## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ `Annual Precipitation`,
## data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) `Annual Precipitation`
## -0.2506439 0.0001119
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$`Annual Precipitation` and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.7153, df = 8, p-value = 0.02644
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1115429 0.9206999
## sample estimates:
## cor
## 0.6925324
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Wettest, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Wettest
## -0.1566348 0.0004093
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Wettest and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.6573, df = 8, p-value = 0.02893
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.09683174 0.91840326
## sample estimates:
## cor
## 0.6847126
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Driest, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Driest
## 0.080678 -0.001899
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Driest and HumEnviroVardf$HumanRevGroupModLambda
## t = -0.77002, df = 8, p-value = 0.4634
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7656726 0.4396603
## sample estimates:
## cor
## -0.2626821
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Seasonal, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Seasonal
## -0.377742 0.005503
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Seasonal and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.8179, df = 8, p-value = 0.02257
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1370696 0.9245562
## sample estimates:
## cor
## 0.7057848
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMean, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMean
## 8.830e-03 4.998e-10
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMean and HumEnviroVardf$HumanRevGroupModLambda
## t = 0.48873, df = 8, p-value = 0.6381
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5145169 0.7224447
## sample estimates:
## cor
## 0.1702684
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMedian, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMedian
## 3.252e-02 1.302e-10
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMedian and HumEnviroVardf$HumanRevGroupModLambda
## t = 0.14665, df = 8, p-value = 0.887
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5973202 0.6598924
## sample estimates:
## cor
## 0.05177992
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMax
## 1.704e-01 -1.568e-09
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMax and HumEnviroVardf$HumanRevGroupModLambda
## t = -0.89192, df = 8, p-value = 0.3985
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7822465 0.4057060
## sample estimates:
## cor
## -0.3007431
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMin
## 2.429e-02 7.388e-10
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMin and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.4801, df = 8, p-value = 0.1771
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2344095 0.8462362
## sample estimates:
## cor
## 0.4636466
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMean, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMean
## 2.048356 -0.006658
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMean and HumEnviroVardf$HumanRevGroupModLambda
## t = -1.3502, df = 8, p-value = 0.2139
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8341621 0.2728379
## sample estimates:
## cor
## -0.4307925
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMedian, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMedian
## 2.281191 -0.007428
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMedian and HumEnviroVardf$HumanRevGroupModLambda
## t = -1.3274, df = 8, p-value = 0.221
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8319346 0.2795614
## sample estimates:
## cor
## -0.424846
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMax
## 1.598491 -0.005134
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMax and HumEnviroVardf$HumanRevGroupModLambda
## t = -1.1069, df = 8, p-value = 0.3005
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8085333 0.3441696
## sample estimates:
## cor
## -0.3644275
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMin
## 0.416869 -0.001257
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMin and HumEnviroVardf$HumanRevGroupModLambda
