Setup the Seurat Object

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(Seurat)
library(patchwork)

pbmc.data <- Read10X(data.dir = "/Users/dongzeyuan/Desktop/filtered_gene_bc_matrices/hg19/")
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)
## Warning: Feature names cannot have underscores ('_'), replacing with dashes
## ('-')
pbmc
## An object of class Seurat 
## 13714 features across 2700 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)

Standard pre-processing workflow

# The [[ operator can add columns to object metadata. This is a great place to stash QC stats
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)

# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.
plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2

pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

Normalizing the data

pbmc <- NormalizeData(pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
pbmc <- NormalizeData(pbmc)

Identification of highly variable features (feature selection)

pbmc <- FindVariableFeatures(pbmc, selection.method = "vst", nfeatures = 2000)

# Identify the 10 most highly variable genes
top10 <- head(VariableFeatures(pbmc), 10)

# plot variable features with and without labels
plot1 <- VariableFeaturePlot(pbmc)
plot2 <- LabelPoints(plot = plot1, points = top10, repel = TRUE)
## When using repel, set xnudge and ynudge to 0 for optimal results
plot1
## Warning: Transformation introduced infinite values in continuous x-axis

plot2
## Warning: Transformation introduced infinite values in continuous x-axis

Scaling the data

all.genes <- rownames(pbmc)
pbmc <- ScaleData(pbmc, features = all.genes)
## Centering and scaling data matrix

