Determinar la ecuación de regresión lineal mútiple y predecir valores
Se muestra cómo utilizar la función de regresión lineal múltiple y con ello se determinan las ecuaciones de regesión lineal múltple para distintos datos de varios ejercicios.
En la mayoría de los problemas de investigación en los que se aplica el análisis de regresión se necesita más de una variable independiente para el modelo de regresión. La complejidad de la mayoría de mecanismos científicos es tal que, con el fin de predecir una respuesta importante, se requiere un modelo de regresión múltiple. Cuando un modelo es lineal en los coeficientes se denomina modelo de regresión lineal múltiple.
Para el caso de k variables independientes, el modelo que da x1,x2,…,xk, la media de y|x1,x2,…,xk es el modelo de regresión lineal múltiple. (Walpole et al., 2012)
Muchos problemas de de investigación y de la industria, requieren la estimación de las relaciones existentes entre el patrón de variabilidad de una variable aleatoria y los valores de una o más variables aleatorias. (Urrutia Mosquera, 2011)
Al generar un modelo de regresión linel múltiple es importante identificar los estadísticos de R2, que se denomina coeficiente de determinación y es una medida de la proporción de la variabilidad explicada por el modelo ajustado. De igual forma, el valor de R2 ajustado o coeficiente de determinación ajustado, es una variación de R2 que proporciona un ajuste para los grados de libertad (Walpole et al., 2012). R Ajustado está diseñado para proporcionar un estadístico que castigue un modelo sobreajustado, de manera que se puede esperar que favorezca al modelo.(Walpole et al., 2012)
Las librerías y configuración de números no científicos
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(knitr)
library(readr)
library(ggplot2)
library(patchwork) # PAra varias gráficos en el mismo renglón
## Warning: package 'patchwork' was built under R version 4.0.3
options(scipen = 999) # Notación NO CENTÍFICA
Los ejercicios son tomados de libros y artículos de regresión.
Se sometió a prueba un grupo de camiones ligeros con motores que utilizan diesel como combustible para saber si la humedad, la temperatura del aire y la presión barométrica influyen en la cantidad de óxido nitroso que emiten (en ppm). Las emisiones se midieron en distintos momentos y en diversas condiciones experimentales. (Walpole et al., 2012)
1.1. Los datos
humedad <- c(72.4, 41.6, 34.3, 35.1, 10.7, 12.9, 8.3, 20.1, 72.2, 24.0, 23.2, 47.4, 31.5, 10.6, 11.2, 73.3, 75.4, 96.6, 107.4, 54.9)
temperatura <- c(76.3, 70.3, 77.1, 68.0, 79.0, 67.4, 66.8, 76.9, 77.7, 67.7, 76.8, 86.6, 76.9, 86.3, 86.0, 76.3, 77.9,
78.7, 86.8, 70.9)
presion <- c(29.18, 29.35, 29.24, 29.27, 29.78, 29.39, 29.69, 29.48, 29.09, 29.60, 29.38, 29.35, 29.63, 29.56, 29.48, 29.40, 29.28, 29.29, 29.03, 29.37)
oxido.nitroso <- c(0.90, 0.91, 0.96, 0.89, 1.00, 1.10, 1.15, 1.03, 0.77, 1.07, 1.07, 0.94, 1.10, 1.10, 1.10, 0.91, 0.87, 0.78, 0.82, 0.95)
datos <- data.frame(oxido.nitroso, humedad, temperatura, presion)
kable(datos, caption = "Factores ambientales que influyen en la formación de óxido nitroso en motores disel en camiones")
| oxido.nitroso | humedad | temperatura | presion |
|---|---|---|---|
| 0.90 | 72.4 | 76.3 | 29.18 |
| 0.91 | 41.6 | 70.3 | 29.35 |
| 0.96 | 34.3 | 77.1 | 29.24 |
| 0.89 | 35.1 | 68.0 | 29.27 |
| 1.00 | 10.7 | 79.0 | 29.78 |
| 1.10 | 12.9 | 67.4 | 29.39 |
| 1.15 | 8.3 | 66.8 | 29.69 |
