#importar datos y librerias

library(pacman)
p_load("base64enc", "htmltools", "mime", "xfun", "prettydoc", "readr", "knitr", "DT", "tidyverse", "scales", "gridExtra", "modeest", "fdth")
pozos_3_ <- readxl::read_excel("pozos (3).xlsx")

View(pozos_3_)

Preguntas teoricas

##¿Qué es la estadística y que aplicaciones tiene en ingeniería (según su ingeniería)? * se describe como el lenguaje universal de la ciencia, la estadistica usa numeros para resumir información y su interpretación. resumen: es la ciencia de recolectar, describir e interpretar datos.

##Enliste y defina los tipos de variables usados en estadística, de 2 ejemplos de cada uno. Defina distribución de frecuencia y explique que es la distribución normal. * tipos de variables: -variables cualitativas: no se pueden medir numéricamente. -variables cuantitativas: tienen valor numerico.

Usando datos de Ph y Temperatura de pozos de agua subterrania

##Ordenar datos de mayor a menor.

#ordenando datos de menor a mayor de la mediante un data.frame
datosPh <- pozos_3_$PH
datosTemp <- pozos_3_$TEMP
datosPh <- sort(datosPh, decreasing = FALSE)
datosTemp <- sort(datosTemp, decreasing = FALSE)
dfGeneral <-data.frame(datosPh, datosTemp)
#data frame ordenado de menor a mayor
dfGeneral
##     datosPh datosTemp
## 1       6.1      25.6
## 2       6.3      25.8
## 3       6.4      26.2
## 4       6.4      26.3
## 5       6.4      26.3
## 6       6.4      26.4
## 7       6.4      26.4
## 8       6.4      26.8
## 9       6.4      26.8
## 10      6.5      26.9
## 11      6.5      27.0
## 12      6.5      27.0
## 13      6.5      27.1
## 14      6.5      27.2
## 15      6.5      27.2
## 16      6.5      27.3
## 17      6.5      27.3
## 18      6.5      27.3
## 19      6.5      27.3
## 20      6.5      27.4
## 21      6.5      27.4
## 22      6.5      27.4
## 23      6.5      27.4
## 24      6.5      27.4
## 25      6.5      27.5
## 26      6.5      27.5
## 27      6.6      27.5
## 28      6.6      27.5
## 29      6.6      27.5
## 30      6.6      27.5
## 31      6.6      27.5
## 32      6.6      27.5
## 33      6.6      27.5
## 34      6.6      27.5
## 35      6.6      27.5
## 36      6.6      27.5
## 37      6.6      27.6
## 38      6.6      27.7
## 39      6.6      27.7
## 40      6.6      27.7
## 41      6.6      27.7
## 42      6.6      27.8
## 43      6.6      27.8
## 44      6.6      27.8
## 45      6.6      27.8
## 46      6.6      27.8
## 47      6.6      27.8
## 48      6.6      27.8
## 49      6.6      27.8
## 50      6.7      27.8
## 51      6.7      27.8
## 52      6.7      27.8
## 53      6.7      27.9
## 54      6.7      27.9
## 55      6.7      27.9
## 56      6.7      27.9
## 57      6.7      27.9
## 58      6.7      27.9
## 59      6.8      27.9
## 60      6.8      27.9
## 61      6.8      27.9
## 62      6.8      27.9
## 63      6.8      27.9
## 64      6.8      27.9
## 65      6.8      27.9
## 66      6.8      27.9
## 67      6.8      28.0
## 68      6.8      28.0
## 69      6.8      28.0
## 70      6.8      28.0
## 71      6.8      28.0
## 72      6.8      28.0
## 73      6.8      28.0
## 74      6.8      28.0
## 75      6.8      28.0
## 76      6.8      28.0
## 77      6.8      28.0
## 78      6.8      28.0
## 79      6.8      28.0
## 80      6.8      28.0
## 81      6.8      28.0
## 82      6.8      28.0
## 83      6.8      28.0
## 84      6.8      28.0
## 85      6.8      28.1
## 86      6.8      28.1
## 87      6.8      28.1
## 88      6.8      28.2
## 89      6.8      28.2
## 90      6.8      28.2
## 91      6.8      28.2
## 92      6.8      28.2
## 93      6.8      28.2
## 94      6.8      28.2
## 95      6.8      28.2
## 96      6.8      28.2
## 97      6.8      28.2
## 98      6.8      28.2
## 99      6.8      28.2
## 100     6.8      28.3
## 101     6.8      28.3
## 102     6.8      28.3
## 103     6.8      28.3
## 104     6.8      28.3
## 105     6.8      28.3
## 106     6.8      28.3
## 107     6.8      28.4
## 108     6.8      28.4
## 109     6.8      28.4
## 110     6.8      28.4
## 111     6.8      28.4
## 112     6.8      28.4
## 113     6.8      28.4
## 114     6.8      28.5
## 115     6.8      28.5
## 116     6.8      28.5
## 117     6.9      28.5
## 118     6.9      28.5
## 119     6.9      28.5
## 120     6.9      28.5
## 121     6.9      28.5
