Introduction

This is an ongoing report of case series describing COVID+ patients at a single center.

Select the code button in this section to see the R code for dataset construction.

Cohort Selection

# bring in covid
load("./Data/covid_master.RData")
# bring in covid1, cleaned set
load("./Data/covid_cleaned.RData")

mytables <- tableby.control(test = T, total = T, digits = 0, digits.pct = 0)

# Daily and weekly data summary for graphing progress
covid.time.series <- covid %>% filter(is.na(sarscov2_status) == F) %>% filter(is.na(sarscov2_collected_date) == 
    F) %>% filter(sarscov2_collected_date > "2020-03-08" & sarscov2_collected_date < 
    "2020-05-18") %>% filter(is.na(delete) == T)

covid.daily <- covid.time.series %>% group_by(sarscov2_collected_date) %>% summarise(N = n(), 
    Positive = sum(sarscov2_status == "Positive"), Negative = sum(sarscov2_status == 
        "Negative"), Percent.positive = round(Positive/N * 100, digits = 1)) %>% 
    mutate(Cum.N = cumsum(N), Cum.P = cumsum(Positive))

# Weekly data summary for graphing progress and for creating strata for sampling
covid.weekly <- covid.time.series %>% group_by(week) %>% summarise(N = n(), Positive = sum(sarscov2_status == 
    "Positive"), Negative = sum(sarscov2_status == "Negative"), Percent.positive = round(Positive/N * 
    100, digits = 1)) %>% mutate(Cum.N = cumsum(N), Cum.P = cumsum(Positive))

As of 2020-10-29 the total number of observations in dataset = 4402

  • Exclusions:
    • No valid test result (N = 2)
    • No valid test date (N = 145)
    • Test date < March 9 or after May 17 (N = 52)
    • Test date > 5 days after admission (N = 15)
    • Test result not positive for SARS-CoV2 (N = 3950)

Final cohort for all tests analysis N = 4138
Final cohort for COVID+ analysis N = 359

Figures for all COVID Tests

Daily Total

ggplot(covid.daily, aes(x = sarscov2_collected_date)) + geom_bar(aes(y = N), stat = "identity", 
    fill = "dark grey", color = "black") + geom_bar(aes(y = Positive), stat = "identity", 
    fill = "dark red", color = "black") + geom_text(aes(y = N, label = N), nudge_y = 20, 
    angle = 90) + geom_text(aes(y = 0, label = Positive), nudge_y = -20, color = "dark red", 
    angle = 90) + theme_bw() + scale_x_date(breaks = "1 week", date_labels = "%b %d") + 
    labs(title = "Total Daily Tests Performed", x = "Date of SARS-CoV- 2 Test", y = "Number of tests") + 
    theme(axis.title = element_text(size = 14), axis.text.x = element_text(angle = 60, 
        hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Daily Cumulative

ggplot(covid.daily, aes(x = sarscov2_collected_date)) + geom_bar(aes(y = Cum.N), 
    stat = "identity", fill = "dark grey", color = "black") + geom_bar(aes(y = Cum.P), 
    stat = "identity", fill = "dark red", color = "black") + geom_text(aes(y = Cum.N, 
    label = Cum.N), nudge_y = 500, angle = 90, color = "black") + geom_text(aes(y = 0, 
    label = Cum.P), nudge_y = -500, angle = 90, color = "dark red") + theme_bw() + 
    scale_x_date(breaks = "1 week", date_labels = "%b %d") + labs(title = "Cumulative Number of Tests Performed", 
    x = "Date of SARS-CoV- 2 Test", y = "Number of tests") + theme(axis.title = element_text(size = 14), 
    axis.text.x = element_text(angle = 60, hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Daily Percent

ggplot(covid.daily, aes(x = sarscov2_collected_date)) + geom_bar(aes(y = Percent.positive), 
    stat = "identity", fill = "dark red", color = "black") + geom_text(aes(y = Percent.positive, 
    label = Percent.positive), nudge_y = 10, angle = 90) + theme_bw() + scale_x_date(breaks = "1 week", 
    date_labels = "%b %d") + labs(title = "Percent of Daily Tests Performed Resulted Positive", 
    x = "Date of SARS-CoV- 2 Test", y = "%") + theme(axis.title = element_text(size = 14), 
    axis.text.x = element_text(angle = 60, hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Weekly Total