| 1.03 | 20.1 | 76.9 | 29.48 |
| 0.77 | 72.2 | 77.7 | 29.09 |
| 1.07 | 24.0 | 67.7 | 29.60 |
| 1.07 | 23.2 | 76.8 | 29.38 |
| 0.94 | 47.4 | 86.6 | 29.35 |
| 1.10 | 31.5 | 76.9 | 29.63 |
| 1.10 | 10.6 | 86.3 | 29.56 |
| 1.10 | 11.2 | 86.0 | 29.48 |
| 0.91 | 73.3 | 76.3 | 29.40 |
| 0.87 | 75.4 | 77.9 | 29.28 |
| 0.78 | 96.6 | 78.7 | 29.29 |
| 0.82 | 107.4 | 86.8 | 29.03 |
| 0.95 | 54.9 | 70.9 | 29.37 |
g1 <- ggplot(data = datos, mapping = aes(x = humedad, y = oxido.nitroso)) +
geom_point(color = "forestgreen", size = 2) +
labs(title = 'oxido.nitroso ~ humedad', x = 'humedad') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g2 <- ggplot(data = datos, mapping = aes(x = temperatura, y = oxido.nitroso)) +
geom_point(color = "orange", size = 2) +
labs(title = 'oxido.nitroso ~ temperatura', x = 'tempertura') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g3 <- ggplot(data = datos, mapping = aes(x = presion, y = oxido.nitroso)) +
geom_point(color = "darkblue", size = 2) +
labs(title = 'oxido.nitroso ~ presion', x = 'presion') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g1 + g2 + g3
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
1.3. Desarrollo del modelo - Generando el modelo de regresión lineal múltiple, el óxido nitroso y en función ~ de las tres variables x1,x2,x3
modelo <- lm(formula = oxido.nitroso ~ ., data = datos)
summary(modelo)
##
## Call:
## lm(formula = oxido.nitroso ~ ., data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.11799 -0.02526 0.01345 0.04103 0.06523
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.5077781 3.0048641 -1.167 0.26017
## humedad -0.0026250 0.0006549 -4.008 0.00101 **
## temperatura 0.0007989 0.0020451 0.391 0.70121
## presion 0.1541550 0.1013675 1.521 0.14784
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05617 on 16 degrees of freedom
## Multiple R-squared: 0.8005, Adjusted R-squared: 0.763
## F-statistic: 21.4 on 3 and 16 DF, p-value: 0.000007609
b0 = modelo$coefficients[1]
b1 = modelo$coefficients[2]
b2 = modelo$coefficients[3]
b3 = modelo$coefficients[4]
El resumen del modelo con la función summary(modelo) identifica que las variables temperatura y humedad no son estadísticamente significativas dado que presentan valores por encima de 0.5 en Pr(>|t|), sólo la humedad es estadísticamente significativa.
b0= -3.5077781
b1= -0.002625
b2= 0.0007989
b3= 0.154155
1.4. Le ecuación del modelo \(yˆ=β0+β1(x1)+β3(x2)+β4(x3)\)
1.5. La predicción Para 50% de humedad, una temperatura de 76˚F y una presión barométrica de 29.30, ¿cuánto es la cantidad estimada de óxido nitroso emitido?
\(yˆ=−3.507778−0.002625(50.0)+0.000799(76.0)+0.1541553(29.30)=0.9384ppm.\)
nuevo.dato <- data.frame(humedad = 50, temperatura = 76, presion =29.30)
prediccion <- predict(modelo, newdata = nuevo.dato)
paste("La cantidad estimada de óxido nitroso emitido es:", round(prediccion, 2))
## [1] "La cantidad estimada de óxido nitroso emitido es: 0.94"
1.6. Interpretación del caso - Los valores de Multiple R-squared: 0.8005, Adjusted R-squared: 0.763 representan lo siguiente:
El valor del R2 (Multiple R-squared) es de 0.8005, traduciéndose en que el modelo permite explicar el 80% de la variabilidad del óxido nitroso. El valor del R2 –ajustado es de 0.763, valor que expresa que hay buen ajuste entre los datos reales y los datos modelados de predicción.
La varible que más significado estadístico tiene con relación al óxido nitroso es humedad: humedad **.
