The following section is code from Chapter 2 of Text Mining with R: A Tidy Approach by Julia Silge and David Robinson1
sentiments dataset## # A tibble: 2,477 x 2
## word value
## <chr> <dbl>
## 1 abandon -2
## 2 abandoned -2
## 3 abandons -2
## 4 abducted -2
## 5 abduction -2
## 6 abductions -2
## 7 abhor -3
## 8 abhorred -3
## 9 abhorrent -3
## 10 abhors -3
## # ... with 2,467 more rows
## # A tibble: 6,786 x 2
## word sentiment
## <chr> <chr>
## 1 2-faces negative
## 2 abnormal negative
## 3 abolish negative
## 4 abominable negative
## 5 abominably negative
## 6 abominate negative
## 7 abomination negative
## 8 abort negative
## 9 aborted negative
## 10 aborts negative
## # ... with 6,776 more rows
## # A tibble: 13,901 x 2
## word sentiment
## <chr> <chr>
## 1 abacus trust
## 2 abandon fear
## 3 abandon negative
## 4 abandon sadness
## 5 abandoned anger
## 6 abandoned fear
## 7 abandoned negative
## 8 abandoned sadness
## 9 abandonment anger
## 10 abandonment fear
## # ... with 13,891 more rows
tidy_books <- austen_books() %>%
group_by(book) %>%
mutate(linenumber = row_number(),
chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]",
ignore_case = TRUE)))) %>%
ungroup() %>%
unnest_tokens(word, text)nrc_joy <- get_sentiments("nrc") %>%
filter(sentiment == "joy")
tidy_books %>%
filter(book == "Emma") %>%
inner_join(nrc_joy) %>%
count(word, sort = TRUE)## # A tibble: 303 x 2
## word n
## <chr> <int>
## 1 good 359
## 2 young 192
## 3 friend 166
## 4 hope 143
## 5 happy 125
## 6 love 117
## 7 deal 92
## 8 found 92
## 9 present 89
## 10 kind 82
## # ... with 293 more rows
jane_austen_sentiment <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(book, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)ggplot(jane_austen_sentiment, aes(index, sentiment, fill = book)) +
geom_col(show.legend = FALSE) +
facet_wrap(~book, ncol = 2, scales = "free_x")## # A tibble: 122,204 x 4
## book linenumber chapter word
## <fct> <int> <int> <chr>
## 1 Pride & Prejudice 1 0 pride
## 2 Pride & Prejudice 1 0 and
## 3 Pride & Prejudice 1 0 prejudice
## 4 Pride & Prejudice 3 0 by
## 5 Pride & Prejudice 3 0 jane
## 6 Pride & Prejudice 3 0 austen
## 7 Pride & Prejudice 7 1 chapter
## 8 Pride & Prejudice 7 1 1
## 9 Pride & Prejudice 10 1 it
## 10 Pride & Prejudice 10 1 is
## # ... with 122,194 more rows
afinn <- pride_prejudice %>%
inner_join(get_sentiments("afinn")) %>%
group_by(index = linenumber %/% 80) %>%
summarise(sentiment = sum(value)) %>%
mutate(method = "AFINN")
bing_and_nrc <- bind_rows(pride_prejudice %>%
inner_join(get_sentiments("bing")) %>%
mutate(method = "Bing et al."),
pride_prejudice %>%
inner_join(get_sentiments("nrc") %>%
filter(sentiment %in% c("positive",
"negative"))) %>%
mutate(method = "NRC")) %>%
count(method, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)bind_rows(afinn,
bing_and_nrc) %>%
ggplot(aes(index, sentiment, fill = method)) +
geom_col(show.legend = FALSE) +
facet_wrap(~method, ncol = 1, scales = "free_y")## # A tibble: 2 x 2