ggplot(covid.weekly, aes(x = week)) + geom_bar(aes(y = N), stat = "identity", fill = "dark grey", 
    color = "black") + geom_bar(aes(y = Positive), stat = "identity", fill = "dark red", 
    color = "black") + geom_text(aes(y = N, label = N), nudge_y = 30, angle = 90) + 
    geom_text(aes(y = 0, label = Positive), nudge_y = -30, color = "dark red", angle = 90) + 
    theme_bw() + # scale_x_date(breaks = '1 week', date_labels = '%b %d')+
labs(title = "Total Weekly Tests Performed", x = "Monday of Week of SARS-CoV- 2 Test", 
    y = "Number of tests") + theme(axis.title = element_text(size = 14), axis.text.x = element_text(angle = 60, 
    hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Weekly Cumulative

ggplot(covid.weekly, aes(x = week)) + geom_bar(aes(y = Cum.N), stat = "identity", 
    fill = "dark grey", color = "black") + geom_bar(aes(y = Cum.P), stat = "identity", 
    fill = "dark red", color = "black") + geom_text(aes(y = Cum.N, label = Cum.N), 
    nudge_y = 1000, angle = 90, color = "black") + geom_text(aes(y = 0, label = Cum.P), 
    nudge_y = -1000, angle = 90, color = "dark red") + theme_bw() + labs(title = "Cumulative Number of Tests Performed", 
    x = "Monday Date of Week of SARS-CoV- 2 Test", y = "Number of tests") + theme(axis.title = element_text(size = 14), 
    axis.text.x = element_text(angle = 60, hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Weekly Percent

ggplot(covid.weekly, aes(x = week)) + geom_bar(aes(y = Percent.positive), stat = "identity", 
    fill = "dark red", color = "black") + geom_text(aes(y = Percent.positive, label = Percent.positive), 
    nudge_y = 10, angle = 90) + theme_bw() + # scale_x_date(breaks = '1 week', date_labels = '%b %d')+
labs(title = "Percent of Weekly Tests Performed Resulted Positive", x = "Monday Date of Week of SARS-CoV- 2 Test", 
    y = "%") + theme(axis.title = element_text(size = 14), axis.text.x = element_text(angle = 60, 
    hjust = 1, size = 12), axis.text.y = element_text(size = 12))


Tables for Mortality

Demographics

summary(tableby(died ~ age + age_cat + sex + race_adj + ethnic + bmi + bmi_cat + 
    covid_contact + home, data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
Age, years < 0.001
   Mean (SD) 55 (17) 73 (12) 58 (18)
   Range 17 - 101 46 - 96 17 - 101
age_cat < 0.001
   <20 7 (2%) 0 (0%) 7 (2%)
   >/=80 19 (6%) 15 (28%) 34 (9%)
   20-39 55 (18%) 0 (0%) 55 (15%)
   40-59 110 (36%) 6 (11%) 116 (32%)
   60-79 115 (38%) 32 (60%) 147 (41%)
Sex 0.028
   Female 142 (46%) 16 (30%) 158 (44%)
   Male 164 (54%) 37 (70%) 201 (56%)
Race 0.514
   N-Miss 1 0 1
   Black 239 (78%) 46 (87%) 285 (80%)
   Other 4 (1%) 0 (0%) 4 (1%)
   Unknown 8 (3%) 1 (2%) 9 (3%)
   White 54 (18%) 6 (11%) 60 (17%)
Ethnicity 0.310
   N-Miss 5 1 6
   Hispanic 38 (13%) 4 (8%) 42 (12%)
   Non-Hispanic 263 (87%) 48 (92%) 311 (88%)
BMI,kg/m2 0.440
   N-Miss 11 1 12
   Mean (SD) 30 (16) 28 (7) 29 (15)
   Range 0 - 239 16 - 44 0 - 239
BMI,kg/m2 categories 0.297
   N-Miss 11 1 12
   <18.5 22 (7%) 4 (8%) 26 (7%)
   18.5-24.9 77 (26%) 20 (38%) 97 (28%)
   25-29.9 82 (28%) 13 (25%) 95 (27%)
   30+ 114 (39%) 15 (29%) 129 (37%)
Contact with suspected/confirmed COVID-19 case 0.045
   N-Miss 1 0 1
   No 218 (71%) 30 (57%) 248 (69%)
   Yes 63 (21%) 14 (26%) 77 (22%)
   Unknown 24 (8%) 9 (17%) 33 (9%)
Housing type < 0.001
   N-Miss 1 0 1
   Correctional facility 14 (5%) 0 (0%) 14 (4%)
   Homeless/shelter 17 (6%) 0 (0%) 17 (5%)
   Long term health facility 7 (2%) 1 (2%) 8 (2%)
   Nursing home 59 (19%) 39 (74%) 98 (27%)
   Stable Home 206 (68%) 13 (25%) 219 (61%)
   Unknown 2 (1%) 0 (0%) 2 (1%)

