOME2 | 0.89 | 0.74 | 1.07 |
| X_BMI5CATref | 1.28 | 1.16 | 1.40 | X_BMI5CAT | 1.08 | 0.94 | 1.25 |
| X_RACEref | 1.62 | 1.44 | 1.82 | X_RACE | 1.50 | 1.24 | 1.81 |
| X_AGEG5YRref | 0.83 | 0.72 | 0.95 | X_AGEG5YR | 0.73 | 0.60 | 0.88 |
| CHILDRENref | 1.32 | 1.21 | 1.45 | CHILDREN | 1.52 | 1.32 | 1.75 |
| SDHBILLSref | 0.67 | 0.56 | 0.80 | SDHBILLS | 0.88 | 0.68 | 1.13 |
| HOWSAFE1ref | 0.74 | 0.57 | 0.96 | HOWSAFE1 | 1.12 | 0.80 | 1.56 |
| SDHFOODref | 0.85 | 0.73 | 0.98 | SDHFOOD | 1.46 | 1.12 | 1.91 |
| SDHMEALSref | 0.85 | 0.74 | 0.97 | SDHMEALS | 0.92 | 0.73 | 1.16 |
| SDHMONEYref | 1.16 | 1.06 | 1.27 | SDHMONEY | 1.53 | 1.33 | 1.76 |
| SDHSTRESref | 0.45 | 0.38 | 0.53 | SDHSTRES | 0.64 | 0.51 | 0.79 |
| GENHLTHref | 0.53 | 0.47 | 0.60 | GENHLTH | 0.65 | 0.55 | 0.78 |
| PHYSHLTHref | 1.59 | 1.41 | 1.80 | PHYSHLTH | 0.94 | 0.79 | 1.12 |
| MENTHLTHref | 2.02 | 1.76 | 2.31 | MENTHLTH | 1.29 | 1.09 | 1.54 |
| POORHLTHref | 1.97 | 1.68 | 2.32 | POORHLTH | 1.28 | 1.03 | 1.58 |
| SMOKDAY2ref | 0.63 | 0.56 | 0.71 | SMOKDAY2 | 0.69 | 0.58 | 0.82 |
| ECIGNOWref | 0.78 | 0.62 | 1.00 | ECIGNOW | 1.19 | 0.87 | 1.63 |
| CVDSTRK3ref | 0.85 | 0.67 | 1.07 | CVDSTRK3 | 1.13 | 0.81 | 1.55 |
| CVDCRHD4ref | 0.90 | 0.75 | 1.09 | CVDCRHD4 | 0.95 | 0.73 | 1.24 |
| DIABETE3ref | 0.90 | 0.79 | 1.03 | DIABETE3 | 0.90 | 0.74 | 1.09 |
| ADDEPEV2ref | 0.75 | 0.68 | 0.83 | ADDEPEV2 | 1.05 | 0.91 | 1.21 |
| HAVARTH3ref | 0.89 | 0.81 | 0.97 | HAVARTH3 | 0.83 | 0.72 | 0.96 |
| CHCCOPD1ref | 0.61 | 0.51 | 0.72 | CHCCOPD1 | 0.77 | 0.61 | 0.97 |
| DEAFref | 0.90 | 0.77 | 1.05 | DEAF | 0.99 | 0.80 | 1.23 |
| BLINDref | 0.63 | 0.50 | 0.79 | BLIND | 0.77 | 0.57 | 1.06 |
| DECIDEref | 0.51 | 0.44 | 0.59 | DECIDE | 0.79 | 0.64 | 0.97 |
| DIFFWALKref | 0.77 | 0.69 | 0.87 | DIFFWALK | 1.23 | 1.01 | 1.50 |
| DIFFDRESref | 0.45 | 0.36 | 0.56 | DIFFDRES | 0.78 | 0.57 | 1.06 |
| DIFFALONref | 0.47 | 0.39 | 0.56 | DIFFALON | 0.80 | 0.62 | 1.04 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))#Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))svydesNW<-subset(svydes,RACE != "White only, non-Hispanic")
#Binomial logistic regression for each variable
or<-svyglm(ADSLEEP~SEX, family=quasibinomial,design=svydesNW)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(ADSLEEP~ MARITAL, family = quasibinomial, design = svydesNW)
b <- or_fun("MARITAL")
or <- svyglm(ADSLEEP~ EDUCA, family = quasibinomial, design = svydesNW)
c <- or_fun("EDUCA")
or <- svyglm(ADSLEEP~ EMPLOY1, family = quasibinomial, design = svydesNW)
d <- or_fun("EMPLOY1")
or <- svyglm(ADSLEEP~ INCOME2, family = quasibinomial, design = svydesNW)
e <- or_fun("INCOME2")
or <- svyglm(ADSLEEP~ X_BMI5CAT, family = quasibinomial, design = svydesNW)
f <- or_fun("X_BMI5CAT")
or <- svyglm(ADSLEEP~ X_AGEG5YR, family = quasibinomial, design = svydesNW)
h <- or_fun("X_AGEG5YR")
or <- svyglm(ADSLEEP~ CHILDREN, family = quasibinomial, design = svydesNW)
i <- or_fun("CHILDREN")
or <- svyglm(ADSLEEP~ SDHBILLS, family = quasibinomial, design = svydesNW)
j <- or_fun("SDHBILLS")
or <- svyglm(ADSLEEP~ HOWSAFE1, family = quasibinomial, design = svydesNW)
k <- or_fun("HOWSAFE1")
or <- svyglm(ADSLEEP~ SDHFOOD, family = quasibinomial, design = svydesNW)
l <- or_fun("SDHFOOD")
or <- svyglm(ADSLEEP~ SDHMEALS, family = quasibinomial, design = svydesNW)
m <- or_fun("SDHMEALS")
or <- svyglm(ADSLEEP~ SDHMONEY, family = quasibinomial, design = svydesNW)
n <- or_fun("SDHMONEY")
or <- svyglm(ADSLEEP~ SDHSTRES, family = quasibinomial, design = svydesNW)
o <- or_fun("SDHSTRES")
or <- svyglm(ADSLEEP~ GENHLTH, family = quasibinomial, design = svydesNW)
p <- or_fun("GENHLTH")
or <- svyglm(ADSLEEP~ PHYSHLTH, family = quasibinomial, design = svydesNW)
q <- or_fun("PHYSHLTH")
or <- svyglm(ADSLEEP~ MENTHLTH, family = quasibinomial, design = svydesNW)
r <- or_fun("MENTHLTH")
or <- svyglm(ADSLEEP~ POORHLTH, family = quasibinomial, design = svydesNW)
s <- or_fun("POORHLTH")
or <- svyglm(ADSLEEP~ SMOKDAY2, family = quasibinomial, design = svydesNW)
t <- or_fun("SMOKDAY2")
or <- svyglm(ADSLEEP~ ECIGNOW, family = quasibinomial, design = svydesNW)
u <- or_fun("ECIGNOW")
or <- svyglm(ADSLEEP~ CVDSTRK3, family = quasibinomial, design = svydesNW)
v <- or_fun("CVDSTRK3")
or <- svyglm(ADSLEEP~ CVDCRHD4, family = quasibinomial, design = svydesNW)
w <- or_fun("CVDCRHD4")
or <- svyglm(ADSLEEP~ DIABETE3, family = quasibinomial, design = svydesNW)
x <- or_fun("DIABETE3")
or <- svyglm(ADSLEEP~ ADDEPEV2, family = quasibinomial, design = svydesNW)
y <- or_fun("ADDEPEV2")
or <- svyglm(ADSLEEP~ HAVARTH3, family = quasibinomial, design = svydesNW)
z <- or_fun("HAVARTH3")
or <- svyglm(ADSLEEP~ CHCCOPD1, family = quasibinomial, design = svydesNW)
aa <- or_fun("CHCCOPD1")
or <- svyglm(ADSLEEP~ DEAF, family = quasibinomial, design = svydesNW)
bb <- or_fun("DEAF")
or <- svyglm(ADSLEEP~ BLIND, family = quasibinomial, design = svydesNW)
cc <- or_fun("BLIND")
or <- svyglm(ADSLEEP~ DECIDE, family = quasibinomial, design = svydesNW)
dd <- or_fun("DECIDE")
or <- svyglm(ADSLEEP~ DIFFWALK, family = quasibinomial, design = svydesNW)
ee <- or_fun("DIFFWALK")
or <- svyglm(ADSLEEP~ DIFFDRES, family = quasibinomial, design = svydesNW)
ff <- or_fun("DIFFDRES")
or <- svyglm(ADSLEEP~ DIFFALON, family = quasibinomial, design = svydesNW)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 + X_BMI5CAT
+ X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 + SDHFOOD +
SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH + MENTHLTH +
POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 + DIABETE3 +
ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND + DECIDE +
DIFFWALK + DIFFDRES + DIFFALON, family = quasibinomial,
design = svydesNW)
summary(alr)##
## Call:
## svyglm(formula = ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 +
## SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH +
## MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 +
## DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND +
## DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydesNW,
## family = quasibinomial)
##
## Survey design:
## subset(svydes, RACE != "White only, non-Hispanic")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93935 0.49684 1.891 0.05909 .