## sentiment n
## <chr> <int>
## 1 negative 3324
## 2 positive 2312
## # A tibble: 2 x 2
## sentiment n
## <chr> <int>
## 1 negative 4781
## 2 positive 2005
bing_word_counts <- tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
ungroup()
bing_word_counts## # A tibble: 2,585 x 3
## word sentiment n
## <chr> <chr> <int>
## 1 miss negative 1855
## 2 well positive 1523
## 3 good positive 1380
## 4 great positive 981
## 5 like positive 725
## 6 better positive 639
## 7 enough positive 613
## 8 happy positive 534
## 9 love positive 495
## 10 pleasure positive 462
## # ... with 2,575 more rows
bing_word_counts %>%
group_by(sentiment) %>%
top_n(10) %>%
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(y = "Contribution to sentiment",
x = NULL) +
coord_flip()custom_stop_words <- bind_rows(tibble(word = c("miss"),
lexicon = c("custom")),
stop_words)
custom_stop_words## # A tibble: 1,150 x 2
## word lexicon
## <chr> <chr>
## 1 miss custom
## 2 a SMART
## 3 a's SMART
## 4 able SMART
## 5 about SMART
## 6 above SMART
## 7 according SMART
## 8 accordingly SMART
## 9 across SMART
## 10 actually SMART
## # ... with 1,140 more rows
tidy_books %>%
inner_join(get_sentiments("bing")) %>%
count(word, sentiment, sort = TRUE) %>%
acast(word ~ sentiment, value.var = "n", fill = 0) %>%
comparison.cloud(colors = c("gray20", "gray80"),
max.words = 100)PandP_sentences <- tibble(text = prideprejudice) %>%
unnest_tokens(sentence, text, token = "sentences")
PandP_sentences$sentence[2]## [1] "however little known the feelings or views of such a man may be on his first entering a neighbourhood, this truth is so well fixed in the minds of the surrounding families, that he is considered the rightful property of some one or other of their daughters."
austen_chapters <- austen_books() %>%
group_by(book) %>%
unnest_tokens(chapter, text, token = "regex",
pattern = "Chapter|CHAPTER [\\dIVXLC]") %>%
ungroup()
austen_chapters %>%
group_by(book) %>%
summarise(chapters = n())## # A tibble: 6 x 2
## book chapters
## <fct> <int>
## 1 Sense & Sensibility 51
## 2 Pride & Prejudice 62
## 3 Mansfield Park 49
## 4 Emma 56
## 5 Northanger Abbey 32
## 6 Persuasion 25
bingnegative <- get_sentiments("bing") %>%
filter(sentiment == "negative")
wordcounts <- tidy_books %>%
group_by(book, chapter) %>%
summarize(words = n())
tidy_books %>%
semi_join(bingnegative) %>%
group_by(book, chapter) %>%
summarize(negativewords = n()) %>%
left_join(wordcounts, by = c("book", "chapter")) %>%
mutate(ratio = negativewords/words) %>%
filter(chapter != 0) %>%
top_n(1) %>%
ungroup()## # A tibble: 6 x 5
## book chapter negativewords words ratio
## <fct> <int> <int> <int> <dbl>
## 1 Sense & Sensibility 43 161 3405 0.0473
## 2 Pride & Prejudice 34 111 2104 0.0528
## 3 Mansfield Park 46 173 3685 0.0469
## 4 Emma 15 151 3340 0.0452
## 5 Northanger Abbey 21 149 2982 0.0500
## 6 Persuasion 4 62 1807 0.0343
In this part I want to see if Jules Verne was a more positive or negative writer than Jane Austen. To do this I will look at the same analysis that was done in Chapter 2 of Text Mining with R but substitute the authors. I also want to see if there is a difference in using the loughran lexicon instead of one of the lexicons used in chapter two.