## t = -0.5994, df = 8, p-value = 0.5655
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7403092 0.4857100
## sample estimates:
## cor
## -0.2073172
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ EvapoMean, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMean
## 0.0377418 0.0000148
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$EvapoMean and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.2866, df = 8, p-value = 0.2342
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2915870 0.8278591
## sample estimates:
## cor
## 0.4140562
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ EvapoMedian, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMedian
## 3.776e-02 1.479e-05
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$EvapoMedian and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.2865, df = 8, p-value = 0.2342
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2916150 0.8278495
## sample estimates:
## cor
## 0.4140309
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ EvapoMax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMax
## 3.742e-02 1.492e-05
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$EvapoMax and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.2849, df = 8, p-value = 0.2348
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2920890 0.8276864
## sample estimates:
## cor
## 0.4136015
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ EvapoMin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMin
## 3.804e-02 1.467e-05
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$EvapoMin and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.2845, df = 8, p-value = 0.2349
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2922143 0.8276432
## sample estimates:
## cor
## 0.4134879
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Tmin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Tmin
## -1.355446 0.005939
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Tmin and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.9818, df = 8, p-value = 0.08282
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.08736077 0.88404989
## sample estimates:
## cor
## 0.5738288
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Tmax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Tmax
## 7.15394 -0.02281
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Tmax and HumEnviroVardf$HumanRevGroupModLambda
## t = -2.443, df = 8, p-value = 0.04038
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.90912458 -0.04083903
## sample estimates:
## cor
## -0.6536576
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Precip, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Precip
## -0.250644 0.001343
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Precip and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.7153, df = 8, p-value = 0.02644
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1115429 0.9206999
## sample estimates:
## cor
## 0.6925324
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ `Annual Precipitation`, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) `Annual Precipitation`
## 9.833117 -0.002961
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$`Annual Precipitation` and DogEnviroVardf$DogRevGroupModLambda
## t = -0.5582, df = 3, p-value = 0.6157
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9357644 0.7890681
## sample estimates:
## cor
## -0.3067433
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ Wettest, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Wettest
## 7.20081 -0.01054
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Wettest and DogEnviroVardf$DogRevGroupModLambda
## t = -0.53303, df = 3, p-value = 0.631
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.934018 0.794243
## sample estimates:
## cor
## -0.294131
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ Driest, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Driest
## 0.46544 0.07856
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Driest and DogEnviroVardf$DogRevGroupModLambda
## t = 0.34043, df = 3, p-value = 0.756
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8307644 0.9187905
## sample estimates:
## cor
## 0.1928594
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ Seasonal, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Seasonal
