Loading of R packages

packages = c('tidyverse','dplyr','ggpubr','knitr','sf', 'tmap')

for(p in packages){
  if(!require(p, character.only = T)){
    install.packages(p)
  }
  library(p, character.only = T)
}

Load spatial data and CSV

sg <- st_read(dsn = "data/geospatial", 
                layer = "MP14_SUBZONE_WEB_PL")
## Reading layer `MP14_SUBZONE_WEB_PL' from data source `D:\Hao Jun\School\[IS428] Visual Analytics for Business Intelligence-G1\Assignment\5\data\geospatial' using driver `ESRI Shapefile'
## Simple feature collection with 323 features and 15 fields
## geometry type:  MULTIPOLYGON
## dimension:      XY
## bbox:           xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
## projected CRS:  SVY21
listings <- read_csv("data/aspatial/listings.csv")

1 Introduction

In this assignment, we are not given any data sets and we can work on any case we would like. However, we are required to incorporate interactivity and/or map(s) in our data visualization design.

The dataset I will be using for this assignment is Singapore Airbnb Listing 2019.

1.1 Describe the major data and design challenges faced in accomplishing this assignment

Challenge 1: The id, host id, room type and neighbourhood group are not in the correct data type

Using summary, I realised that id, host id, room type and neighbourhood group wasn’t in the correct data type which could hinder later analysis. So I decided that I will be converting id, host id into character and room type, neighbourhood group to factor.

summary(listings)
##        id               name              host_id           host_name        
##  Min.   :   49091   Length:7907        Min.   :    23666   Length:7907       
##  1st Qu.:15821800   Class :character   1st Qu.: 23058075   Class :character  
##  Median :24706270   Mode  :character   Median : 63448912   Mode  :character  
##  Mean   :23388625                      Mean   : 91144807                     
##  3rd Qu.:32348500                      3rd Qu.:155381142                     
##  Max.   :38112762                      Max.   :288567551                     
##                                                                              
##  neighbourhood_group neighbourhood         latitude       longitude    
##  Length:7907         Length:7907        Min.   :1.244   Min.   :103.6  
##  Class :character    Class :character   1st Qu.:1.296   1st Qu.:103.8  
##  Mode  :character    Mode  :character   Median :1.311   Median :103.8  
##                                         Mean   :1.314   Mean   :103.8  
##                                         3rd Qu.:1.322   3rd Qu.:103.9  
##                                         Max.   :1.455   Max.   :104.0  
##                                                                        
##   room_type             price         minimum_nights    number_of_reviews
##  Length:7907        Min.   :    0.0   Min.   :   1.00   Min.   :  0.00   
##  Class :character   1st Qu.:   65.0   1st Qu.:   1.00   1st Qu.:  0.00   
##  Mode  :character   Median :  124.0   Median :   3.00   Median :  2.00   
##                     Mean   :  169.3   Mean   :  17.51   Mean   : 12.81   
##                     3rd Qu.:  199.0   3rd Qu.:  10.00   3rd Qu.: 10.00   
##                     Max.   :10000.0   Max.   :1000.00   Max.   :323.00   
##                                                                          
##   last_review         reviews_per_month calculated_host_listings_count
##  Min.   :2013-10-21   Min.   : 0.010    Min.   :  1.00                
##  1st Qu.:2018-11-21   1st Qu.: 0.180    1st Qu.:  2.00                
##  Median :2019-06-27   Median : 0.550    Median :  9.00                
##  Mean   :2019-01-11   Mean   : 1.044    Mean   : 40.61                
##  3rd Qu.:2019-08-07   3rd Qu.: 1.370    3rd Qu.: 48.00                
##  Max.   :2019-08-27   Max.   :13.000    Max.   :274.00                
##  NA's   :2758         NA's   :2758                                    
##  availability_365
##  Min.   :  0.0   
##  1st Qu.: 54.0   
##  Median :260.0   
##  Mean   :208.7   
##  3rd Qu.:355.0   
##  Max.   :365.0   
## 
listings$id <- as.character(listings$id)
listings$host_id <- as.character(listings$host_id)
listings$neighbourhood_group <- factor(listings$neighbourhood_group)
listings$neighbourhood <- factor(listings$neighbourhood)
listings$room_type <- factor(listings$room_type)