Perform linear dimensional reduction

pbmc <- RunPCA(pbmc, features = VariableFeatures(object = pbmc))
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL, FTH1, LYZ, FCN1, S100A9, TYMP 
##     FCER1G, CFD, LGALS1, S100A8, CTSS, LGALS2, SERPINA1, IFITM3, SPI1, CFP 
##     PSAP, IFI30, SAT1, COTL1, S100A11, NPC2, GRN, LGALS3, GSTP1, PYCARD 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2, B2M, ACAP1, CD27, STK17A, CTSW 
##     CD247, GIMAP5, AQP3, CCL5, SELL, TRAF3IP3, GZMA, MAL, CST7, ITM2A 
##     MYC, GIMAP7, HOPX, BEX2, LDLRAP1, GZMK, ETS1, ZAP70, TNFAIP8, RIC3 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1, HLA-DRA, LINC00926, CD79B, HLA-DRB1, CD74 
##     HLA-DMA, HLA-DPB1, HLA-DQA2, CD37, HLA-DRB5, HLA-DMB, HLA-DPA1, FCRLA, HVCN1, LTB 
##     BLNK, P2RX5, IGLL5, IRF8, SWAP70, ARHGAP24, FCGR2B, SMIM14, PPP1R14A, C16orf74 
## Negative:  NKG7, PRF1, CST7, GZMB, GZMA, FGFBP2, CTSW, GNLY, B2M, SPON2 
##     CCL4, GZMH, FCGR3A, CCL5, CD247, XCL2, CLIC3, AKR1C3, SRGN, HOPX 
##     TTC38, APMAP, CTSC, S100A4, IGFBP7, ANXA1, ID2, IL32, XCL1, RHOC 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1, HLA-DPA1, CD74, MS4A1, HLA-DRB1, HLA-DRA 
##     HLA-DRB5, HLA-DQA2, TCL1A, LINC00926, HLA-DMB, HLA-DMA, CD37, HVCN1, FCRLA, IRF8 
##     PLAC8, BLNK, MALAT1, SMIM14, PLD4, LAT2, IGLL5, P2RX5, SWAP70, FCGR2B 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11, NRGN, GP9, RGS18, TUBB1, CLU 
##     HIST1H2AC, AP001189.4, ITGA2B, CD9, TMEM40, PTCRA, CA2, ACRBP, MMD, TREML1 
##     NGFRAP1, F13A1, SEPT5, RUFY1, TSC22D1, MPP1, CMTM5, RP11-367G6.3, MYL9, GP1BA 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1, CD74, HLA-DPB1, HIST1H2AC, PF4, TCL1A 
##     SDPR, HLA-DPA1, HLA-DRB1, HLA-DQA2, HLA-DRA, PPBP, LINC00926, GNG11, HLA-DRB5, SPARC 
##     GP9, AP001189.4, CA2, PTCRA, CD9, NRGN, RGS18, GZMB, CLU, TUBB1 
## Negative:  VIM, IL7R, S100A6, IL32, S100A8, S100A4, GIMAP7, S100A10, S100A9, MAL 
##     AQP3, CD2, CD14, FYB, LGALS2, GIMAP4, ANXA1, CD27, FCN1, RBP7 
##     LYZ, S100A11, GIMAP5, MS4A6A, S100A12, FOLR3, TRABD2A, AIF1, IL8, IFI6 
## PC_ 5 
## Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY, CCL4, CST7, PRF1, GZMA, SPON2 
##     GZMH, S100A9, LGALS2, CCL3, CTSW, XCL2, CD14, CLIC3, S100A12, CCL5 
##     RBP7, MS4A6A, GSTP1, FOLR3, IGFBP7, TYROBP, TTC38, AKR1C3, XCL1, HOPX 
## Negative:  LTB, IL7R, CKB, VIM, MS4A7, AQP3, CYTIP, RP11-290F20.3, SIGLEC10, HMOX1 
##     PTGES3, LILRB2, MAL, CD27, HN1, CD2, GDI2, ANXA5, CORO1B, TUBA1B 
##     FAM110A, ATP1A1, TRADD, PPA1, CCDC109B, ABRACL, CTD-2006K23.1, WARS, VMO1, FYB
# Examine and visualize PCA results a few different ways
print(pbmc[["pca"]], dims = 1:5, nfeatures = 5)
## PC_ 1 
## Positive:  CST3, TYROBP, LST1, AIF1, FTL 
## Negative:  MALAT1, LTB, IL32, IL7R, CD2 
## PC_ 2 
## Positive:  CD79A, MS4A1, TCL1A, HLA-DQA1, HLA-DQB1 
## Negative:  NKG7, PRF1, CST7, GZMB, GZMA 
## PC_ 3 
## Positive:  HLA-DQA1, CD79A, CD79B, HLA-DQB1, HLA-DPB1 
## Negative:  PPBP, PF4, SDPR, SPARC, GNG11 
## PC_ 4 
## Positive:  HLA-DQA1, CD79B, CD79A, MS4A1, HLA-DQB1 
## Negative:  VIM, IL7R, S100A6, IL32, S100A8 
## PC_ 5 
## Positive:  GZMB, NKG7, S100A8, FGFBP2, GNLY 
## Negative:  LTB, IL7R, CKB, VIM, MS4A7
VizDimLoadings(pbmc, dims = 1:2, reduction = "pca")

DimPlot(pbmc, reduction = "pca")

DimHeatmap(pbmc, dims = 1, cells = 500, balanced = TRUE)

DimHeatmap(pbmc, dims = 1:15, cells = 500, balanced = TRUE)

Determine the ‘dimensionality’ of the dataset

# NOTE: This process can take a long time for big datasets, comment out for expediency. More
# approximate techniques such as those implemented in ElbowPlot() can be used to reduce
# computation time
pbmc <- JackStraw(pbmc, num.replicate = 100)
pbmc <- ScoreJackStraw(pbmc, dims = 1:20)
JackStrawPlot(pbmc, dims = 1:15)
## Warning: Removed 23496 rows containing missing values (geom_point).