## 9.8227 -0.1018
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Seasonal and DogEnviroVardf$DogRevGroupModLambda
## t = -0.38484, df = 3, p-value = 0.726
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9226117 0.8228259
## sample estimates:
## cor
## -0.2168978
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMean, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMean
## 3.796e+00 -2.609e-08
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMean and DogEnviroVardf$DogRevGroupModLambda
## t = -0.14312, df = 3, p-value = 0.8953
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8992794 0.8625877
## sample estimates:
## cor
## -0.08234898
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMedian, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMedian
## 2.316e+00 -4.147e-09
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMedian and DogEnviroVardf$DogRevGroupModLambda
## t = -0.02571, df = 3, p-value = 0.9811
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8855130 0.8789337
## sample estimates:
## cor
## -0.01484223
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMax
## 9.406e+00 -9.031e-08
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMax and DogEnviroVardf$DogRevGroupModLambda
## t = -0.40848, df = 3, p-value = 0.7103
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9245673 0.8184816
## sample estimates:
## cor
## -0.22954
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMin
## 5.492e+00 -1.330e-07
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMin and DogEnviroVardf$DogRevGroupModLambda
## t = -4.3964, df = 3, p-value = 0.02181
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9954997 -0.2686792
## sample estimates:
## cor
## -0.9303979
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMean, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMean
## -323.490 1.081
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMean and DogEnviroVardf$DogRevGroupModLambda
## t = 1.0278, df = 3, p-value = 0.3797
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6765700 0.9602451
## sample estimates:
## cor
## 0.5103053
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMedian, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMedian
## -381.250 1.272
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMedian and DogEnviroVardf$DogRevGroupModLambda
## t = 1.4053, df = 3, p-value = 0.2546
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5678775 0.9720068
## sample estimates:
## cor
## 0.6300622
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMax
## -273.0922 0.9075
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMax and DogEnviroVardf$DogRevGroupModLambda
## t = 0.51959, df = 3, p-value = 0.6393
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7969681 0.9330639
## sample estimates:
## cor
## 0.2873335
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMin
## 10.15893 -0.02732
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMin and DogEnviroVardf$DogRevGroupModLambda
## t = -0.082579, df = 3, p-value = 0.9394
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8923944 0.8712501
## sample estimates:
## cor
## -0.04762277
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ EvapoMean, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMean
## 2.054e+00 -9.044e-05
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$EvapoMean and DogEnviroVardf$DogRevGroupModLambda
## t = -0.077868, df = 3, p-value = 0.9428
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8918398 0.8719031
## sample estimates:
## cor
## -0.04491173
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ EvapoMedian, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMedian
## 2.054e+00 -8.991e-05
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$EvapoMedian and DogEnviroVardf$DogRevGroupModLambda
## t = -0.077419, df = 3, p-value = 0.9432
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8917868 0.8719652
## sample estimates:
## cor
## -0.04465308
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ EvapoMax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMax
## 2.057e+00 -9.389e-05
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$EvapoMax and DogEnviroVardf$DogRevGroupModLambda
## t = -0.080218, df = 3, p-value = 0.9411
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8921168 0.8715777
## sample estimates:
## cor
## -0.04626417
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ EvapoMin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) EvapoMin
