Newton Raphson Root Calculating Function
ftn4 <- function(x) {
# returns function value and its derivative at x
fx <- (x^2-9)
dfx <- 2*x
return(c(fx, dfx))
}
Executing It to Show the Number of Iterations Needed
newtonraphson(ftn4,2)
## At iteration 1 value of x is: 3.25
## At iteration 2 value of x is: 3.009615
## At iteration 3 value of x is: 3.000015
## At iteration 4 value of x is: 3
## Algorithm converged
## [1] 3
Showing Graphically After the First Iteration
Initial Value 2
newtonraphson_show(ftn4,2,xmax = 3.5)

## last x value 3.25 continue (y or n)?
## [1] 3.25
Showing Graphically after 2nd Iteration
Value becomes 3.25
newtonraphson_show(ftn4,3.25,xmax=3.5)

## last x value 3.009615 continue (y or n)?
## [1] 3.009615
Showing Graphically after 3rd Iteration
Value becomes 3.009615 and the triangle becomes too small as
the value comes closer to 3.00
newtonraphson_show(ftn4,3.009615,xmax=3.5)

## last x value 3.000015 continue (y or n)?
## [1] 3.000015
Showing Graphically after last Iteration
Final value becomes 3
newtonraphson_show(ftn4,3,xmax = 3.5)

## last x value 3 continue (y or n)?
## [1] 3