summary(listings)
##       id                name             host_id           host_name        
##  Length:7907        Length:7907        Length:7907        Length:7907       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##         neighbourhood_group     neighbourhood     latitude       longitude    
##  Central Region   :6309     Kallang    :1043   Min.   :1.244   Min.   :103.6  
##  East Region      : 508     Geylang    : 994   1st Qu.:1.296   1st Qu.:103.8  
##  North-East Region: 346     Novena     : 537   Median :1.311   Median :103.8  
##  North Region     : 204     Rochor     : 536   Mean   :1.314   Mean   :103.8  
##  West Region      : 540     Outram     : 477   3rd Qu.:1.322   3rd Qu.:103.9  
##                             Bukit Merah: 470   Max.   :1.455   Max.   :104.0  
##                             (Other)    :3850                                  
##            room_type        price         minimum_nights    number_of_reviews
##  Entire home/apt:4132   Min.   :    0.0   Min.   :   1.00   Min.   :  0.00   
##  Private room   :3381   1st Qu.:   65.0   1st Qu.:   1.00   1st Qu.:  0.00   
##  Shared room    : 394   Median :  124.0   Median :   3.00   Median :  2.00   
##                         Mean   :  169.3   Mean   :  17.51   Mean   : 12.81   
##                         3rd Qu.:  199.0   3rd Qu.:  10.00   3rd Qu.: 10.00   
##                         Max.   :10000.0   Max.   :1000.00   Max.   :323.00   
##                                                                              
##   last_review         reviews_per_month calculated_host_listings_count
##  Min.   :2013-10-21   Min.   : 0.010    Min.   :  1.00                
##  1st Qu.:2018-11-21   1st Qu.: 0.180    1st Qu.:  2.00                
##  Median :2019-06-27   Median : 0.550    Median :  9.00                
##  Mean   :2019-01-11   Mean   : 1.044    Mean   : 40.61                
##  3rd Qu.:2019-08-07   3rd Qu.: 1.370    3rd Qu.: 48.00                
##  Max.   :2019-08-27   Max.   :13.000    Max.   :274.00                
##  NA's   :2758         NA's   :2758                                    
##  availability_365
##  Min.   :  0.0   
##  1st Qu.: 54.0   
##  Median :260.0   
##  Mean   :208.7   
##  3rd Qu.:355.0   
##  Max.   :365.0   
## 

After indicating the correct data type, I could see that most of the listings are in the Central Region and the most type of listings are Entire home/apt.

Challenge 2: last review and reviews per month having NA values

There are a total of 2,758 rows does not have any values in last review and reviews per month. This would either mean that there isn’t anyone leaving review for the airbnb listing or the data is missing in the first place when gathering the data. Therefore, in order to keep the dataset relevant I have decided to exclude all of these rows with NA values.

listings <- listings %>%
  drop_na(last_review)