## SEXref 0.70491 0.24019 2.935 0.00345 **
## MARITALref -0.18148 0.27367 -0.663 0.50746
## EDUCAref 0.42831 0.26966 1.588 0.11266
## EMPLOY1ref 0.08239 0.26443 0.312 0.75547
## INCOME2ref 0.03632 0.34778 0.104 0.91684
## X_BMI5CATref 0.25613 0.28124 0.911 0.36276
## X_AGEG5YRref 0.13407 0.47878 0.280 0.77954
## CHILDRENref -0.49377 0.24819 -1.989 0.04704 *
## SDHBILLSref -0.29833 0.33199 -0.899 0.36918
## HOWSAFE1ref 0.04694 0.34750 0.135 0.89259
## SDHFOODref 0.16259 0.33896 0.480 0.63161
## SDHMEALSref -0.28154 0.32201 -0.874 0.38225
## SDHMONEYref -0.42647 0.26906 -1.585 0.11342
## SDHSTRESref -1.38205 0.28505 -4.848 1.54e-06 ***
## GENHLTHref -0.31268 0.28793 -1.086 0.27788
## PHYSHLTHref 0.39879 0.33059 1.206 0.22812
## MENTHLTHref 0.05579 0.31683 0.176 0.86029
## POORHLTHref 0.80582 0.35118 2.295 0.02205 *
## SMOKDAY2ref -0.44586 0.30106 -1.481 0.13907
## ECIGNOWref 1.07632 0.46705 2.304 0.02149 *
## CVDSTRK3ref 0.06605 0.68031 0.097 0.92268
## CVDCRHD4ref 0.69074 0.71454 0.967 0.33404
## DIABETE3ref -0.03410 0.35035 -0.097 0.92250
## ADDEPEV2ref -0.49793 0.27839 -1.789 0.07411 .
## HAVARTH3ref -0.22729 0.29748 -0.764 0.44510
## CHCCOPD1ref 0.01137 0.45798 0.025 0.98020
## DEAFref 0.11685 0.36499 0.320 0.74895
## BLINDref -1.05938 0.40282 -2.630 0.00873 **
## DECIDEref -0.05746 0.29643 -0.194 0.84635
## DIFFWALKref 0.08239 0.37092 0.222 0.82428
## DIFFDRESref 1.15865 0.51305 2.258 0.02423 *
## DIFFALONref -0.37283 0.43841 -0.850 0.39539
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9092306)
##
## Number of Fisher Scoring iterations: 5
## 2.5 % 97.5 %
## (Intercept) -0.03445004 1.913140096
## SEXref 0.23413894 1.175684310
## MARITALref -0.71786684 0.354900063
## EDUCAref -0.10020683 0.956832181
## EMPLOY1ref -0.43589540 0.600668617
## INCOME2ref -0.64531553 0.717964992
## X_BMI5CATref -0.29508577 0.807339086
## X_AGEG5YRref -0.80432334 1.072465335
## CHILDRENref -0.98020730 -0.007329393
## SDHBILLSref -0.94902191 0.352367690
## HOWSAFE1ref -0.63415198 0.728027871
## SDHFOODref -0.50175454 0.826935338
## SDHMEALSref -0.91266977 0.349588240
## SDHMONEYref -0.95381855 0.100881330
## SDHSTRESref -1.94074225 -0.823351148
## GENHLTHref -0.87700195 0.251650215
## PHYSHLTHref -0.24916776 1.046740733
## MENTHLTHref -0.56518645 0.676756989
## POORHLTHref 0.11751615 1.494122149
## SMOKDAY2ref -1.03593394 0.144214402
## ECIGNOWref 0.16091432 1.991726489
## CVDSTRK3ref -1.26733133 1.399435835
## CVDCRHD4ref -0.70974218 2.091217917
## DIABETE3ref -0.72077877 0.652587559
## ADDEPEV2ref -1.04356604 0.047699936
## HAVARTH3ref -0.81034830 0.355769384
## CHCCOPD1ref -0.88626319 0.908999736
## DEAFref -0.59851962 0.832219873
## BLINDref -1.84889799 -0.269855220
## DECIDEref -0.63846005 0.523531803
## DIFFWALKref -0.64458770 0.809372969
## DIFFDRESref 0.15308752 2.164212023
## DIFFALONref -1.23209027 0.486431796
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 2.5583053 2.0236678 0.8340321 1.5346659 1.0858755 1.0369925
## X_BMI5CATref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref SDHFOODref
## 1.2919163 1.1434740 0.6103221 0.7420586 1.0480570 1.1765547
## SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref MENTHLTHref
## 0.7546202 0.6528104 0.2510642 0.7314870 1.4900154 1.0573706
## POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref DIABETE3ref
## 2.2385294 0.6402736 2.9338642 1.0682825 1.9951872 0.9664791
## ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref DECIDEref
## 0.6077856 0.7966901 1.0114331 1.1239510 0.3466719 0.9441558
## DIFFWALKref DIFFDRESref DIFFALONref
## 1.0858821 3.1856290 0.6887828
## AOR 2.5 % 97.5 %
## (Intercept) 2.5583053 0.9661366 6.7743275
## SEXref 2.0236678 1.2638201 3.2403596
## MARITALref 0.8340321 0.4877917 1.4260381
## EDUCAref 1.5346659 0.9046503 2.6034362
## EMPLOY1ref 1.0858755 0.6466854 1.8233375
## INCOME2ref 1.0369925 0.5244970 2.0502567
## X_BMI5CATref 1.2919163 0.7444677 2.2419344
## X_AGEG5YRref 1.1434740 0.4473906 2.9225758
## CHILDRENref 0.6103221 0.3752333 0.9926974
## SDHBILLSref 0.7420586 0.3871195 1.4224314
## HOWSAFE1ref 1.0480570 0.5303851 2.0709923
## SDHFOODref 1.1765547 0.6054674 2.2863013
## SDHMEALSref 0.7546202 0.4014510 1.4184834
## SDHMONEYref 0.6528104 0.3852670 1.1061454
## SDHSTRESref 0.2510642 0.1435973 0.4389582
## GENHLTHref 0.7314870 0.4160283 1.2861461
## PHYSHLTHref 1.4900154 0.7794492 2.8483524
## MENTHLTHref 1.0573706 0.5682542 1.9674868
## POORHLTHref 2.2385294 1.1246998 4.4554236
## SMOKDAY2ref 0.6402736 0.3548948 1.1551317
## ECIGNOWref 2.9338642 1.1745843 7.3281749
## CVDSTRK3ref 1.0682825 0.2815821 4.0529128
## CVDCRHD4ref 1.9951872 0.4917710 8.0947679
## DIABETE3ref 0.9664791 0.4863733 1.9205038
## ADDEPEV2ref 0.6077856 0.3521965 1.0488559
## HAVARTH3ref 0.7966901 0.4447032 1.4272784
## CHCCOPD1ref 1.0114331 0.4121932 2.4818388
## DEAFref 1.1239510 0.5496247 2.2984153
## BLINDref 0.3466719 0.1574105 0.7634900
## DECIDEref 0.9441558 0.5281051 1.6879787
## DIFFWALKref 1.0858821 0.5248789 2.2464989
## DIFFDRESref 3.1856290 1.1654270 8.7077377
## DIFFALONref 0.6887828 0.2916822 1.6265022
## AOR 2.5 % 97.5 %
## SEXref 2.0236678 1.2638201 3.2403596
## MARITALref 0.8340321 0.4877917 1.4260381
## EDUCAref 1.5346659 0.9046503 2.6034362
## EMPLOY1ref 1.0858755 0.6466854 1.8233375
## INCOME2ref 1.0369925 0.5244970 2.0502567
## X_BMI5CATref 1.2919163 0.7444677 2.2419344
## X_AGEG5YRref 1.1434740 0.4473906 2.9225758
## CHILDRENref 0.6103221 0.3752333 0.9926974
## SDHBILLSref 0.7420586 0.3871195 1.4224314
## HOWSAFE1ref 1.0480570 0.5303851 2.0709923
## SDHFOODref 1.1765547 0.6054674 2.2863013
## SDHMEALSref 0.7546202 0.4014510 1.4184834
## SDHMONEYref 0.6528104 0.3852670 1.1061454
## SDHSTRESref 0.2510642 0.1435973 0.4389582
## GENHLTHref 0.7314870 0.4160283 1.2861461
## PHYSHLTHref 1.4900154 0.7794492 2.8483524
## MENTHLTHref 1.0573706 0.5682542 1.9674868
## POORHLTHref 2.2385294 1.1246998 4.4554236
## SMOKDAY2ref 0.6402736 0.3548948 1.1551317
## ECIGNOWref 2.9338642 1.1745843 7.3281749
## CVDSTRK3ref 1.0682825 0.2815821 4.0529128
## CVDCRHD4ref 1.9951872 0.4917710 8.0947679
## DIABETE3ref 0.9664791 0.4863733 1.9205038
## ADDEPEV2ref 0.6077856 0.3521965 1.0488559
## HAVARTH3ref 0.7966901 0.4447032 1.4272784
## CHCCOPD1ref 1.0114331 0.4121932 2.4818388
## DEAFref 1.1239510 0.5496247 2.2984153
## BLINDref 0.3466719 0.1574105 0.7634900
## DECIDEref 0.9441558 0.5281051 1.6879787
## DIFFWALKref 1.0858821 0.5248789 2.2464989
## DIFFDRESref 3.1856290 1.1654270 8.7077377
## DIFFALONref 0.6887828 0.2916822 1.6265022
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 1.96 | 1.41 | 2.72 | SEX | 2.02 | 1.26 | 3.24 |
| MARITALref | 1.90 | 1.37 | 2.65 | MARITAL | 0.83 | 0.49 | 1.43 |
| EDUCAref | 1.09 | 0.75 | 1.59 | EDUCA | 1.53 | 0.90 | 2.60 |
| EMPLOY1ref | 1.95 | 1.40 | 2.72 | EMPLOY1 | 1.09 | 0.65 | 1.82 |
| INCOME2ref | 1.09 | 0.68 | 1.75 | INCOME2 | 1.04 | 0.52 | 2.05 |
| X_BMI5CATref | 1.54 | 1.04 | 2.27 | X_BMI5CAT | 1.29 | 0.74 | 2.24 |
| X_AGEG5YRref | 0.72 | 0.41 | 1.25 | X_AGEG5YR | 1.14 | 0.45 | 2.92 |
| CHILDRENref | 0.87 | 0.63 | 1.21 | CHILDREN | 0.61 | 0.38 | 0.99 |
| SDHBILLSref | 0.34 | 0.23 | 0.50 | SDHBILLS | 0.74 | 0.39 | 1.42 |
| HOWSAFE1ref | 0.50 | 0.31 | 0.82 | HOWSAFE1 | 1.05 | 0.53 | 2.07 |
| SDHFOODref | 0.44 | 0.31 | 0.63 | SDHFOOD | 1.18 | 0.61 | 2.29 |
| SDHMEALSref | 0.43 | 0.30 | 0.61 | SDHMEALS | 0.75 | 0.40 | 1.42 |
| SDHMONEYref | 0.52 | 0.37 | 0.73 | SDHMONEY | 0.65 | 0.39 | 1.11 |
| SDHSTRESref | 0.11 | 0.07 | 0.18 | SDHSTRES | 0.25 | 0.14 | 0.44 |
| GENHLTHref | 0.31 | 0.21 | 0.44 | GENHLTH | 0.73 | 0.42 | 1.29 |
| PHYSHLTHref | 4.34 | 2.88 | 6.55 | PHYSHLTH | 1.49 | 0.78 | 2.85 |
| MENTHLTHref | 4.31 | 2.89 | 6.44 | MENTHLTH | 1.06 | 0.57 | 1.97 |
| POORHLTHref | 4.21 | 2.53 | 6.98 | POORHLTH | 2.24 | 1.12 | 4.46 |
| SMOKDAY2ref | 0.35 | 0.24 | 0.52 | SMOKDAY2 | 0.64 | 0.35 | 1.16 |
| ECIGNOWref | 0.63 | 0.23 | 1.75 | ECIGNOW | 2.93 | 1.17 | 7.33 |
| CVDSTRK3ref | 0.31 | 0.13 | 0.79 | CVDSTRK3 | 1.07 | 0.28 | 4.05 |
| CVDCRHD4ref | 0.44 | 0.22 | 0.91 | CVDCRHD4 | 2.00 | 0.49 | 8.09 |
| DIABETE3ref | 0.85 | 0.53 | 1.34 | DIABETE3 | 0.97 | 0.49 | 1.92 |
| ADDEPEV2ref | 0.26 | 0.18 | 0.38 | ADDEPEV2 | 0.61 | 0.35 | 1.05 |
| HAVARTH3ref | 0.43 | 0.29 | 0.63 | HAVARTH3 | 0.80 | 0.44 | 1.43 |
| CHCCOPD1ref | 0.29 | 0.15 | 0.55 | CHCCOPD1 | 1.01 | 0.41 | 2.48 |
| DEAFref | 0.45 | 0.23 | 0.88 | DEAF | 1.12 | 0.55 | 2.30 |
| BLINDref | 0.46 | 0.27 | 0.78 | BLIND | 0.35 | 0.16 | 0.76 |
| DECIDEref | 0.21 | 0.14 | 0.31 | DECIDE | 0.94 | 0.53 | 1.69 |
| DIFFWALKref | 0.32 | 0.22 | 0.49 | DIFFWALK | 1.09 | 0.52 | 2.25 |
| DIFFDRESref | 0.34 | 0.19 | 0.62 | DIFFDRES | 3.19 | 1.17 | 8.71 |
| DIFFALONref | 0.16 | 0.10 | 0.28 | DIFFALON | 0.69 | 0.29 | 1.63 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))#Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))#Binomial logistic regression for each variable
or<-svyglm(SLEPTIM1~SEX, family=quasibinomial,design=svydesNW)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(SLEPTIM1~ MARITAL, family = quasibinomial, design = svydesNW)
b <- or_fun("MARITAL")
or <- svyglm(SLEPTIM1~ EDUCA, family = quasibinomial, design = svydesNW)
c <- or_fun("EDUCA")
or <- svyglm(SLEPTIM1~ EMPLOY1, family = quasibinomial, design = svydesNW)
d <- or_fun("EMPLOY1")
or <- svyglm(SLEPTIM1~ INCOME2, family = quasibinomial, design = svydesNW)
e <- or_fun("INCOME2")
or <- svyglm(SLEPTIM1~ X_BMI5CAT, family = quasibinomial, design = svydesNW)
f <- or_fun("X_BMI5CAT")
or <- svyglm(SLEPTIM1~ X_AGEG5YR, family = quasibinomial, design = svydesNW)
h <- or_fun("X_AGEG5YR")
or <- svyglm(SLEPTIM1~ CHILDREN, family = quasibinomial, design = svydesNW)
i <- or_fun("CHILDREN")
or <- svyglm(SLEPTIM1~ SDHBILLS, family = quasibinomial, design = svydesNW)
j <- or_fun("SDHBILLS")
or <- svyglm(SLEPTIM1~ HOWSAFE1, family = quasibinomial, design = svydesNW)
k <- or_fun("HOWSAFE1")
or <- svyglm(SLEPTIM1~ SDHFOOD, family = quasibinomial, design = svydesNW)
l <- or_fun("SDHFOOD")
or <- svyglm(SLEPTIM1~ SDHMEALS, family = quasibinomial, design = svydesNW)
m <- or_fun("SDHMEALS")
or <- svyglm(SLEPTIM1~ SDHMONEY, family = quasibinomial, design = svydesNW)
n <- or_fun("SDHMONEY")
or <- svyglm(SLEPTIM1~ SDHSTRES, family = quasibinomial, design = svydesNW)
o <- or_fun("SDHSTRES")
or <- svyglm(SLEPTIM1~ GENHLTH, family = quasibinomial, design = svydesNW)
p <- or_fun("GENHLTH")
or <- svyglm(SLEPTIM1~ PHYSHLTH, family = quasibinomial, design = svydesNW)
q <- or_fun("PHYSHLTH")
or <- svyglm(SLEPTIM1~ MENTHLTH, family = quasibinomial, design = svydesNW)
r <- or_fun("MENTHLTH")
or <- svyglm(SLEPTIM1~ POORHLTH, family = quasibinomial, design = svydesNW)
s <- or_fun("POORHLTH")
or <- svyglm(SLEPTIM1~ SMOKDAY2, family = quasibinomial, design = svydesNW)
t <- or_fun("SMOKDAY2")
or <- svyglm(SLEPTIM1~ ECIGNOW, family = quasibinomial, design = svydesNW)
u <- or_fun("ECIGNOW")
or <- svyglm(SLEPTIM1~ CVDSTRK3, family = quasibinomial, design = svydesNW)
v <- or_fun("CVDSTRK3")
or <- svyglm(SLEPTIM1~ CVDCRHD4, family = quasibinomial, design = svydesNW)
w <- or_fun("CVDCRHD4")
or <- svyglm(SLEPTIM1~ DIABETE3, family = quasibinomial, design = svydesNW)
x <- or_fun("DIABETE3")
or <- svyglm(SLEPTIM1~ ADDEPEV2, family = quasibinomial, design = svydesNW)
y <- or_fun("ADDEPEV2")
or <- svyglm(SLEPTIM1~ HAVARTH3, family = quasibinomial, design = svydesNW)
z <- or_fun("HAVARTH3")
or <- svyglm(SLEPTIM1~ CHCCOPD1, family = quasibinomial, design = svydesNW)
aa <- or_fun("CHCCOPD1")
or <- svyglm(SLEPTIM1~ DEAF, family = quasibinomial, design = svydesNW)
bb <- or_fun("DEAF")
or <- svyglm(SLEPTIM1~ BLIND, family = quasibinomial, design = svydesNW)
cc <- or_fun("BLIND")
or <- svyglm(SLEPTIM1~ DECIDE, family = quasibinomial, design = svydesNW)
dd <- or_fun("DECIDE")
or <- svyglm(SLEPTIM1~ DIFFWALK, family = quasibinomial, design = svydesNW)
ee <- or_fun("DIFFWALK")
or <- svyglm(SLEPTIM1~ DIFFDRES, family = quasibinomial, design = svydesNW)
ff <- or_fun("DIFFDRES")
or <- svyglm(SLEPTIM1~ DIFFALON, family = quasibinomial, design = svydesNW)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 +
X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS +
HOWSAFE1 + SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH +
PHYSHLTH + MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW +
CVDSTRK3 + CVDCRHD4 + DIABETE3 + ADDEPEV2 + HAVARTH3 +
CHCCOPD1 + DEAF + BLIND + DECIDE + DIFFWALK + DIFFDRES +
DIFFALON, family = quasibinomial, design = svydesNW)
summary(alr)##
## Call:
## svyglm(formula = SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 +
## SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH +
## MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 +
## DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND +
## DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydesNW,
## family = quasibinomial)
##
## Survey design:
## subset(svydes, RACE != "White only, non-Hispanic")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.486463 0.412058 -1.181 0.23811