ElbowPlot(pbmc)

Cluster the cells

pbmc <- FindNeighbors(pbmc, dims = 1:10)
## Computing nearest neighbor graph
## Computing SNN
pbmc <- FindClusters(pbmc, resolution = 0.5)
## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 2638
## Number of edges: 96033
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8720
## Number of communities: 9
## Elapsed time: 0 seconds
# Look at cluster IDs of the first 5 cells
head(Idents(pbmc), 5)
## AAACATACAACCAC-1 AAACATTGAGCTAC-1 AAACATTGATCAGC-1 AAACCGTGCTTCCG-1 
##                1                3                1                2 
## AAACCGTGTATGCG-1 
##                6 
## Levels: 0 1 2 3 4 5 6 7 8

Run non-linear dimensional reduction (UMAP/tSNE)

# If you haven't installed UMAP, you can do so via reticulate::py_install(packages =
# 'umap-learn')
pbmc <- RunUMAP(pbmc, dims = 1:10)
## Warning: The default method for RunUMAP has changed from calling Python UMAP via reticulate to the R-native UWOT using the cosine metric
## To use Python UMAP via reticulate, set umap.method to 'umap-learn' and metric to 'correlation'
## This message will be shown once per session
## 18:23:38 UMAP embedding parameters a = 0.9922 b = 1.112
## 18:23:38 Read 2638 rows and found 10 numeric columns
## 18:23:38 Using Annoy for neighbor search, n_neighbors = 30
## 18:23:38 Building Annoy index with metric = cosine, n_trees = 50
## 0%   10   20   30   40   50   60   70   80   90   100%
## [----|----|----|----|----|----|----|----|----|----|
## **************************************************|
## 18:23:39 Writing NN index file to temp file /var/folders/47/81p1q_c16nd4ff187vl8wlf00000gn/T//RtmpSqkpUv/file87807a8b86b0
## 18:23:39 Searching Annoy index using 1 thread, search_k = 3000
## 18:23:40 Annoy recall = 100%
## 18:23:40 Commencing smooth kNN distance calibration using 1 thread
## 18:23:40 Initializing from normalized Laplacian + noise
## 18:23:41 Commencing optimization for 500 epochs, with 105132 positive edges
## 18:23:45 Optimization finished
# note that you can set `label = TRUE` or use the LabelClusters function to help label
# individual clusters
DimPlot(pbmc, reduction = "umap")

saveRDS(pbmc, file = "/Users/dongzeyuan/Desktop/filtered_gene_bc_matrices/pbmc_tutorial.rds")

Finding differentially expressed features (cluster biomarkers)