summary(listings)
##       id                name             host_id           host_name        
##  Length:5149        Length:5149        Length:5149        Length:5149       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##         neighbourhood_group       neighbourhood     latitude    
##  Central Region   :4144     Kallang      : 697   Min.   :1.244  
##  East Region      : 345     Geylang      : 648   1st Qu.:1.296  
##  North-East Region: 215     Rochor       : 362   Median :1.311  
##  North Region     : 108     Outram       : 345   Mean   :1.313  
##  West Region      : 337     Novena       : 313   3rd Qu.:1.320  
##                             Downtown Core: 280   Max.   :1.452  
##                             (Other)      :2504                  
##    longitude               room_type        price         minimum_nights  
##  Min.   :103.6   Entire home/apt:2643   Min.   :    0.0   Min.   :  1.00  
##  1st Qu.:103.8   Private room   :2229   1st Qu.:   62.0   1st Qu.:  1.00  
##  Median :103.8   Shared room    : 277   Median :  115.0   Median :  3.00  
##  Mean   :103.8                          Mean   :  151.3   Mean   : 12.46  
##  3rd Qu.:103.9                          3rd Qu.:  187.0   3rd Qu.:  6.00  
##  Max.   :104.0                          Max.   :10000.0   Max.   :700.00  
##                                                                           
##  number_of_reviews  last_review         reviews_per_month
##  Min.   :  1.00    Min.   :2013-10-21   Min.   : 0.010   
##  1st Qu.:  2.00    1st Qu.:2018-11-21   1st Qu.: 0.180   
##  Median :  6.00    Median :2019-06-27   Median : 0.550   
##  Mean   : 19.67    Mean   :2019-01-11   Mean   : 1.044   
##  3rd Qu.: 21.00    3rd Qu.:2019-08-07   3rd Qu.: 1.370   
##  Max.   :323.00    Max.   :2019-08-27   Max.   :13.000   
##                                                          
##  calculated_host_listings_count availability_365
##  Min.   :  1.00                 Min.   :  0.0   
##  1st Qu.:  2.00                 1st Qu.: 55.0   
##  Median :  8.00                 Median :239.0   
##  Mean   : 35.22                 Mean   :201.1   
##  3rd Qu.: 32.00                 3rd Qu.:346.0   
##  Max.   :274.00                 Max.   :365.0   
## 

Challenge 3: Joining the listings with the spatial data

Unlike in our previous assignment there a subzone variable that I can use to join both the spatial and aspatial data. Upon looking into the variables from both data, there is another variable that I can used as join variable which is neighbourhood under listings with planning area under sg spatial data. However, the neighbourhood values in listings isn’t captialise which requires transformation.

summary(sg)
##     OBJECTID       SUBZONE_NO               SUBZONE_N     SUBZONE_C   CA_IND 
##  Min.   :  1.0   Min.   : 1.000   ADMIRALTY      :  1   AMSZ01 :  1   N:274  
##  1st Qu.: 81.5   1st Qu.: 2.000   AIRPORT ROAD   :  1   AMSZ02 :  1   Y: 49  
##  Median :162.0   Median : 4.000   ALEXANDRA HILL :  1   AMSZ03 :  1          
##  Mean   :162.0   Mean   : 4.625   ALEXANDRA NORTH:  1   AMSZ04 :  1          
##  3rd Qu.:242.5   3rd Qu.: 6.500   ALJUNIED       :  1   AMSZ05 :  1          
##  Max.   :323.0   Max.   :17.000   ANAK BUKIT     :  1   AMSZ06 :  1          
##                                   (Other)        :317   (Other):317          
##          PLN_AREA_N    PLN_AREA_C               REGION_N   REGION_C 
##  BUKIT MERAH  : 17   BM     : 17   CENTRAL REGION   :134   CR :134  
##  QUEENSTOWN   : 15   QT     : 15   EAST REGION      : 30   ER : 30  
##  ANG MO KIO   : 12   AM     : 12   NORTH-EAST REGION: 48   NER: 48  
##  DOWNTOWN CORE: 12   DT     : 12   NORTH REGION     : 41   NR : 41  
##  TOA PAYOH    : 12   TP     : 12   WEST REGION      : 70   WR : 70  
##  HOUGANG      : 10   HG     : 10                                    
##  (Other)      :245   (Other):245                                    
##              INC_CRC      FMEL_UPD_D             X_ADDR          Y_ADDR     
##  00F5E30B5C9B7AD8:  1   Min.   :2014-12-05   Min.   : 5093   Min.   :19579  
##  013B509B8EDF15BE:  1   1st Qu.:2014-12-05   1st Qu.:21864   1st Qu.:31776  
##  01A4287FB060A0A6:  1   Median :2014-12-05   Median :28465   Median :35113  
##  029BD940F4455194:  1   Mean   :2014-12-05   Mean   :27257   Mean   :36106  
##  0524461C92F35D94:  1   3rd Qu.:2014-12-05   3rd Qu.:31674   3rd Qu.:39869  
##  05FD555397CBEE7A:  1   Max.   :2014-12-05   Max.   :50425   Max.   :49553  
##  (Other)         :317                                                       
##    SHAPE_Leng        SHAPE_Area                geometry  
##  Min.   :  871.5   Min.   :   39438   MULTIPOLYGON :323  
##  1st Qu.: 3709.6   1st Qu.:  628261   epsg:NA      :  0  
##  Median : 5211.9   Median : 1229894   +proj=tmer...:  0  
##  Mean   : 6524.4   Mean   : 2420882                      
##  3rd Qu.: 6942.6   3rd Qu.: 2106483                      
##  Max.   :68083.9   Max.   :69748299                      
## 
listings <- listings %>%
  mutate_at(.vars = vars(neighbourhood, neighbourhood_group), .funs = funs(toupper))