Caso 2. Consumo de energía eléctrica Se cree que la energía eléctrica que una planta química consume cada mes se relaciona con:
y <- c(240, 236, 290, 274, 301, 316, 300, 296, 267, 276, 288, 261)
x1 <- c(25, 31, 45, 60, 65, 72, 80, 84, 75, 60, 50, 38)
x2 <- c(24, 21, 24, 25, 25, 26, 25, 25, 24, 25, 25, 23)
x3 <- c(91, 90, 88, 87, 91, 94, 87, 86, 88, 91, 90, 89)
x4 <- c(100, 95, 110, 88, 94, 99, 97, 96, 110, 105, 100, 98)
datos <- data.frame(y, x1, x2, x3, x4)
kable(datos, caption = "Aspectos que se relacionan con el consumo de energía eléctrica en una plata química")
| y | x1 | x2 | x3 | x4 |
|---|---|---|---|---|
| 240 | 25 | 24 | 91 | 100 |
| 236 | 31 | 21 | 90 | 95 |
| 290 | 45 | 24 | 88 | 110 |
| 274 | 60 | 25 | 87 | 88 |
| 301 | 65 | 25 | 91 | 94 |
| 316 | 72 | 26 | 94 | 99 |
| 300 | 80 | 25 | 87 | 97 |
| 296 | 84 | 25 | 86 | 96 |
| 267 | 75 | 24 | 88 | 110 |
| 276 | 60 | 25 | 91 | 105 |
| 288 | 50 | 25 | 90 | 100 |
| 261 | 38 | 23 | 89 | 98 |
g1 <- ggplot(data = datos, mapping = aes(x = x1, y = y)) +
geom_point(color = "orange", size = 2) +
labs(title = 'consumo ~ tempertura', x = 'temperatura') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g2 <- ggplot(data = datos, mapping = aes(x = x2, y = y)) +
geom_point(color = "forestgreen", size = 2) +
labs(title = 'consumo ~ dias de mes', x = 'dias de mes') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g3 <- ggplot(data = datos, mapping = aes(x = x3, y = y)) +
geom_point(color = "purple", size = 2) +
labs(title = 'consumo ~ purezas del producto', x = 'purezas del producto') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g4 <- ggplot(data = datos, mapping = aes(x = x4, y = y)) +
geom_point(color = "red", size = 2) +
labs(title = 'consumo ~ produccion toneladas', x = 'produccion toneldas') +
geom_smooth(method = "lm", se = FALSE, color = "black") +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
g1 + g2 + g3 + g4
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
2.3. Desarrollo del modelo - Generando el modelo de regresión lineal múltiple, el óxido nitroso y en función ~ de las tres variables x1,x2,x3
modelo <- lm(formula = y ~ ., data = datos)
summary(modelo)
##
## Call:
## lm(formula = y ~ ., data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.758 -9.952 3.350 6.627 23.311
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -102.71324 207.85885 -0.494 0.636
## x1 0.60537 0.36890 1.641 0.145
## x2 8.92364 5.30052 1.684 0.136
## x3 1.43746 2.39162 0.601 0.567
## x4 0.01361 0.73382 0.019 0.986
##
## Residual standard error: 15.58 on 7 degrees of freedom
## Multiple R-squared: 0.7447, Adjusted R-squared: 0.5989
## F-statistic: 5.106 on 4 and 7 DF, p-value: 0.0303
b0 = modelo$coefficients[1]
b1 = modelo$coefficients[2]
b2 = modelo$coefficients[3]
b3 = modelo$coefficients[4]
b4 = modelo$coefficients[5]
El resumen del modelo con la función summary(modelo) identifica que ninguna de las variables x1,x2…x4 son estadísticamente significativas dado que presentan valores por encima de 0.5 en Pr(>|t|).
b0= -102.7132364
b1= 0.6053705
b2= 8.9236442
b3= 1.4374567
b4= 0.0136093
2.4. Le ecuación del modelo \(yˆ=β0+β1(x1)+β3(x2)+β4(x3)+β4(x3)\)
2.5. La predicción Para un mes en que \(x1=75˚F, x2=24 días, x3=90 , x4=98\) toneladas.
¿Cúal es la predicción de consumo de energía eléctrica? \(yˆ=–102.7132+0.6054x1+8.9236x2+1.4374x3+0.0136x4=287.56\)
nuevo.dato <- data.frame(x1 = 75, x2 = 24, x3 = 90, x4 = 98)
prediccion <- predict(modelo, newdata = nuevo.dato)
paste("La predicción de consumo de energía eléctrica es:", round(prediccion, 2))
## [1] "La predicción de consumo de energía eléctrica es: 287.56"
2.6. Interpretación del caso - podemos encontrar la clara relacion que hay entre la cantidad de oxido nitroso y humedad en el ambiente, el cual sigue una correlacion bastante lineal asi comolas demas correlaciones como la temperatura y presion aun que se puede denotar que la humedad es la relacion mas relevante - en la segunda parte del caso no se puede encontrar niguna correlacion fuerte o con algun significado entre la variable dependiente y las independientes ya que tienen un rango de error de 0.5
Referencias bibliográficas Urrutia Mosquera, J. A. (2011). Evaluación de la robustez de un modelo de regresión múltiple para predecir las ventas diarias de un hipermercado en pereira, risaralda. https://www.researchgate.net/publication/237041228_EVALUACION_DE_LA_ROBUSTEZ_DE_UN_MODELO_DE_REGRESION_MULTIPLE_PARA_PREDECIR_LAS_VENTAS_DIARIAS_DE_UN_HIPERMERCADO_EN_PEREIRA_RISARALDA
Walpole, R. E., Myers, R. H., & Myers, S. L. (2012). Probabilidad y estadística para ingeniería y ciencias (Novena Edición). Pearson.