Part 1

pf(21186/236, df1=1, df2 = 48, lower.tail = FALSE)
## [1] 1.437227e-12

-Intercept t-value: -2.60
-Speed t-value: 9.46
-Speed p-value: 1.213257e-12
-48 degrees of freedom
-Multiple r^2: .6511
-FStat: 89.57 on 1 and 48 DF
-p-value: 1.49e^-12 -Speed MS: 21186
-Res MS: 236.54
-FStat: 21186/236

Part 2

library(tidyverse)
## ── Attaching packages ───────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.2
## ✓ tidyr   1.1.1     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.0
## ── Conflicts ──────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ISLR)
data("Carseats")
str(Carseats)
## 'data.frame':    400 obs. of  11 variables:
##  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
##  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
##  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
##  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
##  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
##  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
##  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
##  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
##  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
##  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
##  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...

a)

Sales and Price are numerical variables. Urban and US are categorical variables, both with two levels of yes or no.

b)

model = lm(Sales ~ Price + Urban + US, data = Carseats)
summary(model)
## 
## Call:
## lm(formula = Sales ~ Price + Urban + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9206 -1.6220 -0.0564  1.5786  7.0581 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.043469   0.651012  20.036  < 2e-16 ***
## Price       -0.054459   0.005242 -10.389  < 2e-16 ***
## UrbanYes    -0.021916   0.271650  -0.081    0.936    
## USYes        1.200573   0.259042   4.635 4.86e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.472 on 396 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2335 
## F-statistic: 41.52 on 3 and 396 DF,  p-value: < 2.2e-16

c)

-Price: for each additional unit of price, expected sales falls by 0.054.
-UrbanYes: if the seat is ‘Urban’ expected sales falls by about 0.022.
-USYes: if the seat is from the US, expected sales increase by 1.20.

d)

-Equation for UrbanYes = 0 and USYes = 0: \(f(x) = 13.04 - 0.054x\)
-Equation for UrbanYes = 1 and USYes = 0: \(f(x) = 13.04 - 0.054x - 0.022\)
-Equation for UrbanYes = 0 and USYes = 1: \(f(x) = 13.04 - 0.054x + 1.2\)
-Equation for UrbanYes = 1 and USYes = 1: \(f(x) = 13.04 - 0.054x + 1.2 - 0.022\)

e)

Based on their p-values, the null hypothesis would be rejected for the variables of Price and USYes.

f)

model2 = lm(Sales ~ Price + US, data = Carseats)
summary(model2)
## 
## Call:
## lm(formula = Sales ~ Price + US, data = Carseats)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9269 -1.6286 -0.0574  1.5766  7.0515 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.03079    0.63098  20.652  < 2e-16 ***
## Price       -0.05448    0.00523 -10.416  < 2e-16 ***
## USYes        1.19964    0.25846   4.641 4.71e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.469 on 397 degrees of freedom
## Multiple R-squared:  0.2393, Adjusted R-squared:  0.2354 
## F-statistic: 62.43 on 2 and 397 DF,  p-value: < 2.2e-16

g)

anova(model)
## Analysis of Variance Table
## 
## Response: Sales
##            Df  Sum Sq Mean Sq  F value    Pr(>F)    
## Price       1  630.03  630.03 103.0603 < 2.2e-16 ***
## Urban       1    0.10    0.10   0.0158    0.9001    
## US          1  131.31  131.31  21.4802  4.86e-06 ***
## Residuals 396 2420.83    6.11                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(model2)
## Analysis of Variance Table
## 
## Response: Sales
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## Price       1  630.03  630.03 103.319 < 2.2e-16 ***
## US          1  131.37  131.37  21.543 4.707e-06 ***
## Residuals 397 2420.87    6.10                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Both models fit the data well. Based on the residual mean square, the model without Urban has a slightly lower residual mean square because Urban was not a statistically significant predictor of sales.

h)

confint(model, level = .95)
##                   2.5 %      97.5 %
## (Intercept) 11.76359670 14.32334118
## Price       -0.06476419 -0.04415351
## UrbanYes    -0.55597316  0.51214085
## USYes        0.69130419  1.70984121

A confidence interval of 0.95 means that we are 95% confident that the true coefficient is somewhere in the bounds of the two coefficients given in the output. This means for each additional unit of price, we are 95% confident that Sales will decrease from somewhere between 0.064 and 0.044.