## SEXref 0.003219 0.197687 0.016 0.98701
## MARITALref 0.151877 0.206031 0.737 0.46123
## EDUCAref 0.092460 0.221439 0.418 0.67639
## EMPLOY1ref -0.072104 0.199899 -0.361 0.71841
## INCOME2ref 0.089505 0.312375 0.287 0.77454
## X_BMI5CATref -0.012613 0.216676 -0.058 0.95359
## X_AGEG5YRref -0.988308 0.357519 -2.764 0.00583 **
## CHILDRENref 0.078938 0.197141 0.400 0.68895
## SDHBILLSref 0.344526 0.294958 1.168 0.24312
## HOWSAFE1ref -0.059916 0.330047 -0.182 0.85599
## SDHFOODref 0.191431 0.327404 0.585 0.55891
## SDHMEALSref -0.252173 0.323163 -0.780 0.43542
## SDHMONEYref 0.696371 0.215423 3.233 0.00127 **
## SDHSTRESref -0.318749 0.292474 -1.090 0.27610
## GENHLTHref -0.559765 0.232160 -2.411 0.01612 *
## PHYSHLTHref -0.531784 0.263073 -2.021 0.04355 *
## MENTHLTHref 0.216274 0.242082 0.893 0.37190
## POORHLTHref 0.464774 0.317912 1.462 0.14413
## SMOKDAY2ref -0.052441 0.239235 -0.219 0.82654
## ECIGNOWref 0.005501 0.484845 0.011 0.99095
## CVDSTRK3ref 0.138494 0.514483 0.269 0.78785
## CVDCRHD4ref 0.398824 0.500209 0.797 0.42549
## DIABETE3ref -0.350238 0.316336 -1.107 0.26854
## ADDEPEV2ref 0.088590 0.250363 0.354 0.72354
## HAVARTH3ref -0.445409 0.261940 -1.700 0.08942 .
## CHCCOPD1ref -0.245914 0.390360 -0.630 0.52889
## DEAFref -0.136697 0.373910 -0.366 0.71476
## BLINDref -0.349231 0.370686 -0.942 0.34640
## DECIDEref -0.108435 0.270561 -0.401 0.68869
## DIFFWALKref 0.352457 0.308539 1.142 0.25364
## DIFFDRESref -0.188618 0.409472 -0.461 0.64518
## DIFFALONref -0.088949 0.403318 -0.221 0.82550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9381753)
##
## Number of Fisher Scoring iterations: 4
## 2.5 % 97.5 %
## (Intercept) -1.2940809 0.32115487
## SEXref -0.3842414 0.39067880
## MARITALref -0.2519360 0.55568984
## EDUCAref -0.3415527 0.52647301
## EMPLOY1ref -0.4638977 0.31969036
## INCOME2ref -0.5227375 0.70174820
## X_BMI5CATref -0.4372905 0.41206367
## X_AGEG5YRref -1.6890332 -0.28758345
## CHILDRENref -0.3074518 0.46532802
## SDHBILLSref -0.2335809 0.92263244
## HOWSAFE1ref -0.7067960 0.58696401
## SDHFOODref -0.4502697 0.83313154
## SDHMEALSref -0.8855616 0.38121522
## SDHMONEYref 0.2741502 1.11859239
## SDHSTRESref -0.8919863 0.25448928
## GENHLTHref -1.0147894 -0.10474074
## PHYSHLTHref -1.0473977 -0.01616926
## MENTHLTHref -0.2581977 0.69074632
## POORHLTHref -0.1583230 1.08787007
## SMOKDAY2ref -0.5213328 0.41645034
## ECIGNOWref -0.9447788 0.95577994
## CVDSTRK3ref -0.8698749 1.14686201
## CVDCRHD4ref -0.5815672 1.37921515
## DIABETE3ref -0.9702458 0.26976957
## ADDEPEV2ref -0.4021119 0.57929123
## HAVARTH3ref -0.9588008 0.06798382
## CHCCOPD1ref -1.0110050 0.51917635
## DEAFref -0.8695462 0.59615319
## BLINDref -1.0757615 0.37729915
## DECIDEref -0.6387246 0.42185562
## DIFFWALKref -0.2522685 0.95718333
## DIFFDRESref -0.9911683 0.61393303
## DIFFALONref -0.8794376 0.70153864
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 0.6147971 1.0032239 1.1640170 1.0968694 0.9304344 1.0936332
## X_BMI5CATref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref SDHFOODref
## 0.9874658 0.3722058 1.0821373 1.4113204 0.9418437 1.2109811
## SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref MENTHLTHref
## 0.7771101 2.0064586 0.7270584 0.5713433 0.5875561 1.2414429
## POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref DIABETE3ref
## 1.5916537 0.9489101 1.0055157 1.1485423 1.4900713 0.7045203
## ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref DECIDEref
## 1.0926322 0.6405625 0.7819892 0.8722349 0.7052301 0.8972376
## DIFFWALKref DIFFDRESref DIFFALONref
## 1.4225591 0.8281031 0.9148918
## AOR 2.5 % 97.5 %
## (Intercept) 0.6147971 0.2741497 1.3787191
## SEXref 1.0032239 0.6809670 1.4779837
## MARITALref 1.1640170 0.7772945 1.7431431
## EDUCAref 1.0968694 0.7106660 1.6929507
## EMPLOY1ref 0.9304344 0.6288279 1.3767014
## INCOME2ref 1.0936332 0.5928953 2.0172762
## X_BMI5CATref 0.9874658 0.6457838 1.5099306
## X_AGEG5YRref 0.3722058 0.1846980 0.7500740
## CHILDRENref 1.0821373 0.7353183 1.5925365
## SDHBILLSref 1.4113204 0.7916935 2.5159047
## HOWSAFE1ref 0.9418437 0.4932220 1.7985198
## SDHFOODref 1.2109811 0.6374562 2.3005116
## SDHMEALSref 0.7771101 0.4124825 1.4640627
## SDHMONEYref 2.0064586 1.3154123 3.0605431
## SDHSTRESref 0.7270584 0.4098409 1.2898027
## GENHLTHref 0.5713433 0.3624788 0.9005580
## PHYSHLTHref 0.5875561 0.3508496 0.9839608
## MENTHLTHref 1.2414429 0.7724425 1.9952040
## POORHLTHref 1.5916537 0.8535740 2.9679458
## SMOKDAY2ref 0.9489101 0.5937287 1.5165687
## ECIGNOWref 1.0055157 0.3887655 2.6006982
## CVDSTRK3ref 1.1485423 0.4190040 3.1482981
## CVDCRHD4ref 1.4900713 0.5590216 3.9717832
## DIABETE3ref 0.7045203 0.3789899 1.3096626
## ADDEPEV2ref 1.0926322 0.6689059 1.7847730
## HAVARTH3ref 0.6405625 0.3833523 1.0703480
## CHCCOPD1ref 0.7819892 0.3638531 1.6806428
## DEAFref 0.8722349 0.4191417 1.8151229
## BLINDref 0.7052301 0.3410380 1.4583405
## DECIDEref 0.8972376 0.5279653 1.5247884
## DIFFWALKref 1.4225591 0.7770360 2.6043505
## DIFFDRESref 0.8281031 0.3711428 1.8476841
## DIFFALONref 0.9148918 0.4150162 2.0168535
## AOR 2.5 % 97.5 %
## SEXref 1.0032239 0.6809670 1.4779837
## MARITALref 1.1640170 0.7772945 1.7431431
## EDUCAref 1.0968694 0.7106660 1.6929507
## EMPLOY1ref 0.9304344 0.6288279 1.3767014
## INCOME2ref 1.0936332 0.5928953 2.0172762
## X_BMI5CATref 0.9874658 0.6457838 1.5099306
## X_AGEG5YRref 0.3722058 0.1846980 0.7500740
## CHILDRENref 1.0821373 0.7353183 1.5925365
## SDHBILLSref 1.4113204 0.7916935 2.5159047
## HOWSAFE1ref 0.9418437 0.4932220 1.7985198
## SDHFOODref 1.2109811 0.6374562 2.3005116
## SDHMEALSref 0.7771101 0.4124825 1.4640627
## SDHMONEYref 2.0064586 1.3154123 3.0605431
## SDHSTRESref 0.7270584 0.4098409 1.2898027
## GENHLTHref 0.5713433 0.3624788 0.9005580
## PHYSHLTHref 0.5875561 0.3508496 0.9839608
## MENTHLTHref 1.2414429 0.7724425 1.9952040
## POORHLTHref 1.5916537 0.8535740 2.9679458
## SMOKDAY2ref 0.9489101 0.5937287 1.5165687
## ECIGNOWref 1.0055157 0.3887655 2.6006982
## CVDSTRK3ref 1.1485423 0.4190040 3.1482981
## CVDCRHD4ref 1.4900713 0.5590216 3.9717832
## DIABETE3ref 0.7045203 0.3789899 1.3096626
## ADDEPEV2ref 1.0926322 0.6689059 1.7847730
## HAVARTH3ref 0.6405625 0.3833523 1.0703480
## CHCCOPD1ref 0.7819892 0.3638531 1.6806428
## DEAFref 0.8722349 0.4191417 1.8151229
## BLINDref 0.7052301 0.3410380 1.4583405
## DECIDEref 0.8972376 0.5279653 1.5247884
## DIFFWALKref 1.4225591 0.7770360 2.6043505
## DIFFDRESref 0.8281031 0.3711428 1.8476841
## DIFFALONref 0.9148918 0.4150162 2.0168535
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 0.93 | 0.74 | 1.18 | SEX | 1.00 | 0.68 | 1.48 |
| MARITALref | 1.48 | 1.17 | 1.87 | MARITAL | 1.16 | 0.78 | 1.74 |
| EDUCAref | 0.80 | 0.61 | 1.05 | EDUCA | 1.10 | 0.71 | 1.69 |
| EMPLOY1ref | 1.00 | 0.79 | 1.27 | EMPLOY1 | 0.93 | 0.63 | 1.38 |
| INCOME2ref | 0.91 | 0.65 | 1.30 | INCOME2 | 1.09 | 0.59 | 2.02 |
| X_BMI5CATref | 1.26 | 0.95 | 1.66 | X_BMI5CAT | 0.99 | 0.65 | 1.51 |
| X_AGEG5YRref | 0.46 | 0.30 | 0.72 | X_AGEG5YR | 0.37 | 0.18 | 0.75 |
| CHILDRENref | 0.88 | 0.69 | 1.12 | CHILDREN | 1.08 | 0.74 | 1.59 |
| SDHBILLSref | 1.19 | 0.83 | 1.71 | SDHBILLS | 1.41 | 0.79 | 2.52 |
| HOWSAFE1ref | 1.02 | 0.64 | 1.63 | HOWSAFE1 | 0.94 | 0.49 | 1.80 |
| SDHFOODref | 1.19 | 0.88 | 1.61 | SDHFOOD | 1.21 | 0.64 | 2.30 |
| SDHMEALSref | 1.08 | 0.80 | 1.44 | SDHMEALS | 0.78 | 0.41 | 1.46 |
| SDHMONEYref | 1.65 | 1.29 | 2.10 | SDHMONEY | 2.01 | 1.32 | 3.06 |
| SDHSTRESref | 0.56 | 0.36 | 0.87 | SDHSTRES | 0.73 | 0.41 | 1.29 |
| GENHLTHref | 0.66 | 0.48 | 0.89 | GENHLTH | 0.57 | 0.36 | 0.90 |
| PHYSHLTHref | 1.26 | 0.87 | 1.82 | PHYSHLTH | 0.59 | 0.35 | 0.98 |
| MENTHLTHref | 1.82 | 1.27 | 2.60 | MENTHLTH | 1.24 | 0.77 | 2.00 |
| POORHLTHref | 1.59 | 0.99 | 2.55 | POORHLTH | 1.59 | 0.85 | 2.97 |
| SMOKDAY2ref | 0.73 | 0.53 | 1.01 | SMOKDAY2 | 0.95 | 0.59 | 1.52 |
| ECIGNOWref | 0.73 | 0.36 | 1.47 | ECIGNOW | 1.01 | 0.39 | 2.60 |
| CVDSTRK3ref | 0.59 | 0.25 | 1.40 | CVDSTRK3 | 1.15 | 0.42 | 3.15 |
| CVDCRHD4ref | 0.61 | 0.28 | 1.30 | CVDCRHD4 | 1.49 | 0.56 | 3.97 |
| DIABETE3ref | 0.64 | 0.42 | 0.99 | DIABETE3 | 0.70 | 0.38 | 1.31 |
| ADDEPEV2ref | 0.71 | 0.51 | 1.00 | ADDEPEV2 | 1.09 | 0.67 | 1.78 |
| HAVARTH3ref | 0.75 | 0.53 | 1.06 | HAVARTH3 | 0.64 | 0.38 | 1.07 |
| CHCCOPD1ref | 0.62 | 0.34 | 1.14 | CHCCOPD1 | 0.78 | 0.36 | 1.68 |
| DEAFref | 0.63 | 0.34 | 1.20 | DEAF | 0.87 | 0.42 | 1.82 |
| BLINDref | 0.86 | 0.51 | 1.46 | BLIND | 0.71 | 0.34 | 1.46 |
| DECIDEref | 0.70 | 0.49 | 1.01 | DECIDE | 0.90 | 0.53 | 1.52 |
| DIFFWALKref | 0.90 | 0.62 | 1.31 | DIFFWALK | 1.42 | 0.78 | 2.60 |
| DIFFDRESref | 0.63 | 0.35 | 1.14 | DIFFDRES | 0.83 | 0.37 | 1.85 |
| DIFFALONref | 0.57 | 0.34 | 0.95 | DIFFALON | 0.91 | 0.42 | 2.02 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))#Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))svydesAA<-subset(svydes,RACE == "Black only, non-Hispanic")
#Binomial logistic regression for each variable
or<-svyglm(ADSLEEP~SEX, family=quasibinomial,design=svydesAA)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(ADSLEEP~ MARITAL, family = quasibinomial, design = svydesAA)
b <- or_fun("MARITAL")
or <- svyglm(ADSLEEP~ EDUCA, family = quasibinomial, design = svydesAA)
c <- or_fun("EDUCA")
or <- svyglm(ADSLEEP~ EMPLOY1, family = quasibinomial, design = svydesAA)
d <- or_fun("EMPLOY1")
or <- svyglm(ADSLEEP~ INCOME2, family = quasibinomial, design = svydesAA)
e <- or_fun("INCOME2")
or <- svyglm(ADSLEEP~ X_BMI5CAT, family = quasibinomial, design = svydesAA)
f <- or_fun("X_BMI5CAT")
or <- svyglm(ADSLEEP~ X_AGEG5YR, family = quasibinomial, design = svydesAA)
h <- or_fun("X_AGEG5YR")
or <- svyglm(ADSLEEP~ CHILDREN, family = quasibinomial, design = svydesAA)
i <- or_fun("CHILDREN")
or <- svyglm(ADSLEEP~ SDHBILLS, family = quasibinomial, design = svydesAA)
j <- or_fun("SDHBILLS")
or <- svyglm(ADSLEEP~ HOWSAFE1, family = quasibinomial, design = svydesAA)
k <- or_fun("HOWSAFE1")
or <- svyglm(ADSLEEP~ SDHFOOD, family = quasibinomial, design = svydesAA)
l <- or_fun("SDHFOOD")
or <- svyglm(ADSLEEP~ SDHMEALS, family = quasibinomial, design = svydesAA)
m <- or_fun("SDHMEALS")
or <- svyglm(ADSLEEP~ SDHMONEY, family = quasibinomial, design = svydesAA)
n <- or_fun("SDHMONEY")
or <- svyglm(ADSLEEP~ SDHSTRES, family = quasibinomial, design = svydesAA)
o <- or_fun("SDHSTRES")
or <- svyglm(ADSLEEP~ GENHLTH, family = quasibinomial, design = svydesAA)
p <- or_fun("GENHLTH")
or <- svyglm(ADSLEEP~ PHYSHLTH, family = quasibinomial, design = svydesAA)
q <- or_fun("PHYSHLTH")
or <- svyglm(ADSLEEP~ MENTHLTH, family = quasibinomial, design = svydesAA)
r <- or_fun("MENTHLTH")
or <- svyglm(ADSLEEP~ POORHLTH, family = quasibinomial, design = svydesAA)
s <- or_fun("POORHLTH")
or <- svyglm(ADSLEEP~ SMOKDAY2, family = quasibinomial, design = svydesAA)
t <- or_fun("SMOKDAY2")
or <- svyglm(ADSLEEP~ ECIGNOW, family = quasibinomial, design = svydesAA)
u <- or_fun("ECIGNOW")
or <- svyglm(ADSLEEP~ CVDSTRK3, family = quasibinomial, design = svydesAA)
v <- or_fun("CVDSTRK3")
or <- svyglm(ADSLEEP~ CVDCRHD4, family = quasibinomial, design = svydesAA)
w <- or_fun("CVDCRHD4")
or <- svyglm(ADSLEEP~ DIABETE3, family = quasibinomial, design = svydesAA)
x <- or_fun("DIABETE3")
or <- svyglm(ADSLEEP~ ADDEPEV2, family = quasibinomial, design = svydesAA)
y <- or_fun("ADDEPEV2")
or <- svyglm(ADSLEEP~ HAVARTH3, family = quasibinomial, design = svydesAA)
z <- or_fun("HAVARTH3")
or <- svyglm(ADSLEEP~ CHCCOPD1, family = quasibinomial, design = svydesAA)
aa <- or_fun("CHCCOPD1")
or <- svyglm(ADSLEEP~ DEAF, family = quasibinomial, design = svydesAA)
bb <- or_fun("DEAF")
or <- svyglm(ADSLEEP~ BLIND, family = quasibinomial, design = svydesAA)
cc <- or_fun("BLIND")
or <- svyglm(ADSLEEP~ DECIDE, family = quasibinomial, design = svydesAA)
dd <- or_fun("DECIDE")
or <- svyglm(ADSLEEP~ DIFFWALK, family = quasibinomial, design = svydesAA)
ee <- or_fun("DIFFWALK")
or <- svyglm(ADSLEEP~ DIFFDRES, family = quasibinomial, design = svydesAA)
ff <- or_fun("DIFFDRES")
or <- svyglm(ADSLEEP~ DIFFALON, family = quasibinomial, design = svydesAA)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 + X_BMI5CAT
+ X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 + SDHFOOD +
SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH + MENTHLTH +
POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 + DIABETE3 +
ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND + DECIDE +
DIFFWALK + DIFFDRES + DIFFALON, family = quasibinomial,
design = svydesAA)
summary(alr)##
## Call:
## svyglm(formula = ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 +
## SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH +
## MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 +
## DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND +
## DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydesAA,
## family = quasibinomial)
##
## Survey design:
## subset(svydes, RACE == "Black only, non-Hispanic")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.31234 1.26157 -1.040 0.30035