## 122     6.9      28.5
## 123     6.9      28.6
## 124     6.9      28.6
## 125     6.9      28.6
## 126     6.9      28.6
## 127     6.9      28.6
## 128     6.9      28.6
## 129     6.9      28.6
## 130     6.9      28.6
## 131     6.9      28.6
## 132     6.9      28.6
## 133     6.9      28.6
## 134     6.9      28.6
## 135     6.9      28.6
## 136     6.9      28.6
## 137     6.9      28.6
## 138     6.9      28.6
## 139     6.9      28.6
## 140     6.9      28.6
## 141     6.9      28.6
## 142     6.9      28.7
## 143     6.9      28.7
## 144     6.9      28.7
## 145     6.9      28.7
## 146     6.9      28.7
## 147     6.9      28.7
## 148     6.9      28.7
## 149     6.9      28.7
## 150     6.9      28.7
## 151     6.9      28.7
## 152     6.9      28.7
## 153     6.9      28.7
## 154     6.9      28.7
## 155     6.9      28.8
## 156     6.9      28.8
## 157     6.9      28.8
## 158     6.9      28.8
## 159     6.9      28.8
## 160     6.9      28.8
## 161     7.0      28.8
## 162     7.0      28.8
## 163     7.0      28.8
## 164     7.0      28.8
## 165     7.0      28.8
## 166     7.0      28.8
## 167     7.0      28.9
## 168     7.0      28.9
## 169     7.0      28.9
## 170     7.0      28.9
## 171     7.0      28.9
## 172     7.0      28.9
## 173     7.0      28.9
## 174     7.0      28.9
## 175     7.0      28.9
## 176     7.0      28.9
## 177     7.0      28.9
## 178     7.0      28.9
## 179     7.0      28.9
## 180     7.0      28.9
## 181     7.0      28.9
## 182     7.0      28.9
## 183     7.0      28.9
## 184     7.0      28.9
## 185     7.0      29.0
## 186     7.0      29.0
## 187     7.0      29.0
## 188     7.0      29.0
## 189     7.0      29.0
## 190     7.0      29.0
## 191     7.0      29.0
## 192     7.0      29.0
## 193     7.0      29.0
## 194     7.0      29.0
## 195     7.0      29.0
## 196     7.0      29.0
## 197     7.0      29.0
## 198     7.0      29.0
## 199     7.0      29.1
## 200     7.0      29.1
## 201     7.0      29.1
## 202     7.0      29.1
## 203     7.0      29.1
## 204     7.0      29.1
## 205     7.0      29.1
## 206     7.0      29.1
## 207     7.0      29.1
## 208     7.0      29.1
## 209     7.0      29.1
## 210     7.0      29.2
## 211     7.0      29.2
## 212     7.0      29.2
## 213     7.0      29.2
## 214     7.0      29.2
## 215     7.0      29.2
## 216     7.0      29.2
## 217     7.0      29.2
## 218     7.0      29.2
## 219     7.0      29.2
## 220     7.0      29.2
## 221     7.0      29.2
## 222     7.0      29.2
## 223     7.0      29.2
## 224     7.0      29.3
## 225     7.0      29.3
## 226     7.0      29.3
## 227     7.0      29.3
## 228     7.0      29.4
## 229     7.0      29.4
## 230     7.0      29.4
## 231     7.0      29.4
## 232     7.0      29.4
## 233     7.0      29.4
## 234     7.0      29.4
## 235     7.0      29.4
## 236     7.0      29.4
## 237     7.0      29.4
## 238     7.0      29.4
## 239     7.1      29.5
## 240     7.1      29.5
## 241     7.1      29.5
## 242     7.1      29.5
## 243     7.1      29.5
## 244     7.1      29.5
## 245     7.1      29.5
## 246     7.1      29.5
## 247     7.1      29.5
## 248     7.1      29.6
## 249     7.1      29.6
## 250     7.1      29.6
## 251     7.1      29.7
## 252     7.1      29.7
## 253     7.1      29.8
## 254     7.1      29.8
## 255     7.1      29.8
## 256     7.1      29.8
## 257     7.1      29.8
## 258     7.1      29.8
## 259     7.1      29.9
## 260     7.1      29.9
## 261     7.1      29.9
## 262     7.1      29.9
## 263     7.1      30.0
## 264     7.1      30.0
## 265     7.1      30.0
## 266     7.1      30.0
## 267     7.1      30.0
## 268     7.1      30.0
## 269     7.2      30.1
## 270     7.2      30.1
## 271     7.2      30.1
## 272     7.2      30.1
## 273     7.2      30.2
## 274     7.2      30.2
## 275     7.2      30.2
## 276     7.2      30.3
## 277     7.2      30.3
## 278     7.2      30.3
## 279     7.2      30.3
## 280     7.2      30.4
## 281     7.3      30.5
## 282     7.3      30.6
## 283     7.3      30.8
## 284     7.3      30.9
## 285     7.3      31.1
## 286     7.3      31.1
## 287     7.4      31.1
## 288     7.4      31.2
## 289     7.4      31.4
## 290     7.4      31.5
## 291     7.4      31.7
## 292     7.4      31.9
## 293     7.5      32.1

