In Text Mining with R, Chapter 2 looks at Sentiment Analysis. In this assignment, you should start by getting the primary example code from chapter 2 working in an R Markdown document. You should provide a citation to this base code. You’re then asked to extend the code in two ways:
• Work with a different corpus of your choosing, and
• Incorporate at least one additional sentiment lexicon (possibly from another R package that you’ve found through research).
You can find the rpubs file here
Set the environment
library(janeaustenr)
library(gutenbergr)
library(stringr)
library(tidytext)
library(textdata)
library(jsonlite)
library(tidyverse)
library(wordcloud)
library(reshape2)
get_sentiments("afinn")
## # A tibble: 2,477 x 2
## word value
## <chr> <dbl>
## 1 abandon -2
## 2 abandoned -2
## 3 abandons -2
## 4 abducted -2
## 5 abduction -2
## 6 abductions -2
## 7 abhor -3
## 8 abhorred -3
## 9 abhorrent -3
## 10 abhors -3
## # … with 2,467 more rows
get_sentiments("bing")
## # A tibble: 6,786 x 2
## word sentiment
## <chr> <chr>
## 1 2-faces negative
## 2 abnormal negative
## 3 abolish negative
## 4 abominable negative
## 5 abominably negative
## 6 abominate negative
## 7 abomination negative
## 8 abort negative
## 9 aborted negative
## 10 aborts negative
## # … with 6,776 more rows
get_sentiments("nrc")
## # A tibble: 13,901 x 2
## word sentiment
## <chr> <chr>
## 1 abacus trust
## 2 abandon fear
## 3 abandon negative
## 4 abandon sadness
## 5 abandoned anger
## 6 abandoned fear
## 7 abandoned negative
## 8 abandoned sadness
## 9 abandonment anger
## 10 abandonment fear
## # … with 13,891 more rows
tidy_books <- austen_books() %>%
group_by(book) %>%
mutate(linenumber = row_number(),
chapter = cumsum(str_detect(text,
regex("^chapter [\\divxlc]",
ignore_case = TRUE)))) %>%
ungroup() %>%
unnest_tokens(word, text)
Filter sentiments of Joy words in Emma’s book and get the count
nrc_joy <- get_sentiments("nrc") %>%
filter(sentiment == "joy")
tidy_books %>%
filter(book == "Emma") %>%
inner_join(nrc_joy) %>%
count(word, sort = TRUE)
## Joining, by = "word"
## # A tibble: 303 x 2
## word n
## <chr> <int>
## 1 good 359
## 2 young 192
## 3 friend 166
## 4 hope 143
## 5 happy 125
## 6 love 117
## 7 deal 92
## 8 found 92
## 9 present 89
## 10 kind 82
## # … with 293 more rows
Count the positive and negative words
## Joining, by = "word"
pride_prejudice <- tidy_books %>%
filter(book == "Pride & Prejudice")
pride_prejudice
## # A tibble: 122,204 x 4
## book linenumber chapter word
## <fct> <int> <int> <chr>
## 1 Pride & Prejudice 1 0 pride
## 2 Pride & Prejudice 1 0 and
## 3 Pride & Prejudice 1 0 prejudice
## 4 Pride & Prejudice 3 0 by
## 5 Pride & Prejudice 3 0 jane
## 6 Pride & Prejudice 3 0 austen
## 7 Pride & Prejudice 7 1 chapter
## 8 Pride & Prejudice 7 1 1
## 9 Pride & Prejudice 10 1 it
## 10 Pride & Prejudice 10 1 is
## # … with 122,194 more rows
afinn <- pride_prejudice %>%
inner_join(get_sentiments("afinn")) %>%
group_by(index = linenumber %/% 80) %>%
summarise(sentiment = sum (value)) %>%
mutate(method = "AFINN")
## Joining, by = "word"
## `summarise()` ungrouping output (override with `.groups` argument)
bing_and_nrc <- bind_rows(pride_prejudice %>%
inner_join(get_sentiments("bing")) %>%
mutate(method = "Bing et al."),
pride_prejudice %>%
inner_join(get_sentiments("nrc") %>%
filter(sentiment %in% c("positive",
"negative"))) %>%
mutate(method = "NRC")) %>%
count(method, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)
## Joining, by = "word"
## Joining, by = "word"
To compare the sentiments we plot them
bind_rows(afinn,
bing_and_nrc) %>%
ggplot(aes(index, sentiment, fill = method)) +
geom_col(show.legend = FALSE) +
facet_wrap(~method, ncol = 1, scales = "free_y")
It looks like the NRC has the least negative sentiments, and it estimates more positive sentiments for the book.
