\[ D \frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{dC}{dr} \right) + M(r) = 0 \]
\[ C(r) = c_1 - \frac{A_0}{6D} \left( R^2 - r^2 \right) \]
\[ C(r) = c_1 - \frac{A_0}{6D} \left( R^2 - r^2 \right) \]
\[ C(r) = c_1 - \frac{A_0}{6D} \left( R^2 - r^2 \right) \]
\[ r_q = \sqrt{ \left( c_1 - c_q \right) \frac{6D}{A_0} } \]
\[ r_q = \sqrt{ \left( c_1 - c_q \right) \frac{6D}{A_0} }, \text{ where } c_1 > c_q \]
!
\[ \frac{D}{r^2} \frac{d}{dr} \left( r^2 \frac{dC}{dr} \right) + M(r) = 0 \]
\[ \begin{aligned} \frac{D}{r^2} \frac{d}{dr} \left( r^2 \frac{dC_q}{dr} \right) = 0, \,\, 0 < r < R_q(t) \end{aligned} \]
\[ \frac{D}{r^2} \frac{d}{dr} \left( r^2 \frac{dC_p}{dr} \right) - A_0 = 0, \,\, R_q(t) < r < R(t) \]
\[ C_{p}(R) = c_1 \]
\[ C_p(R_q) = C_q(R_q) = c_q \]
\[ J_q(R_q) = J_p(R_q) \]
\[ J_{q}(0) = 0 \Rightarrow C'_{q}(0) = 0 \]