listings$neighbourhood <- factor(listings$neighbourhood)
listings$neighbourhood_group <- factor(listings$neighbourhood_group)

summary(listings)
##       id                name             host_id           host_name        
##  Length:5149        Length:5149        Length:5149        Length:5149       
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##                                                                             
##         neighbourhood_group       neighbourhood     latitude    
##  CENTRAL REGION   :4144     KALLANG      : 697   Min.   :1.244  
##  EAST REGION      : 345     GEYLANG      : 648   1st Qu.:1.296  
##  NORTH-EAST REGION: 215     ROCHOR       : 362   Median :1.311  
##  NORTH REGION     : 108     OUTRAM       : 345   Mean   :1.313  
##  WEST REGION      : 337     NOVENA       : 313   3rd Qu.:1.320  
##                             DOWNTOWN CORE: 280   Max.   :1.452  
##                             (Other)      :2504                  
##    longitude               room_type        price         minimum_nights  
##  Min.   :103.6   Entire home/apt:2643   Min.   :    0.0   Min.   :  1.00  
##  1st Qu.:103.8   Private room   :2229   1st Qu.:   62.0   1st Qu.:  1.00  
##  Median :103.8   Shared room    : 277   Median :  115.0   Median :  3.00  
##  Mean   :103.8                          Mean   :  151.3   Mean   : 12.46  
##  3rd Qu.:103.9                          3rd Qu.:  187.0   3rd Qu.:  6.00  
##  Max.   :104.0                          Max.   :10000.0   Max.   :700.00  
##                                                                           
##  number_of_reviews  last_review         reviews_per_month
##  Min.   :  1.00    Min.   :2013-10-21   Min.   : 0.010   
##  1st Qu.:  2.00    1st Qu.:2018-11-21   1st Qu.: 0.180   
##  Median :  6.00    Median :2019-06-27   Median : 0.550   
##  Mean   : 19.67    Mean   :2019-01-11   Mean   : 1.044   
##  3rd Qu.: 21.00    3rd Qu.:2019-08-07   3rd Qu.: 1.370   
##  Max.   :323.00    Max.   :2019-08-27   Max.   :13.000   
##                                                          
##  calculated_host_listings_count availability_365
##  Min.   :  1.00                 Min.   :  0.0   
##  1st Qu.:  2.00                 1st Qu.: 55.0   
##  Median :  8.00                 Median :239.0   
##  Mean   : 35.22                 Mean   :201.1   
##  3rd Qu.: 32.00                 3rd Qu.:346.0   
##  Max.   :274.00                 Max.   :365.0   
## 
sg_listings <- left_join(sg, listings, 
                              by = c("PLN_AREA_N" = "neighbourhood"))
summary(sg_listings)
##     OBJECTID     SUBZONE_NO             SUBZONE_N       SUBZONE_C     CA_IND   
##  Min.   :  1   Min.   : 1.000   BENDEMEER    :  697   KLSZ01 :  697   N:28917  
##  1st Qu.: 49   1st Qu.: 2.000   BOON KENG    :  697   KLSZ02 :  697   Y:11028  
##  Median :100   Median : 4.000   CRAWFORD     :  697   KLSZ03 :  697            
##  Mean   :106   Mean   : 5.214   GEYLANG BAHRU:  697   KLSZ04 :  697            
##  3rd Qu.:148   3rd Qu.: 7.000   KALLANG BAHRU:  697   KLSZ05 :  697            
##  Max.   :323   Max.   :17.000   KAMPONG BUGIS:  697   KLSZ06 :  697            
##                                 (Other)      :35763   (Other):35763            
##          PLN_AREA_N      PLN_AREA_C                 REGION_N     REGION_C   
##  KALLANG      : 6273   KL     : 6273   CENTRAL REGION   :31693   CR :31693  
##  BUKIT MERAH  : 4539   BM     : 4539   EAST REGION      : 2628   ER : 2628  
##  ROCHOR       : 3620   RC     : 3620   NORTH-EAST REGION: 1850   NER: 1850  
##  DOWNTOWN CORE: 3360   DT     : 3360   NORTH REGION     :  859   NR :  859  
##  GEYLANG      : 3240   GL     : 3240   WEST REGION      : 2915   WR : 2915  
##  QUEENSTOWN   : 2265   QT     : 2265                                        
##  (Other)      :16648   (Other):16648                                        
##              INC_CRC        FMEL_UPD_D             X_ADDR          Y_ADDR     
##  0524461C92F35D94:  697   Min.   :2014-12-05   Min.   : 5093   Min.   :19579  
##  0D1D1759D7BC6D6C:  697   1st Qu.:2014-12-05   1st Qu.:27077   1st Qu.:30537  
##  69C9F7CD6F08EA3A:  697   Median :2014-12-05   Median :29817   Median :32276  
##  928DCE8E44F904C8:  697   Mean   :2014-12-05   Mean   :29296   Mean   :32862  
##  97A1E6DEEC6C442D:  697   3rd Qu.:2014-12-05   3rd Qu.:32138   3rd Qu.:34230  
##  A7A07F328A38B6EF:  697   Max.   :2014-12-05   Max.   :50425   Max.   :49553  
##  (Other)         :35763                                                       
##    SHAPE_Leng        SHAPE_Area            id                name          
##  Min.   :  871.5   Min.   :   39438   Length:39945       Length:39945      
##  1st Qu.: 2897.1   1st Qu.:  387429   Class :character   Class :character  
##  Median : 4055.2   Median :  839489   Mode  :character   Mode  :character  
##  Mean   : 4626.8   Mean   : 1162087                                        
##  3rd Qu.: 5637.7   3rd Qu.: 1524551                                        
##  Max.   :68083.9   Max.   :69748299                                        
##                                                                            
##    host_id           host_name                neighbourhood_group
##  Length:39945       Length:39945       CENTRAL REGION   :31691   
##  Class :character   Class :character   EAST REGION      : 2619   
##  Mode  :character   Mode  :character   NORTH-EAST REGION: 1845   
##                                        NORTH REGION     :  854   
##                                        WEST REGION      : 2902   
##                                        NA's             :   34   
##                                                                  
##     latitude       longitude               room_type         price        
##  Min.   :1.244   Min.   :103.6   Entire home/apt:20042   Min.   :    0.0  
##  1st Qu.:1.291   1st Qu.:103.8   Private room   :17748   1st Qu.:   60.0  
##  Median :1.309   Median :103.8   Shared room    : 2121   Median :  112.0  
##  Mean   :1.312   Mean   :103.8   NA's           :   34   Mean   :  147.5  
##  3rd Qu.:1.320   3rd Qu.:103.9                           3rd Qu.:  187.0  
##  Max.   :1.452   Max.   :104.0                           Max.   :10000.0  
##  NA's   :34      NA's   :34                              NA's   :34       
##  minimum_nights   number_of_reviews  last_review         reviews_per_month
##  Min.   :  1.00   Min.   :  1.00    Min.   :2013-10-21   Min.   : 0.010   
##  1st Qu.:  1.00   1st Qu.:  2.00    1st Qu.:2018-11-01   1st Qu.: 0.170   
##  Median :  2.00   Median :  5.00    Median :2019-06-22   Median : 0.520   
##  Mean   : 12.77   Mean   : 18.48    Mean   :2019-01-03   Mean   : 1.018   
##  3rd Qu.:  7.00   3rd Qu.: 19.00    3rd Qu.:2019-08-06   3rd Qu.: 1.290   
##  Max.   :700.00   Max.   :323.00    Max.   :2019-08-27   Max.   :13.000   
##  NA's   :34       NA's   :34        NA's   :34           NA's   :34       
##  calculated_host_listings_count availability_365          geometry    
##  Min.   :  1.00                 Min.   :  0.0    MULTIPOLYGON :39945  
##  1st Qu.:  2.00                 1st Qu.: 54.0    epsg:NA      :    0  
##  Median :  8.00                 Median :241.0    +proj=tmer...:    0  
##  Mean   : 33.88                 Mean   :201.3                         
##  3rd Qu.: 27.00                 3rd Qu.:347.0                         
##  Max.   :274.00                 Max.   :365.0                         
##  NA's   :34                     NA's   :34