## SEXref 0.43239 0.74355 0.582 0.56200
## MARITALref -0.39624 0.65724 -0.603 0.54774
## EDUCAref 0.13641 0.55015 0.248 0.80461
## EMPLOY1ref -0.27664 0.61929 -0.447 0.65591
## INCOME2ref 0.32929 0.75264 0.438 0.66255
## X_BMI5CATref 0.47065 0.63570 0.740 0.46055
## X_AGEG5YRref 0.85310 1.35886 0.628 0.53135
## CHILDRENref -1.19006 0.59083 -2.014 0.04626 *
## SDHBILLSref 1.11476 0.83952 1.328 0.18679
## HOWSAFE1ref 1.62134 0.80180 2.022 0.04543 *
## SDHFOODref 1.74079 0.71772 2.425 0.01680 *
## SDHMEALSref -1.86351 0.94254 -1.977 0.05036 .
## SDHMONEYref -1.00565 0.66875 -1.504 0.13531
## SDHSTRESref -2.24050 0.85175 -2.630 0.00966 **
## GENHLTHref -0.08057 0.69527 -0.116 0.90794
## PHYSHLTHref 0.52187 0.80097 0.652 0.51597
## MENTHLTHref 0.77870 0.78212 0.996 0.32147
## POORHLTHref 2.91294 1.01200 2.878 0.00475 **
## SMOKDAY2ref 0.74699 0.68089 1.097 0.27484
## ECIGNOWref -0.58684 0.90278 -0.650 0.51693
## CVDSTRK3ref 0.82761 1.22117 0.678 0.49928
## CVDCRHD4ref 1.69176 1.69764 0.997 0.32103
## DIABETE3ref 0.06063 0.90822 0.067 0.94689
## ADDEPEV2ref -0.76009 0.64882 -1.171 0.24376
## HAVARTH3ref -0.53299 0.70415 -0.757 0.45060
## CHCCOPD1ref 0.59693 1.09170 0.547 0.58556
## DEAFref -0.94386 0.96071 -0.982 0.32788
## BLINDref -2.10381 0.78541 -2.679 0.00845 **
## DECIDEref 1.11495 0.67857 1.643 0.10303
## DIFFWALKref 1.42801 0.96992 1.472 0.14360
## DIFFDRESref 1.60295 0.91496 1.752 0.08238 .
## DIFFALONref -0.73187 0.95972 -0.763 0.44723
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 1.145577)
##
## Number of Fisher Scoring iterations: 6
## 2.5 % 97.5 %
## (Intercept) -3.78497723 1.16029429
## SEXref -1.02493369 1.88971420
## MARITALref -1.68440340 0.89191896
## EDUCAref -0.94186690 1.21467812
## EMPLOY1ref -1.49042940 0.93715906
## INCOME2ref -1.14586949 1.80443951
## X_BMI5CATref -0.77529914 1.71659381
## X_AGEG5YRref -1.81021458 3.51640577
## CHILDRENref -2.34805778 -0.03206520
## SDHBILLSref -0.53066042 2.76018516
## HOWSAFE1ref 0.04983491 3.19283909
## SDHFOODref 0.33409400 3.14748835
## SDHMEALSref -3.71085296 -0.01617393
## SDHMONEYref -2.31637915 0.30507431
## SDHSTRESref -3.90989333 -0.57110923
## GENHLTHref -1.44326928 1.28212398
## PHYSHLTHref -1.04801257 2.09174414
## MENTHLTHref -0.75422479 2.31162190
## POORHLTHref 0.92946733 4.89641535
## SMOKDAY2ref -0.58753290 2.08150938
## ECIGNOWref -2.35625627 1.18257870
## CVDSTRK3ref -1.56584785 3.22106535
## CVDCRHD4ref -1.63555527 5.01907477
## DIABETE3ref -1.71945543 1.84071311
## ADDEPEV2ref -2.03174860 0.51157474
## HAVARTH3ref -1.91309747 0.84710983
## CHCCOPD1ref -1.54276704 2.73661910
## DEAFref -2.82681730 0.93908767
## BLINDref -3.64318698 -0.56443159
## DECIDEref -0.21502311 2.44492100
## DIFFWALKref -0.47300293 3.32901431
## DIFFDRESref -0.19032439 3.39623375
## DIFFALONref -2.61289272 1.14914621
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 0.2691890 1.5409364 0.6728437 1.1461467 0.7583311 1.3899740
## X_BMI5CATref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref SDHFOODref
## 1.6010303 2.3469007 0.3042026 3.0488436 5.0598508 5.7018528
## SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref MENTHLTHref
## 0.1551266 0.3658059 0.1064052 0.9225879 1.6851689 2.1786350
## POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref DIABETE3ref
## 18.4108717 2.1106337 0.5560824 2.2878414 5.4290260 1.0625045
## ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref DECIDEref
## 0.4676258 0.5868454 1.8165263 0.3891210 0.1219908 3.0494125
## DIFFWALKref DIFFDRESref DIFFALONref
## 4.1703739 4.9676887 0.4810071
## AOR 2.5 % 97.5 %
## (Intercept) 0.2691890 0.02270938 3.1908722
## SEXref 1.5409364 0.35882026 6.6174771
## MARITALref 0.6728437 0.18555510 2.4398070
## EDUCAref 1.1461467 0.38989925 3.3692094
## EMPLOY1ref 0.7583311 0.22527590 2.5527190
## INCOME2ref 1.3899740 0.31794734 6.0765647
## X_BMI5CATref 1.6010303 0.46056599 5.5655389
## X_AGEG5YRref 2.3469007 0.16361902 33.6632174
## CHILDRENref 0.3042026 0.09555457 0.9684434
## SDHBILLSref 3.0488436 0.58821637 15.8027688
## HOWSAFE1ref 5.0598508 1.05109756 24.3574824
## SDHFOODref 5.7018528 1.39667442 23.2775260
## SDHMEALSref 0.1551266 0.02445665 0.9839562
## SDHMONEYref 0.3658059 0.09863006 1.3567258
## SDHSTRESref 0.1064052 0.02004264 0.5648985
## GENHLTHref 0.9225879 0.23615444 3.6042870
## PHYSHLTHref 1.6851689 0.35063392 8.0990287
## MENTHLTHref 2.1786350 0.47037511 10.0907776
## POORHLTHref 18.4108717 2.53315948 133.8092599
## SMOKDAY2ref 2.1106337 0.55569655 8.0165598
## ECIGNOWref 0.5560824 0.09477437 3.2627771
## CVDSTRK3ref 2.2878414 0.20891081 25.0547982
## CVDCRHD4ref 5.4290260 0.19484415 151.2712781
## DIABETE3ref 1.0625045 0.17916369 6.3010300
## ADDEPEV2ref 0.4676258 0.13110607 1.6679157
## HAVARTH3ref 0.5868454 0.14762242 2.3328946
## CHCCOPD1ref 1.8165263 0.21378872 15.4347136
## DEAFref 0.3891210 0.05920097 2.5576469
## BLINDref 0.1219908 0.02616881 0.5686833
## DECIDEref 3.0494125 0.80652280 11.5296387
## DIFFWALKref 4.1703739 0.62312824 27.9108166
## DIFFDRESref 4.9676887 0.82669092 29.8514599
## DIFFALONref 0.4810071 0.07332214 3.1554976
## AOR 2.5 % 97.5 %
## SEXref 1.5409364 0.35882026 6.6174771
## MARITALref 0.6728437 0.18555510 2.4398070
## EDUCAref 1.1461467 0.38989925 3.3692094
## EMPLOY1ref 0.7583311 0.22527590 2.5527190
## INCOME2ref 1.3899740 0.31794734 6.0765647
## X_BMI5CATref 1.6010303 0.46056599 5.5655389
## X_AGEG5YRref 2.3469007 0.16361902 33.6632174
## CHILDRENref 0.3042026 0.09555457 0.9684434
## SDHBILLSref 3.0488436 0.58821637 15.8027688
## HOWSAFE1ref 5.0598508 1.05109756 24.3574824
## SDHFOODref 5.7018528 1.39667442 23.2775260
## SDHMEALSref 0.1551266 0.02445665 0.9839562
## SDHMONEYref 0.3658059 0.09863006 1.3567258
## SDHSTRESref 0.1064052 0.02004264 0.5648985
## GENHLTHref 0.9225879 0.23615444 3.6042870
## PHYSHLTHref 1.6851689 0.35063392 8.0990287
## MENTHLTHref 2.1786350 0.47037511 10.0907776
## POORHLTHref 18.4108717 2.53315948 133.8092599
## SMOKDAY2ref 2.1106337 0.55569655 8.0165598
## ECIGNOWref 0.5560824 0.09477437 3.2627771
## CVDSTRK3ref 2.2878414 0.20891081 25.0547982
## CVDCRHD4ref 5.4290260 0.19484415 151.2712781
## DIABETE3ref 1.0625045 0.17916369 6.3010300
## ADDEPEV2ref 0.4676258 0.13110607 1.6679157
## HAVARTH3ref 0.5868454 0.14762242 2.3328946
## CHCCOPD1ref 1.8165263 0.21378872 15.4347136
## DEAFref 0.3891210 0.05920097 2.5576469
## BLINDref 0.1219908 0.02616881 0.5686833
## DECIDEref 3.0494125 0.80652280 11.5296387
## DIFFWALKref 4.1703739 0.62312824 27.9108166
## DIFFDRESref 4.9676887 0.82669092 29.8514599
## DIFFALONref 0.4810071 0.07332214 3.1554976
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 2.42 | 1.28 | 4.56 | SEX | 1.54 | 0.36 | 6.62 |
| MARITALref | 2.54 | 1.27 | 5.07 | MARITAL | 0.67 | 0.19 | 2.44 |
| EDUCAref | 1.17 | 0.59 | 2.32 | EDUCA | 1.15 | 0.39 | 3.37 |
| EMPLOY1ref | 2.17 | 1.15 | 4.07 | EMPLOY1 | 0.76 | 0.23 | 2.55 |
| INCOME2ref | 1.12 | 0.47 | 2.72 | INCOME2 | 1.39 | 0.32 | 6.08 |
| X_BMI5CATref | 0.98 | 0.48 | 1.98 | X_BMI5CAT | 1.60 | 0.46 | 5.57 |
| X_AGEG5YRref | 0.36 | 0.14 | 0.92 | X_AGEG5YR | 2.35 | 0.16 | 33.66 |
| CHILDRENref | 0.82 | 0.44 | 1.53 | CHILDREN | 0.30 | 0.10 | 0.97 |
| SDHBILLSref | 0.39 | 0.19 | 0.78 | SDHBILLS | 3.05 | 0.59 | 15.80 |
| HOWSAFE1ref | 1.55 | 0.57 | 4.25 | HOWSAFE1 | 5.06 | 1.05 | 24.36 |
| SDHFOODref | 0.49 | 0.26 | 0.94 | SDHFOOD | 5.70 | 1.40 | 23.28 |
| SDHMEALSref | 0.36 | 0.19 | 0.68 | SDHMEALS | 0.16 | 0.02 | 0.98 |
| SDHMONEYref | 0.49 | 0.25 | 0.98 | SDHMONEY | 0.37 | 0.10 | 1.36 |
| SDHSTRESref | 0.09 | 0.04 | 0.19 | SDHSTRES | 0.11 | 0.02 | 0.56 |
| GENHLTHref | 0.16 | 0.08 | 0.33 | GENHLTH | 0.92 | 0.24 | 3.60 |
| PHYSHLTHref | 9.45 | 4.18 | 21.35 | PHYSHLTH | 1.69 | 0.35 | 8.10 |
| MENTHLTHref | 6.96 | 3.26 | 14.86 | MENTHLTH | 2.18 | 0.47 | 10.09 |
| POORHLTHref | 8.93 | 3.46 | 23.09 | POORHLTH | 18.41 | 2.53 | 133.81 |
| SMOKDAY2ref | 0.52 | 0.26 | 1.04 | SMOKDAY2 | 2.11 | 0.56 | 8.02 |
| ECIGNOWref | 1.42 | 0.38 | 5.34 | ECIGNOW | 0.56 | 0.09 | 3.26 |
| CVDSTRK3ref | 0.37 | 0.09 | 1.49 | CVDSTRK3 | 2.29 | 0.21 | 25.05 |
| CVDCRHD4ref | 1.10 | 0.24 | 4.96 | CVDCRHD4 | 5.43 | 0.19 | 151.27 |
| DIABETE3ref | 1.17 | 0.46 | 2.94 | DIABETE3 | 1.06 | 0.18 | 6.30 |
| ADDEPEV2ref | 0.15 | 0.07 | 0.31 | ADDEPEV2 | 0.47 | 0.13 | 1.67 |
| HAVARTH3ref | 0.38 | 0.18 | 0.79 | HAVARTH3 | 0.59 | 0.15 | 2.33 |
| CHCCOPD1ref | 0.28 | 0.09 | 0.85 | CHCCOPD1 | 1.82 | 0.21 | 15.43 |
| DEAFref | 0.18 | 0.05 | 0.64 | DEAF | 0.39 | 0.06 | 2.56 |
| BLINDref | 0.47 | 0.19 | 1.15 | BLIND | 0.12 | 0.03 | 0.57 |
| DECIDEref | 0.19 | 0.09 | 0.39 | DECIDE | 3.05 | 0.81 | 11.53 |
| DIFFWALKref | 0.37 | 0.18 | 0.77 | DIFFWALK | 4.17 | 0.62 | 27.91 |
| DIFFDRESref | 0.34 | 0.12 | 0.99 | DIFFDRES | 4.97 | 0.83 | 29.85 |
| DIFFALONref | 0.11 | 0.04 | 0.28 | DIFFALON | 0.48 | 0.07 | 3.16 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))#Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))#Binomial logistic regression for each variable
or<-svyglm(SLEPTIM1~SEX, family=quasibinomial,design=svydesAA)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(SLEPTIM1~ MARITAL, family = quasibinomial, design = svydesAA)
b <- or_fun("MARITAL")
or <- svyglm(SLEPTIM1~ EDUCA, family = quasibinomial, design = svydesAA)
c <- or_fun("EDUCA")
or <- svyglm(SLEPTIM1~ EMPLOY1, family = quasibinomial, design = svydesAA)
d <- or_fun("EMPLOY1")
or <- svyglm(SLEPTIM1~ INCOME2, family = quasibinomial, design = svydesAA)
e <- or_fun("INCOME2")
or <- svyglm(SLEPTIM1~ X_BMI5CAT, family = quasibinomial, design = svydesAA)
f <- or_fun("X_BMI5CAT")
or <- svyglm(SLEPTIM1~ X_AGEG5YR, family = quasibinomial, design = svydesAA)
h <- or_fun("X_AGEG5YR")
or <- svyglm(SLEPTIM1~ CHILDREN, family = quasibinomial, design = svydesAA)
i <- or_fun("CHILDREN")
or <- svyglm(SLEPTIM1~ SDHBILLS, family = quasibinomial, design = svydesAA)
j <- or_fun("SDHBILLS")
or <- svyglm(SLEPTIM1~ HOWSAFE1, family = quasibinomial, design = svydesAA)
k <- or_fun("HOWSAFE1")