# find all markers of cluster 1
cluster1.markers <- FindMarkers(pbmc, ident.1 = 1, min.pct = 0.25)
## For a more efficient implementation of the Wilcoxon Rank Sum Test,
## (default method for FindMarkers) please install the limma package
## --------------------------------------------
## install.packages('BiocManager')
## BiocManager::install('limma')
## --------------------------------------------
## After installation of limma, Seurat will automatically use the more 
## efficient implementation (no further action necessary).
## This message will be shown once per session
head(cluster1.markers, n = 5)
##             p_val avg_logFC pct.1 pct.2    p_val_adj
## IL32 1.894810e-92 0.8373872 0.948 0.464 2.598542e-88
## LTB  7.953303e-89 0.8921170 0.981 0.642 1.090716e-84
## CD3D 1.655937e-70 0.6436286 0.919 0.431 2.270951e-66
## IL7R 3.688893e-68 0.8147082 0.747 0.325 5.058947e-64
## LDHB 2.292819e-67 0.6253110 0.950 0.613 3.144372e-63
# find all markers distinguishing cluster 5 from clusters 0 and 3
cluster5.markers <- FindMarkers(pbmc, ident.1 = 5, ident.2 = c(0, 3), min.pct = 0.25)
head(cluster5.markers, n = 5)
##                       p_val avg_logFC pct.1 pct.2     p_val_adj
## FCGR3A        7.583625e-209  2.963144 0.975 0.037 1.040018e-204
## IFITM3        2.500844e-199  2.698187 0.975 0.046 3.429657e-195
## CFD           1.763722e-195  2.362381 0.938 0.037 2.418768e-191
## CD68          4.612171e-192  2.087366 0.926 0.036 6.325132e-188
## RP11-290F20.3 1.846215e-188  1.886288 0.840 0.016 2.531900e-184
# find markers for every cluster compared to all remaining cells, report only the positive ones
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)
## Calculating cluster 0
## Calculating cluster 1
## Calculating cluster 2
## Calculating cluster 3
## Calculating cluster 4
## Calculating cluster 5
## Calculating cluster 6
## Calculating cluster 7
## Calculating cluster 8
pbmc.markers %>% group_by(cluster) %>% top_n(n = 2, wt = avg_logFC)
## Registered S3 method overwritten by 'cli':
##   method     from    
##   print.boxx spatstat
## # A tibble: 18 x 7
## # Groups:   cluster [9]
##        p_val avg_logFC pct.1 pct.2 p_val_adj cluster gene    
##        <dbl>     <dbl> <dbl> <dbl>     <dbl> <fct>   <chr>   
##  1 1.96e-107     0.730 0.901 0.594 2.69e-103 0       LDHB    
##  2 1.61e- 82     0.922 0.436 0.11  2.20e- 78 0       CCR7    
##  3 7.95e- 89     0.892 0.981 0.642 1.09e- 84 1       LTB     
##  4 1.85e- 60     0.859 0.422 0.11  2.54e- 56 1       AQP3    
##  5 0.            3.86  0.996 0.215 0.        2       S100A9  
##  6 0.            3.80  0.975 0.121 0.        2       S100A8  
##  7 0.            2.99  0.936 0.041 0.        3       CD79A   
##  8 9.48e-271     2.49  0.622 0.022 1.30e-266 3       TCL1A   
##  9 2.96e-189     2.12  0.985 0.24  4.06e-185 4       CCL5    
## 10 2.57e-158     2.05  0.587 0.059 3.52e-154 4       GZMK    
## 11 3.51e-184     2.30  0.975 0.134 4.82e-180 5       FCGR3A  
## 12 2.03e-125     2.14  1     0.315 2.78e-121 5       LST1    
## 13 7.95e-269     3.35  0.961 0.068 1.09e-264 6       GZMB    
## 14 3.13e-191     3.69  0.961 0.131 4.30e-187 6       GNLY    
## 15 1.48e-220     2.68  0.812 0.011 2.03e-216 7       FCER1A  
## 16 1.67e- 21     1.99  1     0.513 2.28e- 17 7       HLA-DPB1
## 17 7.73e-200     5.02  1     0.01  1.06e-195 8       PF4     
## 18 3.68e-110     5.94  1     0.024 5.05e-106 8       PPBP
cluster1.markers <- FindMarkers(pbmc, ident.1 = 0, logfc.threshold = 0.25, test.use = "roc", only.pos = TRUE)
VlnPlot(pbmc, features = c("MS4A1", "CD79A"))

# you can plot raw counts as well
VlnPlot(pbmc, features = c("NKG7", "PF4"), slot = "counts", log = TRUE)

FeaturePlot(pbmc, features = c("MS4A1", "GNLY", "CD3E", "CD14", "FCER1A", "FCGR3A", "LYZ", "PPBP", 
    "CD8A"))

top10 <- pbmc.markers %>% group_by(cluster) %>% top_n(n = 10, wt = avg_logFC)
DoHeatmap(pbmc, features = top10$gene) + NoLegend()

Assigning cell type identity to clusters

new.cluster.ids <- c("Naive CD4 T", "Memory CD4 T", "CD14+ Mono", "B", "CD8 T", "FCGR3A+ Mono", 
    "NK", "DC", "Platelet")
names(new.cluster.ids) <- levels(pbmc)
pbmc <- RenameIdents(pbmc, new.cluster.ids)
DimPlot(pbmc, reduction = "umap", label = TRUE, pt.size = 0.5) + NoLegend()

saveRDS(pbmc, file = "/Users/dongzeyuan/Desktop/filtered_gene_bc_matrices/pbmc3k_final.rds")