bing_word_counts <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup
## Joining, by = "word"
bing_word_counts
## # A tibble: 2,585 x 3
## word sentiment n
## <chr> <chr> <int>
## 1 miss negative 1855
## 2 well positive 1523
## 3 good positive 1380
## 4 great positive 981
## 5 like positive 725
## 6 better positive 639
## 7 enough positive 613
## 8 happy positive 534
## 9 love positive 495
## 10 pleasure positive 462
## # … with 2,575 more rows
Now we can compare the negative and positive sentiments by plotting them and show the top 10 for each positive and negative
## Selecting by n
custom_stop_words <-
bind_rows(tibble(word = c("miss"),
lexicon = c("custom")),
stop_words)
custom_stop_words
## # A tibble: 1,150 x 2
## word lexicon
## <chr> <chr>
## 1 miss custom
## 2 a SMART
## 3 a's SMART
## 4 able SMART
## 5 about SMART
## 6 above SMART
## 7 according SMART
## 8 accordingly SMART
## 9 across SMART
## 10 actually SMART
## # … with 1,140 more rows
We get the wordclouds
tidy_books %>%
anti_join(stop_words) %>%
count(word) %>%
with(wordcloud(word, n, max.words = 100))
## Joining, by = "word"
Now we we to reshape the negative and positive sentiments
tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(
colors = c("gray20", "gray80"),
max.words = 100
)
## Joining, by = "word"
I will use My Bondage and My Freedom is an autobiographical slave narrative written by Frederick Douglass and published in 1855. Download data using gutenbergr package.
Reference: https://docsouth.unc.edu/neh/douglass55/douglass55.html
count_Bondage <- gutenberg_download(202)
## Determining mirror for Project Gutenberg from http://www.gutenberg.org/robot/harvest
## Using mirror http://aleph.gutenberg.org
count_Bondage
## # A tibble: 12,208 x 2
## gutenberg_id text
## <int> <chr>
## 1 202 "MY BONDAGE and MY FREEDOM"
## 2 202 ""
## 3 202 "By Frederick Douglass"
## 4 202 ""
## 5 202 ""
## 6 202 "By a principle essential to Christianity, a PERSON is eternall…
## 7 202 "differenced from a THING; so that the idea of a HUMAN BEING, n…
## 8 202 "excludes the idea of PROPERTY IN THAT BEING."
## 9 202 "--COLERIDGE"
## 10 202 ""
## # … with 12,198 more rows
## # A tibble: 10,624 x 4
## gutenberg_id text linenumber chapter
## <int> <chr> <int> <int>
## 1 202 "CHAPTER I. _Childhood_" 1 1
## 2 202 "PLACE OF BIRTH--CHARACTER OF THE DISTRICT--… 2 1
## 3 202 "NAME--CHOPTANK RIVER--TIME OF BIRTH--GENEAL… 3 1
## 4 202 "COUNTING TIME--NAMES OF GRANDPARENTS--THEIR… 4 1
## 5 202 "ESPECIALLY ESTEEMED--\"BORN TO GOOD LUCK\"-… 5 1
## 6 202 "POTATOES--SUPERSTITION--THE LOG CABIN--ITS … 6 1
## 7 202 "CHILDREN--MY AUNTS--THEIR NAMES--FIRST KNOW… 7 1
## 8 202 "MASTER--GRIEFS AND JOYS OF CHILDHOOD--COMPA… 8 1
## 9 202 "SLAVE-BOY AND THE SON OF A SLAVEHOLDER." 9 1
## 10 202 "In Talbot county, Eastern Shore, Maryland, … 10 1
## # … with 10,614 more rows
The most frequent used words for positive sentiments and negative sentiments.
## Joining, by = "word"
## Selecting by n
Group by chapter to get the positive/negative sentiments words.
we need now the total positive and negative word count using bing lexion.
## Joining, by = "word"
Now we will use ~ 80 lines of text, to see which chapter has more negative sentiments and we see the chapter 25 has the most.
## Joining, by = "word"
## `summarise()` regrouping output by 'index' (override with `.groups` argument)
We need to check the most common words in “My Bondage and My Freedom”.
## Joining, by = "word"
we need to check the important of the words in the book per chapter for each 25 one.
## `summarise()` ungrouping output (override with `.groups` argument)
## Joining, by = "chapter"
## # A tibble: 34,361 x 6
## chapter word n tf idf tf_idf
## <int> <chr> <int> <dbl> <dbl> <dbl>
## 1 8 gore 19 0.00722 2.12 0.0153
## 2 8 denby 10 0.00380 3.22 0.0122
## 3 22 bedford 33 0.00546 1.83 0.0100
## 4 17 covey 46 0.00956 1.02 0.00976
## 5 7 barney 10 0.00300 3.22 0.00967
## 6 16 covey 28 0.00919 1.02 0.00939
## 7 18 holidays 19 0.00336 2.53 0.00850
## 8 1 grandmother 18 0.00664 1.27 0.00845
## 9 23 collins 5 0.00235 3.22 0.00755
## 10 6 nelly 12 0.00234 3.22 0.00755
## # … with 34,351 more rows
## Selecting by tf_idf
## Warning: Ignoring unknown parameters: stat