Comorbidity

summary(tableby(died ~ htn + diabetes + chf + cad + stroke + dementia + ckd + cirrhosis + 
    copd + asthma + other_lung + osa + malignancy + transplant + hiv + art + pregnant, 
    data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
Hypertension 0.001
   No 116 (38%) 8 (15%) 124 (35%)
   Yes 190 (62%) 45 (85%) 235 (65%)
Diabetes mellitus 0.004
   N-Miss 0 1 1
   IDDM 43 (14%) 4 (8%) 47 (13%)
   NIDDM 53 (17%) 11 (21%) 64 (18%)
   No 210 (69%) 35 (67%) 245 (68%)
   Unknown 0 (0%) 2 (4%) 2 (1%)
Congestive heart failure 0.038
   N-Miss 1 1 2
   No 263 (86%) 39 (75%) 302 (85%)
   Yes 42 (14%) 13 (25%) 55 (15%)
Coronary artery disease 0.859
   N-Miss 1 1 2
   No 278 (91%) 47 (90%) 325 (91%)
   Yes 27 (9%) 5 (10%) 32 (9%)
Stroke < 0.001
   No 245 (80%) 27 (51%) 272 (76%)
   Yes 61 (20%) 26 (49%) 87 (24%)
Dementia < 0.001
   No 258 (84%) 24 (45%) 282 (79%)
   Yes 47 (15%) 29 (55%) 76 (21%)
   Unknown 1 (0%) 0 (0%) 1 (0%)
Chronic kidney disease 0.004
   No 253 (83%) 40 (75%) 293 (82%)
   Unknown 0 (0%) 1 (2%) 1 (0%)
   Yes 29 (9%) 11 (21%) 40 (11%)
   Yes, on dialysis 24 (8%) 1 (2%) 25 (7%)
Cirrhosis 0.564
   N-Miss 1 0 1
   No 302 (99%) 52 (98%) 354 (99%)
   Yes 3 (1%) 1 (2%) 4 (1%)
COPD 0.277
   No 289 (94%) 48 (91%) 337 (94%)
   Yes 17 (6%) 5 (9%) 22 (6%)
Asthma 0.236
   No 280 (92%) 51 (96%) 331 (92%)
   Yes 26 (8%) 2 (4%) 28 (8%)
Structural lung disease 0.740
   No 302 (99%) 52 (98%) 354 (99%)
   Yes 4 (1%) 1 (2%) 5 (1%)
OSA/OHS 0.678
   N-Miss 2 0 2
   No 288 (95%) 49 (92%) 337 (94%)
   Yes 15 (5%) 4 (8%) 19 (5%)
   Unknown 1 (0%) 0 (0%) 1 (0%)
Malignancy 0.780
   N-Miss 1 0 1
   Current 10 (3%) 1 (2%) 11 (3%)
   No 286 (94%) 51 (96%) 337 (94%)
   Prior 9 (3%) 1 (2%) 10 (3%)
Solid organ or stem cell transplant 0.677
   No 305 (100%) 53 (100%) 358 (100%)
   Yes 1 (0%) 0 (0%) 1 (0%)
HIV/AIDs 0.283
   No 292 (95%) 53 (100%) 345 (96%)
   Yes 13 (4%) 0 (0%) 13 (4%)
   Unknown 1 (0%) 0 (0%) 1 (0%)
Prescribed antiretroviral therapy
   N-Miss 293 53 346
   No 1 (8%) 0 1 (8%)
   Yes 12 (92%) 0 12 (92%)
Pregnant 0.300
   N-Miss 164 37 201
   No 133 (94%) 16 (100%) 149 (94%)
   Yes 9 (6%) 0 (0%) 9 (6%)