## 2.052e+00 -8.803e-05
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$EvapoMin and DogEnviroVardf$DogRevGroupModLambda
## t = -0.076371, df = 3, p-value = 0.9439
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.891663 0.872110
## sample estimates:
## cor
## -0.04404989
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ Tmin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Tmin
## 39.3715 -0.1586
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Tmin and DogEnviroVardf$DogRevGroupModLambda
## t = -0.46955, df = 3, p-value = 0.6707
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9293748 0.8068811
## sample estimates:
## cor
## -0.2616492
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ Tmax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Tmax
## -293.076 0.947
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Tmax and DogEnviroVardf$DogRevGroupModLambda
## t = 0.79845, df = 3, p-value = 0.483
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7351558 0.9500167
## sample estimates:
## cor
## 0.4186454
## `geom_smooth()` using formula 'y ~ x'
##
## Call:
## lm(formula = DogRevGroupModLambda ~ Precip, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Precip
## 9.83312 -0.03553
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Precip and DogEnviroVardf$DogRevGroupModLambda
## t = -0.5582, df = 3, p-value = 0.6157
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9357644 0.7890681
## sample estimates:
## cor
## -0.3067433
## Annual Precipitation Wettest Driest Seasonal Tmin Tmax
## Annual Precipitation 1.00 1.00 -0.93 0.97 0.98 -0.94
## Wettest 1.00 1.00 -0.94 0.97 0.98 -0.93
## Driest -0.93 -0.94 1.00 -0.99 -0.98 0.76
## Seasonal 0.97 0.97 -0.99 1.00 1.00 -0.83
## Tmin 0.98 0.98 -0.98 1.00 1.00 -0.87
## Tmax -0.94 -0.93 0.76 -0.83 -0.87 1.00
## Precip 1.00 1.00 -0.93 0.97 0.98 -0.94
## NDVIMean -0.85 -0.85 0.77 -0.82 -0.81 0.74
## NDVIMedian -0.71 -0.70 0.54 -0.61 -0.60 0.66
## NDVIMax -0.69 -0.69 0.52 -0.60 -0.60 0.67
## NDVIMin -0.06 -0.07 0.17 -0.15 -0.11 -0.09
## LSTMean -0.44 -0.41 0.10 -0.21 -0.25 0.61
## LSTMedian -0.62 -0.61 0.39 -0.47 -0.49 0.69
## LSTMax -0.61 -0.60 0.44 -0.50 -0.50 0.58
## LSTMin 0.19 0.21 -0.53 0.42 0.37 0.10
## EvapoMean 0.80 0.80 -0.78 0.80 0.78 -0.63
## EvapoMedian 0.80 0.80 -0.78 0.80 0.78 -0.63
## EvapoMax 0.80 0.80 -0.78 0.80 0.78 -0.63
## EvapoMin 0.80 0.80 -0.78 0.80 0.77 -0.63
## DogRevGroupModLambda -0.31 -0.29 0.19 -0.22 -0.26 0.42
## Precip NDVIMean NDVIMedian NDVIMax NDVIMin LSTMean
## Annual Precipitation 1.00 -0.85 -0.71 -0.69 -0.06 -0.44
## Wettest 1.00 -0.85 -0.70 -0.69 -0.07 -0.41
## Driest -0.93 0.77 0.54 0.52 0.17 0.10
## Seasonal 0.97 -0.82 -0.61 -0.60 -0.15 -0.21
## Tmin 0.98 -0.81 -0.60 -0.60 -0.11 -0.25
## Tmax -0.94 0.74 0.66 0.67 -0.09 0.61
## Precip 1.00 -0.85 -0.71 -0.69 -0.06 -0.44
## NDVIMean -0.85 1.00 0.94 0.93 0.38 0.46
## NDVIMedian -0.71 0.94 1.00 0.94 0.23 0.68
## NDVIMax -0.69 0.93 0.94 1.00 0.46 0.56
## NDVIMin -0.06 0.38 0.23 0.46 1.00 -0.43
## LSTMean -0.44 0.46 0.68 0.56 -0.43 1.00
## LSTMedian -0.62 0.59 0.75 0.55 -0.47 0.92
## LSTMax -0.61 0.78 0.92 0.75 -0.13 0.81
## LSTMin 0.19 -0.03 0.23 0.31 -0.08 0.63
## EvapoMean 0.80 -0.95 -0.91 -0.80 -0.23 -0.43
## EvapoMedian 0.80 -0.95 -0.91 -0.80 -0.23 -0.43
## EvapoMax 0.80 -0.95 -0.90 -0.80 -0.23 -0.43
## EvapoMin 0.80 -0.95 -0.91 -0.80 -0.23 -0.43
## DogRevGroupModLambda -0.31 -0.08 -0.01 -0.23 -0.93 0.51
## LSTMedian LSTMax LSTMin EvapoMean EvapoMedian EvapoMax
## Annual Precipitation -0.62 -0.61 0.19 0.80 0.80 0.80
## Wettest -0.61 -0.60 0.21 0.80 0.80 0.80
## Driest 0.39 0.44 -0.53 -0.78 -0.78 -0.78
## Seasonal -0.47 -0.50 0.42 0.80 0.80 0.80
## Tmin -0.49 -0.50 0.37 0.78 0.78 0.78
## Tmax 0.69 0.58 0.10 -0.63 -0.63 -0.63
## Precip -0.62 -0.61 0.19 0.80 0.80 0.80
## NDVIMean 0.59 0.78 -0.03 -0.95 -0.95 -0.95
## NDVIMedian 0.75 0.92 0.23 -0.91 -0.91 -0.90
## NDVIMax 0.55 0.75 0.31 -0.80 -0.80 -0.80
## NDVIMin -0.47 -0.13 -0.08 -0.23 -0.23 -0.23
## LSTMean 0.92 0.81 0.63 -0.43 -0.43 -0.43
## LSTMedian 1.00 0.91 0.27 -0.66 -0.66 -0.66
## LSTMax 0.91 1.00 0.21 -0.85 -0.85 -0.85
## LSTMin 0.27 0.21 1.00 0.21 0.21 0.21
## EvapoMean -0.66 -0.85 0.21 1.00 1.00 1.00
## EvapoMedian -0.66 -0.85 0.21 1.00 1.00 1.00
## EvapoMax -0.66 -0.85 0.21 1.00 1.00 1.00
## EvapoMin -0.66 -0.85 0.20 1.00 1.00 1.00
## DogRevGroupModLambda 0.63 0.29 -0.05 -0.04 -0.04 -0.05
## EvapoMin DogRevGroupModLambda
## Annual Precipitation 0.80 -0.31
## Wettest 0.80 -0.29
## Driest -0.78 0.19
## Seasonal 0.80 -0.22
## Tmin 0.77 -0.26
## Tmax -0.63 0.42
## Precip 0.80 -0.31
## NDVIMean -0.95 -0.08
## NDVIMedian -0.91 -0.01
## NDVIMax -0.80 -0.23
## NDVIMin -0.23 -0.93
## LSTMean -0.43 0.51
## LSTMedian -0.66 0.63
## LSTMax -0.85 0.29
## LSTMin 0.20 -0.05
## EvapoMean 1.00 -0.04
## EvapoMedian 1.00 -0.04
## EvapoMax 1.00 -0.05
## EvapoMin 1.00 -0.04
## DogRevGroupModLambda -0.04 1.00
##
## n= 5
##
##
## P
## Annual Precipitation Wettest Driest Seasonal Tmin Tmax
## Annual Precipitation 0.0000 0.0235 0.0076 0.0036 0.0175
## Wettest 0.0000 0.0195 0.0057 0.0024 0.0208
## Driest 0.0235 0.0195 0.0008 0.0030 0.1392
## Seasonal 0.0076 0.0057 0.0008 0.0002 0.0837
## Tmin 0.0036 0.0024 0.0030 0.0002 0.0569
## Tmax 0.0175 0.0208 0.1392 0.0837 0.0569
## Precip 0.0000 0.0000 0.0235 0.0076 0.0036 0.0175
## NDVIMean 0.0662 0.0665 0.1246 0.0904 0.0992 0.1499
## NDVIMedian 0.1829 0.1901 0.3438 0.2747 0.2805 0.2285
## NDVIMax 0.1938 0.1989 0.3667 0.2888 0.2886 0.2126
## NDVIMin 0.9300 0.9114 0.7864 0.8084 0.8621 0.8802
## LSTMean 0.4640 0.4902 0.8679 0.7353 0.6799 0.2705
## LSTMedian 0.2608 0.2781 0.5118 0.4265 0.3970 0.1987
## LSTMax 0.2726 0.2852 0.4608 0.3910 0.3924 0.3020
## LSTMin 0.7615 0.7353 0.3559 0.4765 0.5350 0.8730
## EvapoMean 0.1045 0.1040 0.1189 0.1027 0.1229 0.2550
## EvapoMedian 0.1041 0.1036 0.1188 0.1025 0.1226 0.2541
## EvapoMax 0.1033 0.1027 0.1171 0.1011 0.1212 0.2536
## EvapoMin 0.1050 0.1046 0.1201 0.1036 0.1239 0.2551
## DogRevGroupModLambda 0.6157 0.6310 0.7560 0.7260 0.6707 0.4830
## Precip NDVIMean NDVIMedian NDVIMax NDVIMin LSTMean
## Annual Precipitation 0.0000 0.0662 0.1829 0.1938 0.9300 0.4640
## Wettest 0.0000 0.0665 0.1901 0.1989 0.9114 0.4902
## Driest 0.0235 0.1246 0.3438 0.3667 0.7864 0.8679
## Seasonal 0.0076 0.0904 0.2747 0.2888 0.8084 0.7353
## Tmin 0.0036 0.0992 0.2805 0.2886 0.8621 0.6799
## Tmax 0.0175 0.1499 0.2285 0.2126 0.8802 0.2705
## Precip 0.0662 0.1829 0.1938 0.9300 0.4640
## NDVIMean 0.0662 0.0195 0.0212 0.5286 0.4375
## NDVIMedian 0.1829 0.0195 0.0168 0.7108 0.2061
## NDVIMax 0.1938 0.0212 0.0168 0.4392 0.3268
## NDVIMin 0.9300 0.5286 0.7108 0.4392 0.4663
## LSTMean 0.4640 0.4375 0.2061 0.3268 0.4663
## LSTMedian 0.2608 0.2904 0.1466 0.3386 0.4197 0.0290
## LSTMax 0.2726 0.1203 0.0259 0.1484 0.8375 0.0992
## LSTMin 0.7615 0.9669 0.7140 0.6098 0.8977 0.2557
## EvapoMean 0.1045 0.0150 0.0345 0.1040 0.7132 0.4683
## EvapoMedian 0.1041 0.0148 0.0343 0.1033 0.7127 0.4676
## EvapoMax 0.1033 0.0150 0.0351 0.1047 0.7139 0.4697
## EvapoMin 0.1050 0.0149 0.0339 0.1029 0.7127 0.4663
## DogRevGroupModLambda 0.6157 0.8953 0.9811 0.7103 0.0218 0.3797
## LSTMedian LSTMax LSTMin EvapoMean EvapoMedian EvapoMax
## Annual Precipitation 0.2608 0.2726 0.7615 0.1045 0.1041 0.1033
## Wettest 0.2781 0.2852 0.7353 0.1040 0.1036 0.1027
## Driest 0.5118 0.4608 0.3559 0.1189 0.1188 0.1171
## Seasonal 0.4265 0.3910 0.4765 0.1027 0.1025 0.1011
## Tmin 0.3970 0.3924 0.5350 0.1229 0.1226 0.1212
## Tmax 0.1987 0.3020 0.8730 0.2550 0.2541 0.2536
## Precip 0.2608 0.2726 0.7615 0.1045 0.1041 0.1033
## NDVIMean 0.2904 0.1203 0.9669 0.0150 0.0148 0.0150
## NDVIMedian 0.1466 0.0259 0.7140 0.0345 0.0343 0.0351
## NDVIMax 0.3386 0.1484 0.6098 0.1040 0.1033 0.1047
## NDVIMin 0.4197 0.8375 0.8977 0.7132 0.7127 0.7139
## LSTMean 0.0290 0.0992 0.2557 0.4683 0.4676 0.4697
## LSTMedian 0.0307 0.6654 0.2252 0.2250 0.2256
## LSTMax 0.0307 0.7369 0.0697 0.0696 0.0704
## LSTMin 0.6654 0.7369 0.7383 0.7397 0.7354
## EvapoMean 0.2252 0.0697 0.7383 0.0000 0.0000
## EvapoMedian 0.2250 0.0696 0.7397 0.0000 0.0000
## EvapoMax 0.2256 0.0704 0.7354 0.0000 0.0000
## EvapoMin 0.2244 0.0689 0.7418 0.0000 0.0000 0.0000
## DogRevGroupModLambda 0.2546 0.6393 0.9394 0.9428 0.9432 0.9411
## EvapoMin DogRevGroupModLambda
## Annual Precipitation 0.1050 0.6157
## Wettest 0.1046 0.6310
## Driest 0.1201 0.7560
## Seasonal 0.1036 0.7260
## Tmin 0.1239 0.6707
## Tmax 0.2551 0.4830
## Precip 0.1050 0.6157
## NDVIMean 0.0149 0.8953
## NDVIMedian 0.0339 0.9811
## NDVIMax 0.1029 0.7103
## NDVIMin 0.7127 0.0218
## LSTMean 0.4663 0.3797
## LSTMedian 0.2244 0.2546
## LSTMax 0.0689 0.6393
## LSTMin 0.7418 0.9394
## EvapoMean 0.0000 0.9428
## EvapoMedian 0.0000 0.9432
## EvapoMax 0.0000 0.9411
## EvapoMin 0.9439
## DogRevGroupModLambda 0.9439