or <- svyglm(SLEPTIM1~ SDHFOOD, family = quasibinomial, design = svydesAA)
l <- or_fun("SDHFOOD")
or <- svyglm(SLEPTIM1~ SDHMEALS, family = quasibinomial, design = svydesAA)
m <- or_fun("SDHMEALS")
or <- svyglm(SLEPTIM1~ SDHMONEY, family = quasibinomial, design = svydesAA)
n <- or_fun("SDHMONEY")
or <- svyglm(SLEPTIM1~ SDHSTRES, family = quasibinomial, design = svydesAA)
o <- or_fun("SDHSTRES")
or <- svyglm(SLEPTIM1~ GENHLTH, family = quasibinomial, design = svydesAA)
p <- or_fun("GENHLTH")
or <- svyglm(SLEPTIM1~ PHYSHLTH, family = quasibinomial, design = svydesAA)
q <- or_fun("PHYSHLTH")
or <- svyglm(SLEPTIM1~ MENTHLTH, family = quasibinomial, design = svydesAA)
r <- or_fun("MENTHLTH")
or <- svyglm(SLEPTIM1~ POORHLTH, family = quasibinomial, design = svydesAA)
s <- or_fun("POORHLTH")
or <- svyglm(SLEPTIM1~ SMOKDAY2, family = quasibinomial, design = svydesAA)
t <- or_fun("SMOKDAY2")
or <- svyglm(SLEPTIM1~ ECIGNOW, family = quasibinomial, design = svydesAA)
u <- or_fun("ECIGNOW")
or <- svyglm(SLEPTIM1~ CVDSTRK3, family = quasibinomial, design = svydesAA)
v <- or_fun("CVDSTRK3")
or <- svyglm(SLEPTIM1~ CVDCRHD4, family = quasibinomial, design = svydesAA)
w <- or_fun("CVDCRHD4")
or <- svyglm(SLEPTIM1~ DIABETE3, family = quasibinomial, design = svydesAA)
x <- or_fun("DIABETE3")
or <- svyglm(SLEPTIM1~ ADDEPEV2, family = quasibinomial, design = svydesAA)
y <- or_fun("ADDEPEV2")
or <- svyglm(SLEPTIM1~ HAVARTH3, family = quasibinomial, design = svydesAA)
z <- or_fun("HAVARTH3")
or <- svyglm(SLEPTIM1~ CHCCOPD1, family = quasibinomial, design = svydesAA)
aa <- or_fun("CHCCOPD1")
or <- svyglm(SLEPTIM1~ DEAF, family = quasibinomial, design = svydesAA)
bb <- or_fun("DEAF")
or <- svyglm(SLEPTIM1~ BLIND, family = quasibinomial, design = svydesAA)
cc <- or_fun("BLIND")
or <- svyglm(SLEPTIM1~ DECIDE, family = quasibinomial, design = svydesAA)
dd <- or_fun("DECIDE")
or <- svyglm(SLEPTIM1~ DIFFWALK, family = quasibinomial, design = svydesAA)
ee <- or_fun("DIFFWALK")
or <- svyglm(SLEPTIM1~ DIFFDRES, family = quasibinomial, design = svydesAA)
ff <- or_fun("DIFFDRES")
or <- svyglm(SLEPTIM1~ DIFFALON, family = quasibinomial, design = svydesAA)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 +
X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS +
HOWSAFE1 + SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH +
PHYSHLTH + MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW +
CVDSTRK3 + CVDCRHD4 + DIABETE3 + ADDEPEV2 + HAVARTH3 +
CHCCOPD1 + DEAF + BLIND + DECIDE + DIFFWALK + DIFFDRES +
DIFFALON, family = quasibinomial, design = svydesAA)
summary(alr)##
## Call:
## svyglm(formula = SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 +
## SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH +
## MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 +
## DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND +
## DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydesAA,
## family = quasibinomial)
##
## Survey design:
## subset(svydes, RACE == "Black only, non-Hispanic")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.62742 0.90683 -0.692 0.4900
## SEXref -0.20130 0.49023 -0.411 0.6819
## MARITALref -0.23568 0.48871 -0.482 0.6303
## EDUCAref 0.45842 0.46931 0.977 0.3302
## EMPLOY1ref 0.13554 0.43661 0.310 0.7566
## INCOME2ref -0.42123 0.76287 -0.552 0.5816
## X_BMI5CATref 0.20938 0.43897 0.477 0.6341
## X_AGEG5YRref -2.03222 0.83837 -2.424 0.0165 *
## CHILDRENref 0.59703 0.46920 1.272 0.2051
## SDHBILLSref -0.07563 0.60316 -0.125 0.9004
## HOWSAFE1ref -0.18871 0.71208 -0.265 0.7913
## SDHFOODref 0.13073 0.62349 0.210 0.8342
## SDHMEALSref 0.46633 0.68921 0.677 0.4997
## SDHMONEYref 0.88944 0.51011 1.744 0.0832 .
## SDHSTRESref -0.87431 0.65981 -1.325 0.1871
## GENHLTHref -0.54989 0.52878 -1.040 0.3000
## PHYSHLTHref -1.00914 0.63925 -1.579 0.1164
## MENTHLTHref 0.25294 0.60193 0.420 0.6749
## POORHLTHref 0.02806 0.63465 0.044 0.9648
## SMOKDAY2ref 0.24493 0.48012 0.510 0.6107
## ECIGNOWref 0.28705 1.03603 0.277 0.7821
## CVDSTRK3ref 0.18916 0.88087 0.215 0.8302
## CVDCRHD4ref -0.13472 1.10345 -0.122 0.9030
## DIABETE3ref -0.91694 0.70020 -1.310 0.1923
## ADDEPEV2ref -0.85519 0.61957 -1.380 0.1695
## HAVARTH3ref -0.13938 0.58886 -0.237 0.8132
## CHCCOPD1ref 1.31833 0.78257 1.685 0.0941 .
## DEAFref -1.41685 0.99942 -1.418 0.1583
## BLINDref -0.29090 0.73501 -0.396 0.6928
## DECIDEref 0.55292 0.59251 0.933 0.3522
## DIFFWALKref -0.02382 0.59344 -0.040 0.9680
## DIFFDRESref -0.16828 0.79104 -0.213 0.8318
## DIFFALONref 0.42188 0.86288 0.489 0.6256
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.9916475)
##
## Number of Fisher Scoring iterations: 5
## 2.5 % 97.5 %
## (Intercept) -2.4047672 1.1499266
## SEXref -1.1621402 0.7595395
## MARITALref -1.1935435 0.7221793
## EDUCAref -0.4614196 1.3782519
## EMPLOY1ref -0.7202046 0.9912854
## INCOME2ref -1.9164255 1.0739585
## X_BMI5CATref -0.6509900 1.0697412
## X_AGEG5YRref -3.6753920 -0.3890556
## CHILDRENref -0.3225854 1.5166404
## SDHBILLSref -1.2577929 1.1065343
## HOWSAFE1ref -1.5843556 1.2069308
## SDHFOODref -1.0912911 1.3527610
## SDHMEALSref -0.8845012 1.8171547
## SDHMONEYref -0.1103658 1.8892369
## SDHSTRESref -2.1675148 0.4188932
## GENHLTHref -1.5862819 0.4864941
## PHYSHLTHref -2.2620353 0.2437600
## MENTHLTHref -0.9268279 1.4326992
## POORHLTHref -1.2158312 1.2719467
## SMOKDAY2ref -0.6960900 1.1859417
## ECIGNOWref -1.7435352 2.3176414
## CVDSTRK3ref -1.5373195 1.9156442
## CVDCRHD4ref -2.2974362 2.0279976
## DIABETE3ref -2.2893055 0.4554217
## ADDEPEV2ref -2.0695211 0.3591419
## HAVARTH3ref -1.2935248 1.0147741
## CHCCOPD1ref -0.2154827 2.8521344
## DEAFref -3.3756745 0.5419682
## BLINDref -1.7314932 1.1496864
## DECIDEref -0.6083741 1.7142057
## DIFFWALKref -1.1869441 1.1393136
## DIFFDRESref -1.7186805 1.3821237
## DIFFALONref -1.2693386 2.1131084
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 0.5339675 0.8176668 0.7900318 1.5815670 1.1451555 0.6562369
## X_BMI5CATref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref SDHFOODref
## 1.2329080 0.1310438 1.8167106 0.9271598 0.8280246 1.1396657
## SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref MENTHLTHref
## 1.5941278 2.4337555 0.4171494 0.5770110 0.3645332 1.2878004
## POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref DIABETE3ref
## 1.0284551 1.2775266 1.3324949 1.2082371 0.8739612 0.3997396
## ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref DECIDEref
## 0.4252026 0.8699014 3.7371597 0.2424758 0.7475879 1.7383142
## DIFFWALKref DIFFDRESref DIFFALONref
## 0.9764661 0.8451186 1.5248330
## AOR 2.5 % 97.5 %
## (Intercept) 0.5339675 0.09028651 3.1579610
## SEXref 0.8176668 0.31281597 2.1372917
## MARITALref 0.7900318 0.30314518 2.0589153
## EDUCAref 1.5815670 0.63038808 3.9679592
## EMPLOY1ref 1.1451555 0.48665266 2.6946961
## INCOME2ref 0.6562369 0.14713194 2.9269430
## X_BMI5CATref 1.2329080 0.52152923 2.9146251
## X_AGEG5YRref 0.1310438 0.02533947 0.6776966
## CHILDRENref 1.8167106 0.72427408 4.5568902
## SDHBILLSref 0.9271598 0.28428078 3.0238603
## HOWSAFE1ref 0.8280246 0.20507990 3.3432079
## SDHFOODref 1.1396657 0.33578270 3.8680907
## SDHMEALSref 1.5941278 0.41292010 6.1543225
## SDHMONEYref 2.4337555 0.89550650 6.6143192
## SDHSTRESref 0.4171494 0.11446172 1.5202780
## GENHLTHref 0.5770110 0.20468524 1.6266034
## PHYSHLTHref 0.3645332 0.10413832 1.2760380
## MENTHLTHref 1.2878004 0.39580726 4.1899935
## POORHLTHref 1.0284551 0.29646349 3.5677913
## SMOKDAY2ref 1.2775266 0.49853075 3.2737684
## ECIGNOWref 1.3324949 0.17490099 10.1517020
## CVDSTRK3ref 1.2082371 0.21495651 6.7913123
## CVDCRHD4ref 0.8739612 0.10051622 7.5988548
## DIABETE3ref 0.3997396 0.10133682 1.5768381
## ADDEPEV2ref 0.4252026 0.12624623 1.4321001
## HAVARTH3ref 0.8699014 0.27430220 2.7587400
## CHCCOPD1ref 3.7371597 0.80615223 17.3247208
## DEAFref 0.2424758 0.03419504 1.7193876
## BLINDref 0.7475879 0.17701989 3.1572027
## DECIDEref 1.7383142 0.54423500 5.5522635
## DIFFWALKref 0.9764661 0.30515236 3.1246230
## DIFFDRESref 0.8451186 0.17930259 3.9833522
## DIFFALONref 1.5248330 0.28101742 8.2739196
## AOR 2.5 % 97.5 %
## SEXref 0.8176668 0.31281597 2.1372917
## MARITALref 0.7900318 0.30314518 2.0589153
## EDUCAref 1.5815670 0.63038808 3.9679592
## EMPLOY1ref 1.1451555 0.48665266 2.6946961
## INCOME2ref 0.6562369 0.14713194 2.9269430
## X_BMI5CATref 1.2329080 0.52152923 2.9146251
## X_AGEG5YRref 0.1310438 0.02533947 0.6776966
## CHILDRENref 1.8167106 0.72427408 4.5568902
## SDHBILLSref 0.9271598 0.28428078 3.0238603
## HOWSAFE1ref 0.8280246 0.20507990 3.3432079
## SDHFOODref 1.1396657 0.33578270 3.8680907
## SDHMEALSref 1.5941278 0.41292010 6.1543225
## SDHMONEYref 2.4337555 0.89550650 6.6143192
## SDHSTRESref 0.4171494 0.11446172 1.5202780
## GENHLTHref 0.5770110 0.20468524 1.6266034
## PHYSHLTHref 0.3645332 0.10413832 1.2760380
## MENTHLTHref 1.2878004 0.39580726 4.1899935
## POORHLTHref 1.0284551 0.29646349 3.5677913
## SMOKDAY2ref 1.2775266 0.49853075 3.2737684
## ECIGNOWref 1.3324949 0.17490099 10.1517020
## CVDSTRK3ref 1.2082371 0.21495651 6.7913123
## CVDCRHD4ref 0.8739612 0.10051622 7.5988548
## DIABETE3ref 0.3997396 0.10133682 1.5768381
## ADDEPEV2ref 0.4252026 0.12624623 1.4321001
## HAVARTH3ref 0.8699014 0.27430220 2.7587400
## CHCCOPD1ref 3.7371597 0.80615223 17.3247208
## DEAFref 0.2424758 0.03419504 1.7193876
## BLINDref 0.7475879 0.17701989 3.1572027
## DECIDEref 1.7383142 0.54423500 5.5522635
## DIFFWALKref 0.9764661 0.30515236 3.1246230
## DIFFDRESref 0.8451186 0.17930259 3.9833522
## DIFFALONref 1.5248330 0.28101742 8.2739196
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 0.95 | 0.61 | 1.48 | SEX | 0.82 | 0.31 | 2.14 |
| MARITALref | 1.97 | 1.25 | 3.09 | MARITAL | 0.79 | 0.30 | 2.06 |
| EDUCAref | 1.00 | 0.62 | 1.60 | EDUCA | 1.58 | 0.63 | 3.97 |
| EMPLOY1ref | 1.25 | 0.80 | 1.94 | EMPLOY1 | 1.15 | 0.49 | 2.69 |
| INCOME2ref | 1.13 | 0.60 | 2.11 | INCOME2 | 0.66 | 0.15 | 2.93 |
| X_BMI5CATref | 1.11 | 0.68 | 1.82 | X_BMI5CAT | 1.23 | 0.52 | 2.91 |