#Jules Verne works
julesverne <- gutenberg_download(c(164,103,18857,3526,1268,2083))
#Verne metadata
verne_metadata <- gutenberg_metadata[
which(gutenberg_metadata$gutenberg_id %in% c(164,103,18857,3526,1268,2083)),
c("gutenberg_id","title")]
#Adding book to title to each jules verne work
verne_books <- merge(julesverne,verne_metadata,by="gutenberg_id")
#Rename title to book
verne_books <- rename(verne_books,c("book" = "title"))
#New lexicon
loughran_sent <- get_sentiments("loughran") %>%
filter(sentiment %in% c("positive","negative"))#Creating the tidy jules verne data set
tidy_verne <- verne_books[,c("text","book")] %>%
group_by(book) %>%
mutate(linenumber = row_number(),
chapter = cumsum(
str_detect(text, regex("^chapter [\\divxlc]", ignore_case = TRUE)))) %>%
ungroup() %>%
unnest_tokens(word, text)
# Updating titles for three books
tidy_verne$book <-
gsub("In Search of the Castaways;.*","In Search of the Castaways",tidy_verne$book)
tidy_verne$book <- gsub("Five Weeks in a Balloon.*","Five Weeks in a Balloon",tidy_verne$book)
tidy_verne$book <- gsub("Twenty Thousand Leagues.*","Twenty Thousand Leagues",tidy_verne$book)twenty_leagues <- tidy_verne %>%
filter(book == "Twenty Thousand Leagues")
afinn2 <- twenty_leagues %>%
inner_join(get_sentiments("afinn")) %>%
group_by(index = linenumber %/% 80) %>%
summarise(sentiment = sum(value)) %>%
mutate(method = "AFINN")
bing_and_nrc2 <-
bind_rows(
twenty_leagues %>%
inner_join(get_sentiments("bing")) %>%
mutate(method = "Bing et al."),
twenty_leagues %>%
inner_join(get_sentiments("nrc") %>%
filter(sentiment %in% c("positive","negative"))) %>%
mutate(method = "NRC")) %>%
count(method, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)
loughran <- twenty_leagues %>%
inner_join(loughran_sent) %>%
mutate(method = "Loughran-McDonald") %>%
count(method,index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive-negative)Because the new lexicon seems to be very negative, using it in addition to a lexicon like NRC which seems to be very positive might be helpful.
#Combine NRC and loughan
loughran_nrc <- rbind(
get_sentiments("nrc") %>%
filter(sentiment %in% c("positive","negative")),
loughran_sent)
#Remove duplicate rows
loughran_nrc <- loughran_nrc %>%
distinct()# Adding the bing sentiment to verne
jules_verne_sentiment <- tidy_verne %>%
anti_join(stop_words) %>%
inner_join(loughran_nrc) %>%
count(book, index = linenumber %/% 80, sentiment) %>%
spread(sentiment, n, fill = 0) %>%
mutate(sentiment = positive - negative)When comparing the Austen sentiment plots and the Verne sentiment plots by book, we see that the Verne books seem to be more negative than the Austen books. If we dig deeper and use the sentiment column we can get a sense of the negative and positive sentiments in the book by assigning a value from -47 to 62 for every 80 lines based on the difference between number of positive and number of negative words per 80 lines.
#Create combined verne-austen loughran data frame
verne_austen_sentiment <- rbind(
jules_verne_sentiment %>%
mutate(author="Jules Verne"),
jane_austen_sentiment_2 %>%
mutate(author="Jane Austen"))Below we can see that the assigned values for Jane Austen novels are generally positive while Jules Verne novels are generally negative. Additionally, on average every 80 lines of a Jane Austen novel holds a positive sentiment of 17.9 while Jules Verne’s novels holds a positive sentiment of 4.22.
When using the Loughran-McDonald lexicon to compare Jane Austin novels with Jules Verne novels, we see that Jules Verne was much more negative in his stories. While both authors showed an average positive sentiment per everu 80 lines, Jane Austen’s was about 4 times more positive than Jules Verne’s. Is this something to do with the genre they wrote in. Jules Verne is known for his science-fiction / adventure novels, while Jane Austen is known for her romantic novels. I don’t believe that the protagonist in Jane Austen’s novels went through less negative feelings than protagonists in Jules Verne’s novels. That would be a grave simplification of each genre and each author. It’s possible that the sentiment of authors during the late 19th century was different than those in the late 18th century. To answer why these authors used different sentiments throughout their novels would require more data and research.
Silge, Julia, and David Robinson. Text Mining with R: A Tidy Approach. , 2017. Internet resource.↩︎
Selected from the following website: Top 10 Books by Jules Verne↩︎