Forward method using confidence intervels
Loading data
library(ggplot2)
library(plotly)
library(dplyr)
Data wrangling
dta <- read.csv("result.csv", header = T)
dta$condition <-
factor(
dta$condition,
levels = c(
"small_difference",
"large_difference",
"mixed_difference",
"nonuniform_difference"
),
labels = c(
"small_difference",
"large_difference",
"mixed_difference",
"nonuniform_difference"
)
)
dta$sample_size <-
factor(
dta$sample_size,
levels = c("250", "500", "1000"),
labels = c("250", "500", "1000")
)
dta$confidence_intervel <-
factor(
dta$confidence_intervel,
levels = c("0.95", "0.99"),
labels = c("0.95", "0.99")
)
Perfect rate plot
p1 <- dta %>% ggplot(aes(x = condition,
y = perfect_rate,
group = sample_size)) +
geom_point(aes(shape = sample_size),
size = 2,
fill = "red") +
geom_line(aes(linetype = sample_size)) +
facet_grid(rows = vars(confidence_intervel))
ggplotly(p1)
## Warning: `group_by_()` is deprecated as of dplyr 0.7.0.
## Please use `group_by()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
Type I error rate plot
p2 <- dta %>% ggplot(aes(x = condition,
y = typei_rate,
group = sample_size)) +
geom_point(aes(shape = sample_size),
size = 2,
fill = "red") +
geom_line(aes(linetype = sample_size)) +
facet_grid(rows = vars(confidence_intervel))
ggplotly(p2)
Type II error rate
p3 <- dta %>% ggplot(aes(x = condition,
y = typeii_rate,
group = sample_size)) +
geom_point(aes(shape = sample_size),
size = 2,
fill = "red") +
geom_line(aes(linetype = sample_size)) +
facet_grid(rows = vars(confidence_intervel))
ggplotly(p3)