| X_AGEG5YRref | 0.23 | 0.10 | 0.53 | X_AGEG5YR | 0.13 | 0.03 | 0.68 |
| CHILDRENref | 0.94 | 0.61 | 1.46 | CHILDREN | 1.82 | 0.72 | 4.56 |
| SDHBILLSref | 1.35 | 0.73 | 2.47 | SDHBILLS | 0.93 | 0.28 | 3.02 |
| HOWSAFE1ref | 1.19 | 0.49 | 2.87 | HOWSAFE1 | 0.83 | 0.21 | 3.34 |
| SDHFOODref | 1.42 | 0.85 | 2.37 | SDHFOOD | 1.14 | 0.34 | 3.87 |
| SDHMEALSref | 1.33 | 0.80 | 2.22 | SDHMEALS | 1.59 | 0.41 | 6.15 |
| SDHMONEYref | 1.68 | 1.08 | 2.63 | SDHMONEY | 2.43 | 0.90 | 6.61 |
| SDHSTRESref | 0.50 | 0.23 | 1.08 | SDHSTRES | 0.42 | 0.11 | 1.52 |
| GENHLTHref | 0.67 | 0.37 | 1.24 | GENHLTH | 0.58 | 0.20 | 1.63 |
| PHYSHLTHref | 0.94 | 0.47 | 1.90 | PHYSHLTH | 0.36 | 0.10 | 1.28 |
| MENTHLTHref | 1.95 | 0.96 | 3.98 | MENTHLTH | 1.29 | 0.40 | 4.19 |
| POORHLTHref | 0.96 | 0.42 | 2.17 | POORHLTH | 1.03 | 0.30 | 3.57 |
| SMOKDAY2ref | 0.89 | 0.50 | 1.56 | SMOKDAY2 | 1.28 | 0.50 | 3.27 |
| ECIGNOWref | 1.27 | 0.43 | 3.74 | ECIGNOW | 1.33 | 0.17 | 10.15 |
| CVDSTRK3ref | 0.53 | 0.14 | 1.90 | CVDSTRK3 | 1.21 | 0.21 | 6.79 |
| CVDCRHD4ref | 0.73 | 0.18 | 3.00 | CVDCRHD4 | 0.87 | 0.10 | 7.60 |
| DIABETE3ref | 0.73 | 0.32 | 1.68 | DIABETE3 | 0.40 | 0.10 | 1.58 |
| ADDEPEV2ref | 0.45 | 0.23 | 0.89 | ADDEPEV2 | 0.43 | 0.13 | 1.43 |
| HAVARTH3ref | 0.85 | 0.45 | 1.62 | HAVARTH3 | 0.87 | 0.27 | 2.76 |
| CHCCOPD1ref | 1.46 | 0.54 | 3.95 | CHCCOPD1 | 3.74 | 0.81 | 17.32 |
| DEAFref | 0.30 | 0.08 | 1.04 | DEAF | 0.24 | 0.03 | 1.72 |
| BLINDref | 1.14 | 0.48 | 2.71 | BLIND | 0.75 | 0.18 | 3.16 |
| DECIDEref | 0.73 | 0.37 | 1.42 | DECIDE | 1.74 | 0.54 | 5.55 |
| DIFFWALKref | 0.95 | 0.50 | 1.80 | DIFFWALK | 0.98 | 0.31 | 3.12 |
| DIFFDRESref | 0.77 | 0.28 | 2.14 | DIFFDRES | 0.85 | 0.18 | 3.98 |
| DIFFALONref | 0.62 | 0.25 | 1.57 | DIFFALON | 1.52 | 0.28 | 8.27 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))# Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))svydesW<-subset(svydes,RACE == "White only, non-Hispanic")
#Binomial logistic regression for each variable
or<-svyglm(ADSLEEP~SEX, family=quasibinomial,design=svydesW)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(ADSLEEP~ MARITAL, family = quasibinomial, design = svydesW)
b <- or_fun("MARITAL")
or <- svyglm(ADSLEEP~ EDUCA, family = quasibinomial, design = svydesW)
c <- or_fun("EDUCA")
or <- svyglm(ADSLEEP~ EMPLOY1, family = quasibinomial, design = svydesW)
d <- or_fun("EMPLOY1")
or <- svyglm(ADSLEEP~ INCOME2, family = quasibinomial, design = svydesW)
e <- or_fun("INCOME2")
or <- svyglm(ADSLEEP~ X_BMI5CAT, family = quasibinomial, design = svydesW)
f <- or_fun("X_BMI5CAT")
or <- svyglm(ADSLEEP~ X_AGEG5YR, family = quasibinomial, design = svydesW)
h <- or_fun("X_AGEG5YR")
or <- svyglm(ADSLEEP~ CHILDREN, family = quasibinomial, design = svydesW)
i <- or_fun("CHILDREN")
or <- svyglm(ADSLEEP~ SDHBILLS, family = quasibinomial, design = svydesW)
j <- or_fun("SDHBILLS")
or <- svyglm(ADSLEEP~ HOWSAFE1, family = quasibinomial, design = svydesW)
k <- or_fun("HOWSAFE1")
or <- svyglm(ADSLEEP~ SDHFOOD, family = quasibinomial, design = svydesW)
l <- or_fun("SDHFOOD")
or <- svyglm(ADSLEEP~ SDHMEALS, family = quasibinomial, design = svydesW)
m <- or_fun("SDHMEALS")
or <- svyglm(ADSLEEP~ SDHMONEY, family = quasibinomial, design = svydesW)
n <- or_fun("SDHMONEY")
or <- svyglm(ADSLEEP~ SDHSTRES, family = quasibinomial, design = svydesW)
o <- or_fun("SDHSTRES")
or <- svyglm(ADSLEEP~ GENHLTH, family = quasibinomial, design = svydesW)
p <- or_fun("GENHLTH")
or <- svyglm(ADSLEEP~ PHYSHLTH, family = quasibinomial, design = svydesW)
q <- or_fun("PHYSHLTH")
or <- svyglm(ADSLEEP~ MENTHLTH, family = quasibinomial, design = svydesW)
r <- or_fun("MENTHLTH")
or <- svyglm(ADSLEEP~ POORHLTH, family = quasibinomial, design = svydesW)
s <- or_fun("POORHLTH")
or <- svyglm(ADSLEEP~ SMOKDAY2, family = quasibinomial, design = svydesW)
t <- or_fun("SMOKDAY2")
or <- svyglm(ADSLEEP~ ECIGNOW, family = quasibinomial, design = svydesW)
u <- or_fun("ECIGNOW")
or <- svyglm(ADSLEEP~ CVDSTRK3, family = quasibinomial, design = svydesW)
v <- or_fun("CVDSTRK3")
or <- svyglm(ADSLEEP~ CVDCRHD4, family = quasibinomial, design = svydesW)
w <- or_fun("CVDCRHD4")
or <- svyglm(ADSLEEP~ DIABETE3, family = quasibinomial, design = svydesW)
x <- or_fun("DIABETE3")
or <- svyglm(ADSLEEP~ ADDEPEV2, family = quasibinomial, design = svydesW)
y <- or_fun("ADDEPEV2")
or <- svyglm(ADSLEEP~ HAVARTH3, family = quasibinomial, design = svydesW)
z <- or_fun("HAVARTH3")
or <- svyglm(ADSLEEP~ CHCCOPD1, family = quasibinomial, design = svydesW)
aa <- or_fun("CHCCOPD1")
or <- svyglm(ADSLEEP~ DEAF, family = quasibinomial, design = svydesW)
bb <- or_fun("DEAF")
or <- svyglm(ADSLEEP~ BLIND, family = quasibinomial, design = svydesW)
cc <- or_fun("BLIND")
or <- svyglm(ADSLEEP~ DECIDE, family = quasibinomial, design = svydesW)
dd <- or_fun("DECIDE")
or <- svyglm(ADSLEEP~ DIFFWALK, family = quasibinomial, design = svydesW)
ee <- or_fun("DIFFWALK")
or <- svyglm(ADSLEEP~ DIFFDRES, family = quasibinomial, design = svydesW)
ff <- or_fun("DIFFDRES")
or <- svyglm(ADSLEEP~ DIFFALON, family = quasibinomial, design = svydesW)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f,h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 + X_BMI5CAT
+ X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 + SDHFOOD +
SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH + MENTHLTH +
POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 + DIABETE3 +
ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND + DECIDE +
DIFFWALK + DIFFDRES + DIFFALON, family = quasibinomial,
design = svydesW)
summary(alr)##
## Call:
## svyglm(formula = ADSLEEP ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 +
## SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH +
## MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 +
## DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND +
## DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydesW,
## family = quasibinomial)
##
## Survey design:
## subset(svydes, RACE == "White only, non-Hispanic")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.029806 0.202191 5.093 3.63e-07 ***
## SEXref 0.155904 0.086069 1.811 0.070131 .
## MARITALref -0.015277 0.085356 -0.179 0.857963
## EDUCAref -0.192942 0.093910 -2.055 0.039967 *
## EMPLOY1ref -0.091723 0.090886 -1.009 0.312910
## INCOME2ref 0.007006 0.117050 0.060 0.952274
## X_BMI5CATref 0.197275 0.094766 2.082 0.037411 *
## X_AGEG5YRref -0.080365 0.127179 -0.632 0.527471
## CHILDRENref -0.067428 0.097282 -0.693 0.488266
## SDHBILLSref -0.258732 0.168803 -1.533 0.125389
## HOWSAFE1ref 0.059096 0.255823 0.231 0.817319
## SDHFOODref -0.107492 0.156874 -0.685 0.493236
## SDHMEALSref -0.199265 0.135536 -1.470 0.141559
## SDHMONEYref 0.096672 0.092586 1.044 0.296465
## SDHSTRESref -1.142877 0.122262 -9.348 < 2e-16 ***
## GENHLTHref -0.370999 0.111057 -3.341 0.000841 ***
## PHYSHLTHref 0.401980 0.110949 3.623 0.000293 ***
## MENTHLTHref 0.350342 0.113853 3.077 0.002099 **
## POORHLTHref 0.087465 0.133658 0.654 0.512884
## SMOKDAY2ref -0.063023 0.122781 -0.513 0.607764
## ECIGNOWref -0.197395 0.204339 -0.966 0.334075
## CVDSTRK3ref 0.273279 0.214554 1.274 0.202815
## CVDCRHD4ref 0.249225 0.166348 1.498 0.134129
## DIABETE3ref -0.064444 0.125948 -0.512 0.608901
## ADDEPEV2ref -0.430179 0.094681 -4.543 5.64e-06 ***
## HAVARTH3ref -0.181831 0.090980 -1.999 0.045698 *
## CHCCOPD1ref -0.042012 0.154690 -0.272 0.785949
## DEAFref -0.199872 0.138532 -1.443 0.149131
## BLINDref 0.045269 0.191497 0.236 0.813135
## DECIDEref -0.509417 0.124774 -4.083 4.51e-05 ***
## DIFFWALKref -0.088769 0.122289 -0.726 0.467929
## DIFFDRESref -0.254140 0.190235 -1.336 0.181623
## DIFFALONref -0.108623 0.159349 -0.682 0.495474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 1.028312)
##
## Number of Fisher Scoring iterations: 4
## 2.5 % 97.5 %
## (Intercept) 0.63351982 1.426092049
## SEXref -0.01278870 0.324596656
## MARITALref -0.18257200 0.152018617
## EDUCAref -0.37700257 -0.008880921
## EMPLOY1ref -0.26985610 0.086409173
## INCOME2ref -0.22240763 0.236419455
## X_BMI5CATref 0.01153696 0.383013356
## X_AGEG5YRref -0.32963134 0.168900813
## CHILDRENref -0.25809776 0.123242571
## SDHBILLSref -0.58957883 0.072114850
## HOWSAFE1ref -0.44230819 0.560501137
## SDHFOODref -0.41496040 0.199975788
## SDHMEALSref -0.46491110 0.066380674
## SDHMONEYref -0.08479312 0.278137306
## SDHSTRESref -1.38250681 -0.903247870
## GENHLTHref -0.58866699 -0.153331945
## PHYSHLTHref 0.18452354 0.619436369
## MENTHLTHref 0.12719481 0.573488570
## POORHLTHref -0.17449996 0.349429371
## SMOKDAY2ref -0.30366919 0.177623687
## ECIGNOWref -0.59789231 0.203102852
## CVDSTRK3ref -0.14723895 0.693797569
## CVDCRHD4ref -0.07681153 0.575262515
## DIABETE3ref -0.31129839 0.182410472
## ADDEPEV2ref -0.61575126 -0.244607410
## HAVARTH3ref -0.36014879 -0.003513027
## CHCCOPD1ref -0.34519955 0.261175735
## DEAFref -0.47138911 0.071645073
## BLINDref -0.33005927 0.420596625
## DECIDEref -0.75397027 -0.264863270
## DIFFWALKref -0.32845048 0.150912296
## DIFFDRESref -0.62699314 0.118714048
## DIFFALONref -0.42094207 0.203695372
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 2.8005223 1.1687140 0.9848394 0.8245300 0.9123574 1.0070305
