1 Moderators:

I relied on the coding in the Google Sheet for all variables. The coding of the moderators is described below.

1.1 EGMs are completed for the following moderators:

  • int_type: Mindfulness Intervention Type (1= Mindfulness, 2= Langer Mindfulness, 3= LKM, 4= Compassion, 5= ACT, 6= MBSR, 7= Hybrid, 8= “meditators” unspecified)

  • duration (1= < 1 hour, 2= < 1 week of training, 3= multi-week)

  • in_out_grp: Type of target group: 1 = ingroup (e.g., internalized oppression) 2= Outgroup (e.g., prejudice)

  • target_identity (1=race/ethnicity, 2= gender, 3= social class/the poor, 4= age, 5= body image/ weight, 6= physical/ mental disability/ addiction, 7= multicultural, 8= sex orientation, 9= religion, 10= other)

  • Country/race: (1=US White, 2= US diverse or unspecified, 3= UK White, 4= UK diverse or unspecified, 5= Other Europe, 6= Middle Eastern, 7= Asia/India, 8= Australia/NZ, 9= Multinational, 10= Canada

1.2 EGMs pending for the following moderators:

1.2.1 Categorial variables: Need help coding these

These need to be re-coded to correspond with the categories in Doris’s EGM prototype, as per below:

  • Sample population: 1 = General population (students); 2 = Helping professionals (teachers/counsellors/medical providers)

  • Mindfulness measures: 1=FFMQ, 2=Langer Mindfulness Scale, 3=MAAS, 4=Toronto Mindfulness Scale, 5=Freiburg Mindfulness Inventory, 6=KIMS, 7=Other

1.2.2 Continous variables: Need to calculate these

Need to calculate means and SDs for these variables across all studies for each of the outcomes, separately for intervention studies and correlational effects.

Gender: Percent female in the sample

Age of the sample

2 EGM of interventions effects

library(tidyverse)
d <- read_csv("Mindfulness and Prejudice_180520_for analysis.xlsx - Mindfulness and Prejudice_08042.csv")

d$sample_country <- d$`REC (1=US White, 2= US diverse or unspecified, 3= UK White, 4= UK diverse or unspecified, 5= Other Europe, 6= Middle Eastern, 7= Asia/India, 8= Australia/NZ, 9= Multinational, 10= Canada`
d$int_type <- as.numeric(d$int_type)

selected <- d %>% 
  select(`(-I) Implicit`:`(+O) Physical Helping`) 
categories <- d %>% 
  select(int_type, duration, in_out_grp, target_identity, sample_country) 

2.1 Number of studies

studies <- list()
for (i in names(categories)){
  for (var in names(selected)) {
    d %>% 
      filter(.data[[var]]==1 & .data$study_design==2) %>% 
      count(.data[[i]], .data$cluster) %>%
      group_by(.data[[i]]) %>% 
      tally() -> studies[[i]][[var]]
  }
}
boom <- list()
for (i in names(studies)){
  studies[[i]] %>% 
    reduce(full_join, by = i) %>% 
    arrange(.data[[i]]) %>% 
    rename_at(vars(names(.[-1])), ~ names(selected)) -> boom[[i]]
}
boom
$int_type

$duration

$in_out_grp

$target_identity

$sample_country
NA

2.2 Number of effect sizes

effectsizes <- list()
for (i in names(categories)){
  for (var in names(selected)) {
    d %>% 
      filter(.data[[var]]==1 & .data$study_design==2) %>% 
      count(.data[[i]]) -> effectsizes[[i]][[var]]
  } 
}
boom <- list()
for (i in names(effectsizes)){
  effectsizes[[i]] %>% 
    reduce(full_join, by = i) %>% 
    arrange(.data[[i]]) %>% 
    rename_at(vars(names(.[-1])), ~ names(selected)) -> boom[[i]]
}
boom
$int_type

$duration

$in_out_grp

$target_identity

$sample_country
NA

3 EGMs of correlations

Note: Some of the correlational effects are from intervention studies.