##obteniendo el numero de intervalos usando la fórmula de Sturges y el ancho de clase los obtendremos utilizando la formula de sturges y histogramas. * PH, distribucion de frecuencias absolutas

#rango para PH
range(dfGeneral$datosPh, na.rm = TRUE)
## [1] 6.1 7.5
#intervalos
breaksPh <- seq(6.5, 7.5, by=0.5)
breaksPh
## [1] 6.5 7.0 7.5
#distribución de los valores
ph.cut <- cut(dfGeneral$datosPh, breaksPh, right = FALSE)
ph.freq <- table(ph.cut)
#cbind(ph.cut) comentado por retrasar el codigo

ph.cumfreq <- c(0, cumsum(ph.freq))
#grafica de poligonos
plot(breaksPh, ph.cumfreq, 
     main = "porcentaje PH",
     xlab = "nivel de PH", 
     ylab = "PH acumulado")
lines(breaksPh, ph.cumfreq)

#rangos de temperatura
range(dfGeneral$datosTemp, na.rm = TRUE) 
## [1] 25.6 32.1
#intervalos
breaksTemp <- seq(25.5, 32.5, by=0.5)
breaksTemp
##  [1] 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5
#distribucion de valores
temp.cut <- cut(dfGeneral$datosTemp, breaksTemp, right = FALSE)
temp.freq <- table(temp.cut)
#cbind(temp.cut) comentado por retrasar el codigo

temp.cumfreq <- c(0, cumsum(temp.freq))
#grafica de poligonos 
plot(breaksTemp, temp.cumfreq,
     main = "porcentaje de temperaturas",
     xlab = "nivel de temperatura",
     ylab = "temperaturas acumuladas")
lines(breaksTemp, temp.cumfreq)