## X_BMI5CATref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref SDHFOODref
## 1.2180792 0.9227792 0.9347954 0.7720299 1.0608776 0.8980834
## SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref MENTHLTHref
## 0.8193326 1.1014991 0.3189001 0.6900443 1.4947814 1.4195525
## POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref DIABETE3ref
## 1.0914037 0.9389221 0.8208666 1.3142673 1.2830313 0.9375887
## ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref DECIDEref
## 0.6503924 0.8337423 0.9588584 0.8188355 1.0463089 0.6008459
## DIFFWALKref DIFFDRESref DIFFALONref
## 0.9150568 0.7755836 0.8970682
## AOR 2.5 % 97.5 %
## (Intercept) 2.8005223 1.8842311 4.1624009
## SEXref 1.1687140 0.9872927 1.3834725
## MARITALref 0.9848394 0.8331247 1.1641819
## EDUCAref 0.8245300 0.6859143 0.9911584
## EMPLOY1ref 0.9123574 0.7634894 1.0902523
## INCOME2ref 1.0070305 0.8005890 1.2667055
## X_BMI5CATref 1.2180792 1.0116038 1.4666976
## X_AGEG5YRref 0.9227792 0.7191888 1.1840027
## CHILDRENref 0.9347954 0.7725197 1.1311588
## SDHBILLSref 0.7720299 0.5545608 1.0747788
## HOWSAFE1ref 1.0608776 0.6425516 1.7515500
## SDHFOODref 0.8980834 0.6603664 1.2213732
## SDHMEALSref 0.8193326 0.6281909 1.0686334
## SDHMONEYref 1.1014991 0.9187023 1.3206675
## SDHSTRESref 0.3189001 0.2509487 0.4052513
## GENHLTHref 0.6900443 0.5550667 0.8578449
## PHYSHLTHref 1.4947814 1.2026453 1.8578806
## MENTHLTHref 1.4195525 1.1356382 1.7744465
## POORHLTHref 1.0914037 0.8398769 1.4182580
## SMOKDAY2ref 0.9389221 0.7381050 1.1943758
## ECIGNOWref 0.8208666 0.5499696 1.2251985
## CVDSTRK3ref 1.3142673 0.8630877 2.0013012
## CVDCRHD4ref 1.2830313 0.9260644 1.7775971
## DIABETE3ref 0.9375887 0.7324953 1.2001067
## ADDEPEV2ref 0.6503924 0.5402349 0.7830119
## HAVARTH3ref 0.8337423 0.6975725 0.9964931
## CHCCOPD1ref 0.9588584 0.7080790 1.2984558
## DEAFref 0.8188355 0.6241347 1.0742740
## BLINDref 1.0463089 0.7188811 1.5228699
## DECIDEref 0.6008459 0.4704948 0.7673109
## DIFFWALKref 0.9150568 0.7200386 1.1628947
## DIFFDRESref 0.7755836 0.5341956 1.1260479
## DIFFALONref 0.8970682 0.6564281 1.2259246
## AOR 2.5 % 97.5 %
## SEXref 1.1687140 0.9872927 1.3834725
## MARITALref 0.9848394 0.8331247 1.1641819
## EDUCAref 0.8245300 0.6859143 0.9911584
## EMPLOY1ref 0.9123574 0.7634894 1.0902523
## INCOME2ref 1.0070305 0.8005890 1.2667055
## X_BMI5CATref 1.2180792 1.0116038 1.4666976
## X_AGEG5YRref 0.9227792 0.7191888 1.1840027
## CHILDRENref 0.9347954 0.7725197 1.1311588
## SDHBILLSref 0.7720299 0.5545608 1.0747788
## HOWSAFE1ref 1.0608776 0.6425516 1.7515500
## SDHFOODref 0.8980834 0.6603664 1.2213732
## SDHMEALSref 0.8193326 0.6281909 1.0686334
## SDHMONEYref 1.1014991 0.9187023 1.3206675
## SDHSTRESref 0.3189001 0.2509487 0.4052513
## GENHLTHref 0.6900443 0.5550667 0.8578449
## PHYSHLTHref 1.4947814 1.2026453 1.8578806
## MENTHLTHref 1.4195525 1.1356382 1.7744465
## POORHLTHref 1.0914037 0.8398769 1.4182580
## SMOKDAY2ref 0.9389221 0.7381050 1.1943758
## ECIGNOWref 0.8208666 0.5499696 1.2251985
## CVDSTRK3ref 1.3142673 0.8630877 2.0013012
## CVDCRHD4ref 1.2830313 0.9260644 1.7775971
## DIABETE3ref 0.9375887 0.7324953 1.2001067
## ADDEPEV2ref 0.6503924 0.5402349 0.7830119
## HAVARTH3ref 0.8337423 0.6975725 0.9964931
## CHCCOPD1ref 0.9588584 0.7080790 1.2984558
## DEAFref 0.8188355 0.6241347 1.0742740
## BLINDref 1.0463089 0.7188811 1.5228699
## DECIDEref 0.6008459 0.4704948 0.7673109
## DIFFWALKref 0.9150568 0.7200386 1.1628947
## DIFFDRESref 0.7755836 0.5341956 1.1260479
## DIFFALONref 0.8970682 0.6564281 1.2259246
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 1.42 | 1.27 | 1.59 | SEX | 1.17 | 0.99 | 1.38 |
| MARITALref | 1.47 | 1.32 | 1.65 | MARITAL | 0.98 | 0.83 | 1.16 |
| EDUCAref | 0.84 | 0.74 | 0.96 | EDUCA | 0.82 | 0.69 | 0.99 |
| EMPLOY1ref | 1.18 | 1.05 | 1.31 | EMPLOY1 | 0.91 | 0.76 | 1.09 |
| INCOME2ref | 0.94 | 0.79 | 1.11 | INCOME2 | 1.01 | 0.80 | 1.27 |
| X_BMI5CATref | 1.23 | 1.08 | 1.40 | X_BMI5CAT | 1.22 | 1.01 | 1.47 |
| X_AGEG5YRref | 0.96 | 0.81 | 1.15 | X_AGEG5YR | 0.92 | 0.72 | 1.18 |
| CHILDRENref | 0.85 | 0.74 | 0.96 | CHILDREN | 0.93 | 0.77 | 1.13 |
| SDHBILLSref | 0.27 | 0.22 | 0.33 | SDHBILLS | 0.77 | 0.55 | 1.07 |
| HOWSAFE1ref | 0.36 | 0.26 | 0.49 | HOWSAFE1 | 1.06 | 0.64 | 1.75 |
| SDHFOODref | 0.32 | 0.27 | 0.38 | SDHFOOD | 0.90 | 0.66 | 1.22 |
| SDHMEALSref | 0.36 | 0.31 | 0.42 | SDHMEALS | 0.82 | 0.63 | 1.07 |
| SDHMONEYref | 0.54 | 0.48 | 0.60 | SDHMONEY | 1.10 | 0.92 | 1.32 |
| SDHSTRESref | 0.13 | 0.11 | 0.16 | SDHSTRES | 0.32 | 0.25 | 0.41 |
| GENHLTHref | 0.28 | 0.24 | 0.32 | GENHLTH | 0.69 | 0.56 | 0.86 |
| PHYSHLTHref | 3.78 | 3.27 | 4.36 | PHYSHLTH | 1.49 | 1.20 | 1.86 |
| MENTHLTHref | 5.01 | 4.26 | 5.89 | MENTHLTH | 1.42 | 1.14 | 1.77 |
| POORHLTHref | 3.43 | 2.85 | 4.12 | POORHLTH | 1.09 | 0.84 | 1.42 |
| SMOKDAY2ref | 0.55 | 0.47 | 0.64 | SMOKDAY2 | 0.94 | 0.74 | 1.19 |
| ECIGNOWref | 0.56 | 0.42 | 0.74 | ECIGNOW | 0.82 | 0.55 | 1.23 |
| CVDSTRK3ref | 0.61 | 0.46 | 0.81 | CVDSTRK3 | 1.31 | 0.86 | 2.00 |
| CVDCRHD4ref | 0.70 | 0.56 | 0.88 | CVDCRHD4 | 1.28 | 0.93 | 1.78 |
| DIABETE3ref | 0.70 | 0.60 | 0.83 | DIABETE3 | 0.94 | 0.73 | 1.20 |
| ADDEPEV2ref | 0.29 | 0.25 | 0.33 | ADDEPEV2 | 0.65 | 0.54 | 0.78 |
| HAVARTH3ref | 0.51 | 0.45 | 0.57 | HAVARTH3 | 0.83 | 0.70 | 1.00 |
| CHCCOPD1ref | 0.40 | 0.33 | 0.49 | CHCCOPD1 | 0.96 | 0.71 | 1.30 |
| DEAFref | 0.59 | 0.49 | 0.71 | DEAF | 0.82 | 0.62 | 1.07 |
| BLINDref | 0.46 | 0.35 | 0.59 | BLIND | 1.05 | 0.72 | 1.52 |
| DECIDEref | 0.17 | 0.15 | 0.21 | DECIDE | 0.60 | 0.47 | 0.77 |
| DIFFWALKref | 0.33 | 0.29 | 0.38 | DIFFWALK | 0.92 | 0.72 | 1.16 |
| DIFFDRESref | 0.18 | 0.14 | 0.23 | DIFFDRES | 0.78 | 0.53 | 1.13 |
| DIFFALONref | 0.20 | 0.16 | 0.24 | DIFFALON | 0.90 | 0.66 | 1.23 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot
ggplot(table1, aes(x=hv, y = OR)) +
theme(axis.text.x = element_text(angle = 90)) +
geom_bar(stat = "identity", position = "dodge")ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 90)) +
geom_abline(slope = 0, intercept = 1)ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
theme(axis.text.x = element_text(angle = 90)) +
geom_abline(slope = 0, intercept = 1, color = "red")ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))#Binomial logistic regression for each variable
or<-svyglm(SLEPTIM1~SEX, family=quasibinomial,design=svydesW)
#OR saved for each variable
a <- or_fun("SEX")
#Repeat
or <- svyglm(SLEPTIM1~ MARITAL, family = quasibinomial, design = svydesW)
b <- or_fun("MARITAL")
or <- svyglm(SLEPTIM1~ EDUCA, family = quasibinomial, design = svydesW)
c <- or_fun("EDUCA")
or <- svyglm(SLEPTIM1~ EMPLOY1, family = quasibinomial, design = svydesW)
d <- or_fun("EMPLOY1")
or <- svyglm(SLEPTIM1~ INCOME2, family = quasibinomial, design = svydesW)
e <- or_fun("INCOME2")
or <- svyglm(SLEPTIM1~ X_BMI5CAT, family = quasibinomial, design = svydesW)
f <- or_fun("X_BMI5CAT")
or <- svyglm(SLEPTIM1~ X_AGEG5YR, family = quasibinomial, design = svydesW)
h <- or_fun("X_AGEG5YR")
or <- svyglm(SLEPTIM1~ CHILDREN, family = quasibinomial, design = svydesW)
i <- or_fun("CHILDREN")
or <- svyglm(SLEPTIM1~ SDHBILLS, family = quasibinomial, design = svydesW)
j <- or_fun("SDHBILLS")
or <- svyglm(SLEPTIM1~ HOWSAFE1, family = quasibinomial, design = svydesW)
k <- or_fun("HOWSAFE1")
or <- svyglm(SLEPTIM1~ SDHFOOD, family = quasibinomial, design = svydesW)
l <- or_fun("SDHFOOD")
or <- svyglm(SLEPTIM1~ SDHMEALS, family = quasibinomial, design = svydesW)
m <- or_fun("SDHMEALS")
or <- svyglm(SLEPTIM1~ SDHMONEY, family = quasibinomial, design = svydesW)
n <- or_fun("SDHMONEY")
or <- svyglm(SLEPTIM1~ SDHSTRES, family = quasibinomial, design = svydesW)
o <- or_fun("SDHSTRES")
or <- svyglm(SLEPTIM1~ GENHLTH, family = quasibinomial, design = svydesW)
p <- or_fun("GENHLTH")
or <- svyglm(SLEPTIM1~ PHYSHLTH, family = quasibinomial, design = svydesW)
q <- or_fun("PHYSHLTH")
or <- svyglm(SLEPTIM1~ MENTHLTH, family = quasibinomial, design = svydesW)
r <- or_fun("MENTHLTH")
or <- svyglm(SLEPTIM1~ POORHLTH, family = quasibinomial, design = svydesW)
s <- or_fun("POORHLTH")
or <- svyglm(SLEPTIM1~ SMOKDAY2, family = quasibinomial, design = svydesW)
t <- or_fun("SMOKDAY2")
or <- svyglm(SLEPTIM1~ ECIGNOW, family = quasibinomial, design = svydesW)
u <- or_fun("ECIGNOW")
or <- svyglm(SLEPTIM1~ CVDSTRK3, family = quasibinomial, design = svydesW)
v <- or_fun("CVDSTRK3")
or <- svyglm(SLEPTIM1~ CVDCRHD4, family = quasibinomial, design = svydesW)
w <- or_fun("CVDCRHD4")
or <- svyglm(SLEPTIM1~ DIABETE3, family = quasibinomial, design = svydesW)
x <- or_fun("DIABETE3")
or <- svyglm(SLEPTIM1~ ADDEPEV2, family = quasibinomial, design = svydesW)
y <- or_fun("ADDEPEV2")
or <- svyglm(SLEPTIM1~ HAVARTH3, family = quasibinomial, design = svydesW)
z <- or_fun("HAVARTH3")
or <- svyglm(SLEPTIM1~ CHCCOPD1, family = quasibinomial, design = svydesW)
aa <- or_fun("CHCCOPD1")
or <- svyglm(SLEPTIM1~ DEAF, family = quasibinomial, design = svydesW)
bb <- or_fun("DEAF")
or <- svyglm(SLEPTIM1~ BLIND, family = quasibinomial, design = svydesW)
cc <- or_fun("BLIND")
or <- svyglm(SLEPTIM1~ DECIDE, family = quasibinomial, design = svydesW)
dd <- or_fun("DECIDE")
or <- svyglm(SLEPTIM1~ DIFFWALK, family = quasibinomial, design = svydesW)
ee <- or_fun("DIFFWALK")
or <- svyglm(SLEPTIM1~ DIFFDRES, family = quasibinomial, design = svydesW)
ff <- or_fun("DIFFDRES")
or <- svyglm(SLEPTIM1~ DIFFALON, family = quasibinomial, design = svydesW)
gg <- or_fun("DIFFALON")
# Combine OR into 1 table
all_or <- bind_rows(a, b, c, d, e, f, h, i, j, k, l, m,n,o,p,
q,r,s,t,u,v,w,x,y,z,aa,bb,cc,dd,ee,ff,gg)
all_or <- as.data.frame(all_or)
# Run all variables in logistic regression for adjusted OR
alr <- svyglm(SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 + INCOME2 +
X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS +
HOWSAFE1 + SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH +
PHYSHLTH + MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW +
CVDSTRK3 + CVDCRHD4 + DIABETE3 + ADDEPEV2 + HAVARTH3 +
CHCCOPD1 + DEAF + BLIND + DECIDE + DIFFWALK + DIFFDRES +
DIFFALON, family = quasibinomial, design = svydesW)
summary(alr)##
## Call:
## svyglm(formula = SLEPTIM1 ~ SEX + MARITAL + EDUCA + EMPLOY1 +
## INCOME2 + X_BMI5CAT + X_AGEG5YR + CHILDREN + SDHBILLS + HOWSAFE1 +
## SDHFOOD + SDHMEALS + SDHMONEY + SDHSTRES + GENHLTH + PHYSHLTH +
## MENTHLTH + POORHLTH + SMOKDAY2 + ECIGNOW + CVDSTRK3 + CVDCRHD4 +
## DIABETE3 + ADDEPEV2 + HAVARTH3 + CHCCOPD1 + DEAF + BLIND +
## DECIDE + DIFFWALK + DIFFDRES + DIFFALON, design = svydesW,
## family = quasibinomial)
##
## Survey design:
## subset(svydes, RACE == "White only, non-Hispanic")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.281555 0.169994 -1.656 0.097714 .