3.1 Number of studies


studies <- list()
for (i in names(categories)){
  for (var in names(selected)) {
    d %>% 
      filter(.data[[var]]==1 & .data$study_design==0) %>% 
      count(.data[[i]], .data$cluster) %>%
      group_by(.data[[i]]) %>% 
      tally() -> studies[[i]][[var]]
  }
}
boom <- list()
for (i in names(studies)){
  studies[[i]] %>% 
    reduce(full_join, by = i) %>% 
    arrange(.data[[i]]) %>% 
    rename_at(vars(names(.[-1])), ~ names(selected)) -> boom[[i]]
}
boom
$int_type

$duration

$in_out_grp

$target_identity

$sample_country
NA

3.2 Number of effect sizes

effectsizes <- list()
for (i in names(categories)){
  for (var in names(selected)) {
    d %>% 
      filter(.data[[var]]==1 & .data$study_design==0) %>% 
      count(.data[[i]]) -> effectsizes[[i]][[var]]
  } 
}
boom <- list()
for (i in names(effectsizes)){
  effectsizes[[i]] %>% 
    reduce(full_join, by = i) %>% 
    arrange(.data[[i]]) %>% 
    rename_at(vars(names(.[-1])), ~ names(selected)) -> boom[[i]]
}
boom
$int_type