After joining, I realised that there is 34 NA values under neighbourbood group, room type, price and other few variables. I believe that there’s no data from the listings that is able to join with the spatial data. Therefore, I will drop those 34 NA values to keep the dataset relevant.

sg_listings <- sg_listings %>%
  drop_na(neighbourhood_group)

summary(sg_listings)
##     OBJECTID       SUBZONE_NO             SUBZONE_N       SUBZONE_C    
##  Min.   :  1.0   Min.   : 1.000   BENDEMEER    :  697   KLSZ01 :  697  
##  1st Qu.: 49.0   1st Qu.: 2.000   BOON KENG    :  697   KLSZ02 :  697  
##  Median :100.0   Median : 4.000   CRAWFORD     :  697   KLSZ03 :  697  
##  Mean   :105.9   Mean   : 5.216   GEYLANG BAHRU:  697   KLSZ04 :  697  
##  3rd Qu.:148.0   3rd Qu.: 7.000   KALLANG BAHRU:  697   KLSZ05 :  697  
##  Max.   :323.0   Max.   :17.000   KAMPONG BUGIS:  697   KLSZ06 :  697  
##                                   (Other)      :35729   (Other):35729  
##  CA_IND            PLN_AREA_N      PLN_AREA_C                 REGION_N    
##  N:28885   KALLANG      : 6273   KL     : 6273   CENTRAL REGION   :31691  
##  Y:11026   BUKIT MERAH  : 4539   BM     : 4539   EAST REGION      : 2619  
##            ROCHOR       : 3620   RC     : 3620   NORTH-EAST REGION: 1845  
##            DOWNTOWN CORE: 3360   DT     : 3360   NORTH REGION     :  854  
##            GEYLANG      : 3240   GL     : 3240   WEST REGION      : 2902  
##            QUEENSTOWN   : 2265   QT     : 2265                            
##            (Other)      :16614   (Other):16614                            
##  REGION_C                INC_CRC        FMEL_UPD_D             X_ADDR     
##  CR :31691   0524461C92F35D94:  697   Min.   :2014-12-05   Min.   : 5093  
##  ER : 2619   0D1D1759D7BC6D6C:  697   1st Qu.:2014-12-05   1st Qu.:27077  
##  NER: 1845   69C9F7CD6F08EA3A:  697   Median :2014-12-05   Median :29817  
##  NR :  854   928DCE8E44F904C8:  697   Mean   :2014-12-05   Mean   :29298  
##  WR : 2902   97A1E6DEEC6C442D:  697   3rd Qu.:2014-12-05   3rd Qu.:32138  
##              A7A07F328A38B6EF:  697   Max.   :2014-12-05   Max.   :43592  
##              (Other)         :35729                                       
##      Y_ADDR        SHAPE_Leng        SHAPE_Area            id           
##  Min.   :23413   Min.   :  871.5   Min.   :   39438   Length:39911      
##  1st Qu.:30537   1st Qu.: 2897.1   1st Qu.:  387429   Class :character  
##  Median :32276   Median : 4055.2   Median :  839489   Mode  :character  
##  Mean   :32858   Mean   : 4619.7   Mean   : 1157188                     
##  3rd Qu.:34230   3rd Qu.: 5637.7   3rd Qu.: 1517767                     
##  Max.   :49553   Max.   :54928.1   Max.   :69748299                     
##                                                                         
##      name             host_id           host_name        
##  Length:39911       Length:39911       Length:39911      
##  Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character  
##                                                          
##                                                          
##                                                          
##                                                          
##         neighbourhood_group    latitude       longitude    
##  CENTRAL REGION   :31691    Min.   :1.244   Min.   :103.6  
##  EAST REGION      : 2619    1st Qu.:1.291   1st Qu.:103.8  
##  NORTH-EAST REGION: 1845    Median :1.309   Median :103.8  
##  NORTH REGION     :  854    Mean   :1.312   Mean   :103.8  
##  WEST REGION      : 2902    3rd Qu.:1.320   3rd Qu.:103.9  
##                             Max.   :1.452   Max.   :104.0  
##                                                            
##            room_type         price         minimum_nights   number_of_reviews
##  Entire home/apt:20042   Min.   :    0.0   Min.   :  1.00   Min.   :  1.00   
##  Private room   :17748   1st Qu.:   60.0   1st Qu.:  1.00   1st Qu.:  2.00   
##  Shared room    : 2121   Median :  112.0   Median :  2.00   Median :  5.00   
##                          Mean   :  147.5   Mean   : 12.77   Mean   : 18.48   
##                          3rd Qu.:  187.0   3rd Qu.:  7.00   3rd Qu.: 19.00   
##                          Max.   :10000.0   Max.   :700.00   Max.   :323.00   
##                                                                              
##   last_review         reviews_per_month calculated_host_listings_count
##  Min.   :2013-10-21   Min.   : 0.010    Min.   :  1.00                
##  1st Qu.:2018-11-01   1st Qu.: 0.170    1st Qu.:  2.00                
##  Median :2019-06-22   Median : 0.520    Median :  8.00                
##  Mean   :2019-01-03   Mean   : 1.018    Mean   : 33.88                
##  3rd Qu.:2019-08-06   3rd Qu.: 1.290    3rd Qu.: 27.00                
##  Max.   :2019-08-27   Max.   :13.000    Max.   :274.00                
##                                                                       
##  availability_365          geometry    
##  Min.   :  0.0    MULTIPOLYGON :39911  
##  1st Qu.: 54.0    epsg:NA      :    0  
##  Median :241.0    +proj=tmer...:    0  
##  Mean   :201.3                         
##  3rd Qu.:347.0                         
##  Max.   :365.0                         
## 

1.2 Proposed sketched design to overcome the challenges

3 The final data visualization and a short description of not more than 350 words. The description must provide at least two useful information revealed by the data visualization.

In conclusion, the shared rooms are concentrated in the Central region and the private rooms are spread across Singapore more than the Entire home/apt room type from Airbnb listings.

Upon looking in detail, it seems that the central region has the most room type listing in Singapore. There are 2,396 Entire home/apt, 1,490 Private room, and 258 Shared room. But in terms of the most popular listing, the private room located in the East region has a total of 276 reviews and with a 12.6 reviews per month. I believe this listing is near the ariport which most likely cater to those travelling overseas often or for short stay over in Singapore.

Also looking closer into Central region, the popular Entire home/apt room type is Prime Central Apartment For Five has a total of 272 reviews with a 6.95 reviews per month. For the popular Private room type is Quiet and spacious room near Woodleigh MRT(R2) has a total of 114 reviews with a 7.81 reviews per month. Lastly, Shared room is Single Capsule for 1 (Free Breakfast) has a total of 134 reviews with a 3.35 reviews per month.