##Tabla de frecuencias. * datos de PH

#primero encontrar la media, moda y mediana de los datos de PH

mediaph <- mean(dfGeneral$datosPh, na.rm = TRUE)
mediaph #media
## [1] 6.890444
medianaph <- median(dfGeneral$datosPh, na.rm = TRUE)
medianaph #mediana
## [1] 6.9
modaph <- mfv(dfGeneral$datosPh) 
modaph #moda
## [1] 7
mediatemp <- mean(dfGeneral$datosTemp, na.rm = TRUE)
mediatemp #media
## [1] 28.69795
mediantemp <- median(dfGeneral$datosTemp, na.rm = TRUE)
mediantemp #mediana
## [1] 28.7
modatemp <- mfv(dfGeneral$datosTemp) 
modatemp #moda
## [1] 28.6
#calculo de frecuencias absolutas para PH
tablaph <- table(dfGeneral$datosPh)
tablaph 
## 
## 6.1 6.3 6.4 6.5 6.6 6.7 6.8 6.9   7 7.1 7.2 7.3 7.4 7.5 
##   1   1   7  17  23   9  58  44  78  30  12   6   6   1
#frecuancia relativa proporcional
prop.table(tablaph) #cada celda se divide sobre la cantidad de ph y el                      total de los mismos.
## 
##         6.1         6.3         6.4         6.5         6.6         6.7 
## 0.003412969 0.003412969 0.023890785 0.058020478 0.078498294 0.030716724 
##         6.8         6.9           7         7.1         7.2         7.3 
## 0.197952218 0.150170648 0.266211604 0.102389078 0.040955631 0.020477816 
##         7.4         7.5 
## 0.020477816 0.003412969
#frecuencia relativa porcentual
round((prop.table(tablaph)*100), 2) #aqui se redondea a dos decimales
## 
##   6.1   6.3   6.4   6.5   6.6   6.7   6.8   6.9     7   7.1   7.2   7.3   7.4 
##  0.34  0.34  2.39  5.80  7.85  3.07 19.80 15.02 26.62 10.24  4.10  2.05  2.05 
##   7.5 
##  0.34
#frecuencia absolutas acumuladas
tablaPhAbAcu <-cumsum(tablaph)
tablaPhAbAcu
## 6.1 6.3 6.4 6.5 6.6 6.7 6.8 6.9   7 7.1 7.2 7.3 7.4 7.5 
##   1   2   9  26  49  58 116 160 238 268 280 286 292 293
#frecuencia relativas acumuladas
tablaPhReAcu<-round(cumsum(prop.table(tablaph)*100), 2)
tablaPhReAcu
##    6.1    6.3    6.4    6.5    6.6    6.7    6.8    6.9      7    7.1    7.2 
##   0.34   0.68   3.07   8.87  16.72  19.80  39.59  54.61  81.23  91.47  95.56 
##    7.3    7.4    7.5 
##  97.61  99.66 100.00
#histograma
hist(dfGeneral$datosPh,
     main = "Histograma de frecuencias de PH",
     xlab = "PH", 
     ylab = "Frecuencia",
     col = "gray",
     border = "black",
     ylim = c(0, 293), 
     xlim = c(6.1, 7.5))