## SEXref -0.088035 0.066159 -1.331 0.183348
## MARITALref 0.257863 0.067377 3.827 0.000131 ***
## EDUCAref -0.191481 0.076332 -2.509 0.012147 *
## EMPLOY1ref -0.176538 0.072062 -2.450 0.014318 *
## INCOME2ref -0.136601 0.096812 -1.411 0.158290
## X_BMI5CATref 0.079353 0.074461 1.066 0.286602
## X_AGEG5YRref -0.281058 0.103384 -2.719 0.006573 **
## CHILDRENref 0.484119 0.077826 6.221 5.24e-10 ***
## SDHBILLSref -0.284643 0.145187 -1.961 0.049974 *
## HOWSAFE1ref 0.092733 0.188987 0.491 0.623667
## SDHFOODref 0.426491 0.144986 2.942 0.003276 **
## SDHMEALSref -0.038634 0.125376 -0.308 0.757978
## SDHMONEYref 0.388551 0.075886 5.120 3.13e-07 ***
## SDHSTRESref -0.463598 0.115635 -4.009 6.16e-05 ***
## GENHLTHref -0.361649 0.093233 -3.879 0.000106 ***
## PHYSHLTHref 0.042737 0.093390 0.458 0.647242
## MENTHLTHref 0.257628 0.093495 2.756 0.005875 **
## POORHLTHref 0.202654 0.113224 1.790 0.073522 .
## SMOKDAY2ref -0.409506 0.096944 -4.224 2.43e-05 ***
## ECIGNOWref 0.173646 0.173027 1.004 0.315619
## CVDSTRK3ref 0.135723 0.174706 0.777 0.437265
## CVDCRHD4ref -0.147531 0.138695 -1.064 0.287499
## DIABETE3ref -0.037566 0.104113 -0.361 0.718244
## ADDEPEV2ref 0.061030 0.076254 0.800 0.423538
## HAVARTH3ref -0.143975 0.075834 -1.899 0.057666 .
## CHCCOPD1ref -0.250401 0.122433 -2.045 0.040872 *
## DEAFref 0.007028 0.111291 0.063 0.949651
## BLINDref -0.254311 0.166054 -1.531 0.125692
## DECIDEref -0.316578 0.108778 -2.910 0.003622 **
## DIFFWALKref 0.139587 0.103975 1.343 0.179475
## DIFFDRESref -0.313138 0.158807 -1.972 0.048670 *
## DIFFALONref -0.233796 0.135851 -1.721 0.085300 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 1.039705)
##
## Number of Fisher Scoring iterations: 4
## 2.5 % 97.5 %
## (Intercept) -0.61473802 5.162788e-02
## SEXref -0.21770400 4.163476e-02
## MARITALref 0.12580602 3.899204e-01
## EDUCAref -0.34108972 -4.187245e-02
## EMPLOY1ref -0.31777752 -3.529871e-02
## INCOME2ref -0.32634832 5.314618e-02
## X_BMI5CATref -0.06658904 2.252942e-01
## X_AGEG5YRref -0.48368715 -7.842849e-02
## CHILDRENref 0.33158308 6.366541e-01
## SDHBILLSref -0.56920485 -8.152809e-05
## HOWSAFE1ref -0.27767547 4.631405e-01
## SDHFOODref 0.14232324 7.106595e-01
## SDHMEALSref -0.28436677 2.070979e-01
## SDHMONEYref 0.23981817 5.372845e-01
## SDHSTRESref -0.69023785 -2.369587e-01
## GENHLTHref -0.54438339 -1.789155e-01
## PHYSHLTHref -0.14030421 2.257779e-01
## MENTHLTHref 0.07438150 4.408748e-01
## POORHLTHref -0.01926094 4.245692e-01
## SMOKDAY2ref -0.59951264 -2.194989e-01
## ECIGNOWref -0.16548175 5.127730e-01
## CVDSTRK3ref -0.20669410 4.781400e-01
## CVDCRHD4ref -0.41936846 1.243066e-01
## DIABETE3ref -0.24162474 1.664921e-01
## ADDEPEV2ref -0.08842560 2.104847e-01
## HAVARTH3ref -0.29260755 4.657855e-03
## CHCCOPD1ref -0.49036415 -1.043690e-02
## DEAFref -0.21109826 2.251537e-01
## BLINDref -0.57976984 7.114857e-02
## DECIDEref -0.52977930 -1.033763e-01
## DIFFWALKref -0.06419964 3.433735e-01
## DIFFDRESref -0.62439277 -1.882309e-03
## DIFFALONref -0.50005792 3.246692e-02
## (Intercept) SEXref MARITALref EDUCAref EMPLOY1ref INCOME2ref
## 0.7546094 0.9157292 1.2941618 0.8257352 0.8381668 0.8723182
## X_BMI5CATref X_AGEG5YRref CHILDRENref SDHBILLSref HOWSAFE1ref SDHFOODref
## 1.0825860 0.7549847 1.6227441 0.7522826 1.0971682 1.5318733
## SDHMEALSref SDHMONEYref SDHSTRESref GENHLTHref PHYSHLTHref MENTHLTHref
## 0.9621023 1.4748427 0.6290162 0.6965265 1.0436632 1.2938576
## POORHLTHref SMOKDAY2ref ECIGNOWref CVDSTRK3ref CVDCRHD4ref DIABETE3ref
## 1.2246488 0.6639783 1.1896339 1.1453645 0.8628358 0.9631306
## ADDEPEV2ref HAVARTH3ref CHCCOPD1ref DEAFref BLINDref DECIDEref
## 1.0629303 0.8659095 0.7784889 1.0070525 0.7754509 0.7286383
## DIFFWALKref DIFFDRESref DIFFALONref
## 1.1497987 0.7311493 0.7915237
## AOR 2.5 % 97.5 %
## (Intercept) 0.7546094 0.5407825 1.0529838
## SEXref 0.9157292 0.8043635 1.0425136
## MARITALref 1.2941618 1.1340622 1.4768632
## EDUCAref 0.8257352 0.7109951 0.9589921
## EMPLOY1ref 0.8381668 0.7277647 0.9653170
## INCOME2ref 0.8723182 0.7215538 1.0545838
## X_BMI5CATref 1.0825860 0.9355796 1.2526912
## X_AGEG5YRref 0.7549847 0.6165060 0.9245682
## CHILDRENref 1.6227441 1.3931719 1.8901460
## SDHBILLSref 0.7522826 0.5659753 0.9999185
## HOWSAFE1ref 1.0971682 0.7575426 1.5890566
## SDHFOODref 1.5318733 1.1529493 2.0353331
## SDHMEALSref 0.9621023 0.7524906 1.2301030
## SDHMONEYref 1.4748427 1.2710180 1.7113534
## SDHSTRESref 0.6290162 0.5014568 0.7890239
## GENHLTHref 0.6965265 0.5801994 0.8361765
## PHYSHLTHref 1.0436632 0.8690938 1.2532973
## MENTHLTHref 1.2938576 1.0772177 1.5540662
## POORHLTHref 1.2246488 0.9809234 1.5289316
## SMOKDAY2ref 0.6639783 0.5490792 0.8029210
## ECIGNOWref 1.1896339 0.8474853 1.6699155
## CVDSTRK3ref 1.1453645 0.8132684 1.6130713
## CVDCRHD4ref 0.8628358 0.6574619 1.1323630
## DIABETE3ref 0.9631306 0.7853508 1.1811542
## ADDEPEV2ref 1.0629303 0.9153712 1.2342762
## HAVARTH3ref 0.8659095 0.7463150 1.0046687
## CHCCOPD1ref 0.7784889 0.6124033 0.9896174
## DEAFref 1.0070525 0.8096945 1.2525152
## BLINDref 0.7754509 0.5600272 1.0737407
## DECIDEref 0.7286383 0.5887349 0.9017875
## DIFFWALKref 1.1497987 0.9378178 1.4096951
## DIFFDRESref 0.7311493 0.5355866 0.9981195
## DIFFALONref 0.7915237 0.6064955 1.0329997
## AOR 2.5 % 97.5 %
## SEXref 0.9157292 0.8043635 1.0425136
## MARITALref 1.2941618 1.1340622 1.4768632
## EDUCAref 0.8257352 0.7109951 0.9589921
## EMPLOY1ref 0.8381668 0.7277647 0.9653170
## INCOME2ref 0.8723182 0.7215538 1.0545838
## X_BMI5CATref 1.0825860 0.9355796 1.2526912
## X_AGEG5YRref 0.7549847 0.6165060 0.9245682
## CHILDRENref 1.6227441 1.3931719 1.8901460
## SDHBILLSref 0.7522826 0.5659753 0.9999185
## HOWSAFE1ref 1.0971682 0.7575426 1.5890566
## SDHFOODref 1.5318733 1.1529493 2.0353331
## SDHMEALSref 0.9621023 0.7524906 1.2301030
## SDHMONEYref 1.4748427 1.2710180 1.7113534
## SDHSTRESref 0.6290162 0.5014568 0.7890239
## GENHLTHref 0.6965265 0.5801994 0.8361765
## PHYSHLTHref 1.0436632 0.8690938 1.2532973
## MENTHLTHref 1.2938576 1.0772177 1.5540662
## POORHLTHref 1.2246488 0.9809234 1.5289316
## SMOKDAY2ref 0.6639783 0.5490792 0.8029210
## ECIGNOWref 1.1896339 0.8474853 1.6699155
## CVDSTRK3ref 1.1453645 0.8132684 1.6130713
## CVDCRHD4ref 0.8628358 0.6574619 1.1323630
## DIABETE3ref 0.9631306 0.7853508 1.1811542
## ADDEPEV2ref 1.0629303 0.9153712 1.2342762
## HAVARTH3ref 0.8659095 0.7463150 1.0046687
## CHCCOPD1ref 0.7784889 0.6124033 0.9896174
## DEAFref 1.0070525 0.8096945 1.2525152
## BLINDref 0.7754509 0.5600272 1.0737407
## DECIDEref 0.7286383 0.5887349 0.9017875
## DIFFWALKref 1.1497987 0.9378178 1.4096951
## DIFFDRESref 0.7311493 0.5355866 0.9981195
## DIFFALONref 0.7915237 0.6064955 1.0329997
# Combine All OR with Adjusted OR
stargazer(bind_cols(all_or, adj_or),summary=F,type = "html", digits=2)| OR | X2.5.. | X97.5.. | hv | AOR | 2.5 % | 97.5 % | |
| SEXref | 0.85 | 0.78 | 0.92 | SEX | 0.92 | 0.80 | 1.04 |
| MARITALref | 1.33 | 1.22 | 1.45 | MARITAL | 1.29 | 1.13 | 1.48 |
| EDUCAref | 0.82 | 0.74 | 0.90 | EDUCA | 0.83 | 0.71 | 0.96 |
| EMPLOY1ref | 0.85 | 0.78 | 0.93 | EMPLOY1 | 0.84 | 0.73 | 0.97 |
| INCOME2ref | 0.98 | 0.86 | 1.11 | INCOME2 | 0.87 | 0.72 | 1.05 |
| X_BMI5CATref | 1.26 | 1.14 | 1.39 | X_BMI5CAT | 1.08 | 0.94 | 1.25 |
| X_AGEG5YRref | 0.87 | 0.75 | 1.00 | X_AGEG5YR | 0.75 | 0.62 | 0.92 |
| CHILDRENref | 1.37 | 1.25 | 1.50 | CHILDREN | 1.62 | 1.39 | 1.89 |
| SDHBILLSref | 0.57 | 0.46 | 0.69 | SDHBILLS | 0.75 | 0.57 | 1.00 |
| HOWSAFE1ref | 0.70 | 0.51 | 0.95 | HOWSAFE1 | 1.10 | 0.76 | 1.59 |
| SDHFOODref | 0.82 | 0.69 | 0.97 | SDHFOOD | 1.53 | 1.15 | 2.04 |
| SDHMEALSref | 0.85 | 0.73 | 0.98 | SDHMEALS | 0.96 | 0.75 | 1.23 |
| SDHMONEYref | 1.11 | 1.00 | 1.22 | SDHMONEY | 1.47 | 1.27 | 1.71 |
| SDHSTRESref | 0.44 | 0.37 | 0.53 | SDHSTRES | 0.63 | 0.50 | 0.79 |
| GENHLTHref | 0.54 | 0.47 | 0.61 | GENHLTH | 0.70 | 0.58 | 0.84 |
| PHYSHLTHref | 1.68 | 1.48 | 1.91 | PHYSHLTH | 1.04 | 0.87 | 1.25 |
| MENTHLTHref | 2.00 | 1.72 | 2.32 | MENTHLTH | 1.29 | 1.08 | 1.55 |
| POORHLTHref | 1.99 | 1.68 | 2.35 | POORHLTH | 1.22 | 0.98 | 1.53 |
| SMOKDAY2ref | 0.62 | 0.54 | 0.70 | SMOKDAY2 | 0.66 | 0.55 | 0.80 |
| ECIGNOWref | 0.80 | 0.62 | 1.03 | ECIGNOW | 1.19 | 0.85 | 1.67 |
| CVDSTRK3ref | 0.94 | 0.75 | 1.20 | CVDSTRK3 | 1.15 | 0.81 | 1.61 |
| CVDCRHD4ref | 0.89 | 0.73 | 1.07 | CVDCRHD4 | 0.86 | 0.66 | 1.13 |
| DIABETE3ref | 0.98 | 0.85 | 1.12 | DIABETE3 | 0.96 | 0.79 | 1.18 |
| ADDEPEV2ref | 0.74 | 0.66 | 0.82 | ADDEPEV2 | 1.06 | 0.92 | 1.23 |
| HAVARTH3ref | 0.86 | 0.79 | 0.95 | HAVARTH3 | 0.87 | 0.75 | 1.00 |
| CHCCOPD1ref | 0.60 | 0.50 | 0.72 | CHCCOPD1 | 0.78 | 0.61 | 0.99 |
| DEAFref | 0.93 | 0.80 | 1.09 | DEAF | 1.01 | 0.81 | 1.25 |
| BLINDref | 0.64 | 0.50 | 0.81 | BLIND | 0.78 | 0.56 | 1.07 |
| DECIDEref | 0.48 | 0.42 | 0.57 | DECIDE | 0.73 | 0.59 | 0.90 |
| DIFFWALKref | 0.75 | 0.66 | 0.85 | DIFFWALK | 1.15 | 0.94 | 1.41 |
| DIFFDRESref | 0.42 | 0.33 | 0.53 | DIFFDRES | 0.73 | 0.54 | 1.00 |
| DIFFALONref | 0.46 | 0.38 | 0.56 | DIFFALON | 0.79 | 0.61 | 1.03 |
table1 <- bind_cols(all_or, adj_or)
table1 <- table1 %>%
dplyr::select("hv", "OR", "X2.5..", "X97.5..", "AOR", "2.5 %", "97.5 %")
table1$orll <- table1$X2.5..
table1$orul <- table1$X97.5..
table1$aorll <- table1$"2.5 %"
table1$aorul <- table1$"97.5 %"
table1 <- table1 %>% dplyr::select(hv, OR, orll, orul, AOR, aorll, aorul)
#Plot OR
ggplot(table1, aes(x=hv, y = OR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=orll, ymax=orul),
width = .2, position = position_dodge(.9))#Plot AOR
ggplot(table1, aes(x=hv, y = AOR)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=aorll, ymax=aorul),
width = .2, position = position_dodge(.9))ORtable <- table1 %>% dplyr::select(hv, OR, orll, orul)
ORtable$type <- c("OR")
ORtable$stat <- ORtable$OR
ORtable$ll <- ORtable$orll
ORtable$ul <- ORtable$orul
ORtable <- ORtable %>% dplyr::select(hv, stat, type, ll, ul)
AORtable <- table1 %>% dplyr::select(hv, AOR, aorll, aorul)
AORtable$type <- c("AOR")
AORtable$stat <- AORtable$AOR
AORtable$ll <- AORtable$aorll
AORtable$ul <- AORtable$aorul
AORtable <- AORtable %>% dplyr::select(hv, stat, type, ll, ul)
table2 <- rbind(ORtable, AORtable)
figureoraor <- ggplot(table2, aes(x=hv, y = stat, fill = type)) +
geom_bar(stat = "identity", position = "dodge") +
geom_abline(slope = 0, intercept = 1, color = "red", size = 2) +
theme(axis.text.x = element_text(angle = 90)) +
geom_errorbar(aes(ymin=ll, ymax=ul),
width = .2, position = position_dodge(.9))
#OR compared to Adjusted OR
print(figureoraor + ggtitle("OR & AOR"))
Social Determinants of Health