$duration

$in_out_grp

$target_identity

$sample_country
NA
LS0tCnRpdGxlOiAiTWluZGZ1bG5lc3MgYW5kIEJpYXM6IEV2aWRlbmNlIGFuZCBHYXAgTWFwcyIKYXV0aG9yOiAiQmFsamluZGVyIEsuIFNhaGRyYSIKZGF0ZTogIk9jdG9iZXIgLSBOb3ZlbWJlciwgMjAyMCIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdGhlbWU6IHNwYWNlbGFiCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKICAgIG51bWJlcl9zZWN0aW9uczogeWVzCiAgICB0b2M6IHllcwotLS0KCiMgTW9kZXJhdG9yczoKCkkgcmVsaWVkIG9uIHRoZSBjb2RpbmcgaW4gdGhlIEdvb2dsZSBTaGVldCBmb3IgYWxsIHZhcmlhYmxlcy4gVGhlIGNvZGluZyBvZiB0aGUgbW9kZXJhdG9ycyBpcyBkZXNjcmliZWQgYmVsb3cuCgojIyBFR01zIGFyZSBjb21wbGV0ZWQgZm9yIHRoZSBmb2xsb3dpbmcgbW9kZXJhdG9yczoKCi0gaW50X3R5cGU6IE1pbmRmdWxuZXNzIEludGVydmVudGlvbiBUeXBlICgxPSBNaW5kZnVsbmVzcywgMj0gTGFuZ2VyIE1pbmRmdWxuZXNzLCAzPSBMS00sIDQ9IENvbXBhc3Npb24sIDU9IEFDVCwgNj0gTUJTUiwgNz0gSHlicmlkLCA4PSAibWVkaXRhdG9ycyIgdW5zcGVjaWZpZWQpCgotIGR1cmF0aW9uICgxPSA8IDEgaG91ciwgMj0gPCAxIHdlZWsgb2YgdHJhaW5pbmcsIDM9IG11bHRpLXdlZWspCgotIGluX291dF9ncnA6IFR5cGUgb2YgdGFyZ2V0IGdyb3VwOiAxID0gaW5ncm91cCAoZS5nLiwgaW50ZXJuYWxpemVkIG9wcHJlc3Npb24pIDI9IE91dGdyb3VwIChlLmcuLCBwcmVqdWRpY2UpCgotIHRhcmdldF9pZGVudGl0eSAoMT1yYWNlL2V0aG5pY2l0eSwgMj0gZ2VuZGVyLCAzPSBzb2NpYWwgY2xhc3MvdGhlIHBvb3IsIDQ9IGFnZSwgNT0gYm9keSBpbWFnZS8gd2VpZ2h0LCA2PSBwaHlzaWNhbC8gbWVudGFsIGRpc2FiaWxpdHkvIGFkZGljdGlvbiwgNz0gbXVsdGljdWx0dXJhbCwgOD0gc2V4IG9yaWVudGF0aW9uLCA5PSByZWxpZ2lvbiwgMTA9IG90aGVyKQoKLSBDb3VudHJ5L3JhY2U6ICgxPVVTIFdoaXRlLCAyPSBVUyBkaXZlcnNlIG9yIHVuc3BlY2lmaWVkLCAzPSBVSyBXaGl0ZSwgND0gVUsgZGl2ZXJzZSBvciB1bnNwZWNpZmllZCwgNT0gT3RoZXIgRXVyb3BlLCA2PSBNaWRkbGUgRWFzdGVybiwgNz0gQXNpYS9JbmRpYSwgOD0gQXVzdHJhbGlhL05aLCA5PSBNdWx0aW5hdGlvbmFsLCAxMD0gQ2FuYWRhCgojIyBFR01zIHBlbmRpbmcgZm9yIHRoZSBmb2xsb3dpbmcgbW9kZXJhdG9yczoKCiMjIyBDYXRlZ29yaWFsIHZhcmlhYmxlczogTmVlZCBoZWxwIGNvZGluZyB0aGVzZQoKVGhlc2UgbmVlZCB0byBiZSByZS1jb2RlZCB0byBjb3JyZXNwb25kIHdpdGggdGhlIGNhdGVnb3JpZXMgaW4gRG9yaXMncyBFR00gcHJvdG90eXBlLCBhcyBwZXIgYmVsb3c6CgotIFNhbXBsZSBwb3B1bGF0aW9uOiAxID0gR2VuZXJhbCBwb3B1bGF0aW9uIChzdHVkZW50cyk7IDIgPSBIZWxwaW5nIHByb2Zlc3Npb25hbHMgKHRlYWNoZXJzL2NvdW5zZWxsb3JzL21lZGljYWwgcHJvdmlkZXJzKQoKLSBNaW5kZnVsbmVzcyBtZWFzdXJlczogMT1GRk1RLCAyPUxhbmdlciBNaW5kZnVsbmVzcyBTY2FsZSwgMz1NQUFTLCA0PVRvcm9udG8gTWluZGZ1bG5lc3MgU2NhbGUsIDU9RnJlaWJ1cmcgTWluZGZ1bG5lc3MgSW52ZW50b3J5LCA2PUtJTVMsIDc9T3RoZXIKCiMjIyBDb250aW5vdXMgdmFyaWFibGVzOiBOZWVkIHRvIGNhbGN1bGF0ZSB0aGVzZQoKTmVlZCB0byBjYWxjdWxhdGUgbWVhbnMgYW5kIFNEcyBmb3IgdGhlc2UgdmFyaWFibGVzIGFjcm9zcyBhbGwgc3R1ZGllcyBmb3IgZWFjaCBvZiB0aGUgb3V0Y29tZXMsIHNlcGFyYXRlbHkgZm9yIGludGVydmVudGlvbiBzdHVkaWVzIGFuZCBjb3JyZWxhdGlvbmFsIGVmZmVjdHMuCgpHZW5kZXI6IFBlcmNlbnQgZmVtYWxlIGluIHRoZSBzYW1wbGUKCkFnZSBvZiB0aGUgc2FtcGxlCgoKIyBFR00gb2YgaW50ZXJ2ZW50aW9ucyBlZmZlY3RzCgoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmQgPC0gcmVhZF9jc3YoIk1pbmRmdWxuZXNzIGFuZCBQcmVqdWRpY2VfMTgwNTIwX2ZvciBhbmFseXNpcy54bHN4IC0gTWluZGZ1bG5lc3MgYW5kIFByZWp1ZGljZV8wODA0Mi5jc3YiKQoKZCRzYW1wbGVfY291bnRyeSA8LSBkJGBSRUMgKDE9VVMgV2hpdGUsIDI9IFVTIGRpdmVyc2Ugb3IgdW5zcGVjaWZpZWQsIDM9IFVLIFdoaXRlLCA0PSBVSyBkaXZlcnNlIG9yIHVuc3BlY2lmaWVkLCA1PSBPdGhlciBFdXJvcGUsIDY9IE1pZGRsZSBFYXN0ZXJuLCA3PSBBc2lhL0luZGlhLCA4PSBBdXN0cmFsaWEvTlosIDk9IE11bHRpbmF0aW9uYWwsIDEwPSBDYW5hZGFgCmQkaW50X3R5cGUgPC0gYXMubnVtZXJpYyhkJGludF90eXBlKQoKc2VsZWN0ZWQgPC0gZCAlPiUgCiAgc2VsZWN0KGAoLUkpIEltcGxpY2l0YDpgKCtPKSBQaHlzaWNhbCBIZWxwaW5nYCkgCmNhdGVnb3JpZXMgPC0gZCAlPiUgCiAgc2VsZWN0KGludF90eXBlLCBkdXJhdGlvbiwgaW5fb3V0X2dycCwgdGFyZ2V0X2lkZW50aXR5LCBzYW1wbGVfY291bnRyeSkgCgpgYGAKCiMjIE51bWJlciBvZiBzdHVkaWVzCgpgYGB7cn0Kc3R1ZGllcyA8LSBsaXN0KCkKZm9yIChpIGluIG5hbWVzKGNhdGVnb3JpZXMpKXsKICBmb3IgKHZhciBpbiBuYW1lcyhzZWxlY3RlZCkpIHsKICAgIGQgJT4lIAogICAgICBmaWx0ZXIoLmRhdGFbW3Zhcl1dPT0xICYgLmRhdGEkc3R1ZHlfZGVzaWduPT0yKSAlPiUgCiAgICAgIGNvdW50KC5kYXRhW1tpXV0sIC5kYXRhJGNsdXN0ZXIpICU+JQogICAgICBncm91cF9ieSguZGF0YVtbaV1dKSAlPiUgCiAgICAgIHRhbGx5KCkgLT4gc3R1ZGllc1tbaV1dW1t2YXJdXQogIH0KfQpib29tIDwtIGxpc3QoKQpmb3IgKGkgaW4gbmFtZXMoc3R1ZGllcykpewogIHN0dWRpZXNbW2ldXSAlPiUgCiAgICByZWR1Y2UoZnVsbF9qb2luLCBieSA9IGkpICU+JSAKICAgIGFycmFuZ2UoLmRhdGFbW2ldXSkgJT4lIAogICAgcmVuYW1lX2F0KHZhcnMobmFtZXMoLlstMV0pKSwgfiBuYW1lcyhzZWxlY3RlZCkpIC0+IGJvb21bW2ldXQp9CmJvb20KYGBgCgoKIyMgTnVtYmVyIG9mIGVmZmVjdCBzaXplcwoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KZWZmZWN0c2l6ZXMgPC0gbGlzdCgpCmZvciAoaSBpbiBuYW1lcyhjYXRlZ29yaWVzKSl7CiAgZm9yICh2YXIgaW4gbmFtZXMoc2VsZWN0ZWQpKSB7CiAgICBkICU+JSAKICAgICAgZmlsdGVyKC5kYXRhW1t2YXJdXT09MSAmIC5kYXRhJHN0dWR5X2Rlc2lnbj09MikgJT4lIAogICAgICBjb3VudCguZGF0YVtbaV1dKSAtPiBlZmZlY3RzaXplc1tbaV1dW1t2YXJdXQogIH0gCn0KYm9vbSA8LSBsaXN0KCkKZm9yIChpIGluIG5hbWVzKGVmZmVjdHNpemVzKSl7CiAgZWZmZWN0c2l6ZXNbW2ldXSAlPiUgCiAgICByZWR1Y2UoZnVsbF9qb2luLCBieSA9IGkpICU+JSAKICAgIGFycmFuZ2UoLmRhdGFbW2ldXSkgJT4lIAogICAgcmVuYW1lX2F0KHZhcnMobmFtZXMoLlstMV0pKSwgfiBuYW1lcyhzZWxlY3RlZCkpIC0+IGJvb21bW2ldXQp9CmJvb20KYGBgCgojIEVHTXMgb2YgY29ycmVsYXRpb25zCgpOb3RlOiBTb21lIG9mIHRoZSBjb3JyZWxhdGlvbmFsIGVmZmVjdHMgYXJlIGZyb20gaW50ZXJ2ZW50aW9uIHN0dWRpZXMuCgojIyBOdW1iZXIgb2Ygc3R1ZGllcwoKYGBge3J9CgpzdHVkaWVzIDwtIGxpc3QoKQpmb3IgKGkgaW4gbmFtZXMoY2F0ZWdvcmllcykpewogIGZvciAodmFyIGluIG5hbWVzKHNlbGVjdGVkKSkgewogICAgZCAlPiUgCiAgICAgIGZpbHRlciguZGF0YVtbdmFyXV09PTEgJiAuZGF0YSRzdHVkeV9kZXNpZ249PTApICU+JSAKICAgICAgY291bnQoLmRhdGFbW2ldXSwgLmRhdGEkY2x1c3RlcikgJT4lCiAgICAgIGdyb3VwX2J5KC5kYXRhW1tpXV0pICU+JSAKICAgICAgdGFsbHkoKSAtPiBzdHVkaWVzW1tpXV1bW3Zhcl1dCiAgfQp9CmJvb20gPC0gbGlzdCgpCmZvciAoaSBpbiBuYW1lcyhzdHVkaWVzKSl7CiAgc3R1ZGllc1tbaV1dICU+JSAKICAgIHJlZHVjZShmdWxsX2pvaW4sIGJ5ID0gaSkgJT4lIAogICAgYXJyYW5nZSguZGF0YVtbaV1dKSAlPiUgCiAgICByZW5hbWVfYXQodmFycyhuYW1lcyguWy0xXSkpLCB+IG5hbWVzKHNlbGVjdGVkKSkgLT4gYm9vbVtbaV1dCn0KYm9vbQpgYGAKCiMjIE51bWJlciBvZiBlZmZlY3Qgc2l6ZXMKCmBgYHtyfQplZmZlY3RzaXplcyA8LSBsaXN0KCkKZm9yIChpIGluIG5hbWVzKGNhdGVnb3JpZXMpKXsKICBmb3IgKHZhciBpbiBuYW1lcyhzZWxlY3RlZCkpIHsKICAgIGQgJT4lIAogICAgICBmaWx0ZXIoLmRhdGFbW3Zhcl1dPT0xICYgLmRhdGEkc3R1ZHlfZGVzaWduPT0wKSAlPiUgCiAgICAgIGNvdW50KC5kYXRhW1tpXV0pIC0+IGVmZmVjdHNpemVzW1tpXV1bW3Zhcl1dCiAgfSAKfQpib29tIDwtIGxpc3QoKQpmb3IgKGkgaW4gbmFtZXMoZWZmZWN0c2l6ZXMpKXsKICBlZmZlY3RzaXplc1tbaV1dICU+JSAKICAgIHJlZHVjZShmdWxsX2pvaW4sIGJ5ID0gaSkgJT4lIAogICAgYXJyYW5nZSguZGF0YVtbaV1dKSAlPiUgCiAgICByZW5hbWVfYXQodmFycyhuYW1lcyguWy0xXSkpLCB+IG5hbWVzKHNlbGVjdGVkKSkgLT4gYm9vbVtbaV1dCn0KYm9vbQpgYGAKCg==