#calculo de frecuencia absolutas para temperatura
tablaTemp <- table(dfGeneral$datosTemp)
tablaTemp
## 
## 25.6 25.8 26.2 26.3 26.4 26.8 26.9   27 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 
##    1    1    1    2    2    2    1    2    1    2    4    5   12    1    4   11 
## 27.9   28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9   29 29.1 29.2 29.3 29.4 
##   14   18    3   12    7    7    9   19   13   12   18   14   11   14    4   11 
## 29.5 29.6 29.7 29.8 29.9   30 30.1 30.2 30.3 30.4 30.5 30.6 30.8 30.9 31.1 31.2 
##    9    3    2    6    4    6    4    3    4    1    1    1    1    1    3    1 
## 31.4 31.5 31.7 31.9 32.1 
##    1    1    1    1    1
#frecuencia relativa proporcional 
prop.table(tablaTemp) 
## 
##        25.6        25.8        26.2        26.3        26.4        26.8 
## 0.003412969 0.003412969 0.003412969 0.006825939 0.006825939 0.006825939 
##        26.9          27        27.1        27.2        27.3        27.4 
## 0.003412969 0.006825939 0.003412969 0.006825939 0.013651877 0.017064846 
##        27.5        27.6        27.7        27.8        27.9          28 
## 0.040955631 0.003412969 0.013651877 0.037542662 0.047781570 0.061433447 
##        28.1        28.2        28.3        28.4        28.5        28.6 
## 0.010238908 0.040955631 0.023890785 0.023890785 0.030716724 0.064846416 
##        28.7        28.8        28.9          29        29.1        29.2 
## 0.044368601 0.040955631 0.061433447 0.047781570 0.037542662 0.047781570 
##        29.3        29.4        29.5        29.6        29.7        29.8 
## 0.013651877 0.037542662 0.030716724 0.010238908 0.006825939 0.020477816 
##        29.9          30        30.1        30.2        30.3        30.4 
## 0.013651877 0.020477816 0.013651877 0.010238908 0.013651877 0.003412969 
##        30.5        30.6        30.8        30.9        31.1        31.2 
## 0.003412969 0.003412969 0.003412969 0.003412969 0.010238908 0.003412969 
##        31.4        31.5        31.7        31.9        32.1 
## 0.003412969 0.003412969 0.003412969 0.003412969 0.003412969
#frecuencia relativa acumuladas
round((prop.table(tablaTemp)*100), 2) #redondeo a dos decimales
## 
## 25.6 25.8 26.2 26.3 26.4 26.8 26.9   27 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 
## 0.34 0.34 0.34 0.68 0.68 0.68 0.34 0.68 0.34 0.68 1.37 1.71 4.10 0.34 1.37 3.75 
## 27.9   28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9   29 29.1 29.2 29.3 29.4 
## 4.78 6.14 1.02 4.10 2.39 2.39 3.07 6.48 4.44 4.10 6.14 4.78 3.75 4.78 1.37 3.75 
## 29.5 29.6 29.7 29.8 29.9   30 30.1 30.2 30.3 30.4 30.5 30.6 30.8 30.9 31.1 31.2 
## 3.07 1.02 0.68 2.05 1.37 2.05 1.37 1.02 1.37 0.34 0.34 0.34 0.34 0.34 1.02 0.34 
## 31.4 31.5 31.7 31.9 32.1 
## 0.34 0.34 0.34 0.34 0.34
#frecuencia absolutas acumuludas
tablaTempCu <- cumsum(tablaTemp)
tablaTempCu
## 25.6 25.8 26.2 26.3 26.4 26.8 26.9   27 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 
##    1    2    3    5    7    9   10   12   13   15   19   24   36   37   41   52 
## 27.9   28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9   29 29.1 29.2 29.3 29.4 
##   66   84   87   99  106  113  122  141  154  166  184  198  209  223  227  238 
## 29.5 29.6 29.7 29.8 29.9   30 30.1 30.2 30.3 30.4 30.5 30.6 30.8 30.9 31.1 31.2 
##  247  250  252  258  262  268  272  275  279  280  281  282  283  284  287  288 
## 31.4 31.5 31.7 31.9 32.1 
##  289  290  291  292  293
#frecuencia relativas acumuladas
tablaTempCu <- round((prop.table(tablaTemp)*100), 2)
tablaTempCu
## 
## 25.6 25.8 26.2 26.3 26.4 26.8 26.9   27 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 
## 0.34 0.34 0.34 0.68 0.68 0.68 0.34 0.68 0.34 0.68 1.37 1.71 4.10 0.34 1.37 3.75 
## 27.9   28 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8 28.9   29 29.1 29.2 29.3 29.4 
## 4.78 6.14 1.02 4.10 2.39 2.39 3.07 6.48 4.44 4.10 6.14 4.78 3.75 4.78 1.37 3.75 
## 29.5 29.6 29.7 29.8 29.9   30 30.1 30.2 30.3 30.4 30.5 30.6 30.8 30.9 31.1 31.2 
## 3.07 1.02 0.68 2.05 1.37 2.05 1.37 1.02 1.37 0.34 0.34 0.34 0.34 0.34 1.02 0.34 
## 31.4 31.5 31.7 31.9 32.1 
## 0.34 0.34 0.34 0.34 0.34
#histograma
hist(dfGeneral$datosTemp,
     main = "histograma de frecuencia de Temperatura",
     xlab = "temperatura",
     ylab = "frecuencia",
     col = "black",
     border = "white",
     ylim = c(0,293),
     xlim = c(25.6,32.1))

#Obteniendo la varianza y la desviación estándar. ## Valores de PH * varianza y desviación estándar

#varianza
varPh <- var(dfGeneral$datosPh)
varPh
## [1] 0.04908645
#desviación estándar
dsPh <- sd(dfGeneral$datosPh, na.rm = TRUE)
dsPh
## [1] 0.2215546

Valores de temperatura

  • varianza y desviación estándar
#varianza
varTemp <- var(dfGeneral$datosTemp)
varTemp
## [1] 1.035407
#desviación estándar
dsTemp <- sd(dfGeneral$datosTemp, na.rm = TRUE)
dsTemp
## [1] 1.017549

Grafico de caja y bigote

boxplot(dfGeneral$datosPh, main = "Grafico de Ph",outline = TRUE)

boxplot(dfGeneral$datosTemp, main = "Grafico de Temperatura",outline = TRUE)