Symptoms

summary(tableby(died ~ time2test + time2hospital + fever + cough + sob + myalgias + 
    chills + fatigue + sore_throat + diarrhea + nausea + vomit + headache + anosmia + 
    ageusia + abdominal_pain + ams, data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
ED to test date, days 0.912
   Mean (SD) 0 (1) 0 (1) 0 (1)
   Range -4 - 4 0 - 4 -4 - 4
Symptoms to ED, days < 0.001
   N-Miss 5 2 7
   Mean (SD) 6 (7) 2 (4) 5 (7)
   Range -3 - 61 -3 - 21 -3 - 61
Fever < 0.001
   N-Miss 2 0 2
   No 128 (42%) 13 (25%) 141 (39%)
   Yes 153 (50%) 22 (42%) 175 (49%)
   Unknown 23 (8%) 18 (34%) 41 (11%)
Cough < 0.001
   N-Miss 1 0 1
   No 93 (30%) 13 (25%) 106 (30%)
   Yes 189 (62%) 17 (32%) 206 (58%)
   Unknown 23 (8%) 23 (43%) 46 (13%)
Dyspnea < 0.001
   N-Miss 2 0 2
   No 136 (45%) 12 (23%) 148 (41%)
   Yes 145 (48%) 28 (53%) 173 (48%)
   Unknown 23 (8%) 13 (25%) 36 (10%)
Myalgias < 0.001
   N-Miss 2 0 2
   No 175 (58%) 19 (36%) 194 (54%)
   Yes 99 (33%) 7 (13%) 106 (30%)
   Unknown 30 (10%) 27 (51%) 57 (16%)
Chills < 0.001
   N-Miss 1 0 1
   No 187 (61%) 21 (40%) 208 (58%)
   Yes 88 (29%) 8 (15%) 96 (27%)
   Unknown 30 (10%) 24 (45%) 54 (15%)
Fatigue < 0.001
   N-Miss 1 0 1
   No 168 (55%) 16 (30%) 184 (51%)
   Yes 107 (35%) 10 (19%) 117 (33%)
   Unknown 30 (10%) 27 (51%) 57 (16%)
Sore throat < 0.001
   N-Miss 1 0 1
   No 246 (81%) 24 (45%) 270 (75%)
   Yes 29 (10%) 2 (4%) 31 (9%)
   Unknown 30 (10%) 27 (51%) 57 (16%)
Diarrhea < 0.001
   N-Miss 1 0 1
   No 200 (66%) 23 (43%) 223 (62%)
   Yes 78 (26%) 5 (9%) 83 (23%)
   Unknown 27 (9%) 25 (47%) 52 (15%)
Nausea < 0.001
   N-Miss 1 0 1
   No 215 (70%) 25 (47%) 240 (67%)
   Yes 62 (20%) 3 (6%) 65 (18%)
   Unknown 28 (9%) 25 (47%) 53 (15%)
Vomiting < 0.001
   N-Miss 1 0 1
   No 237 (78%) 25 (47%) 262 (73%)
   Yes 41 (13%) 4 (8%) 45 (13%)
   Unknown 27 (9%) 24 (45%) 51 (14%)
Headache < 0.001
   N-Miss 2 0 2
   No 224 (74%) 26 (49%) 250 (70%)
   Yes 50 (16%) 0 (0%) 50 (14%)
   Unknown 30 (10%) 27 (51%) 57 (16%)
Loss of smell < 0.001
   N-Miss 1 0 1
   No 257 (84%) 25 (47%) 282 (79%)
   Yes 17 (6%) 0 (0%) 17 (5%)
   Unknown 31 (10%) 28 (53%) 59 (16%)
Loss of taste < 0.001
   N-Miss 1 0 1
   No 249 (82%) 26 (49%) 275 (77%)
   Yes 25 (8%) 0 (0%) 25 (7%)
   Unknown 31 (10%) 27 (51%) 58 (16%)
Abdominal pain < 0.001
   N-Miss 3 0 3
   No 236 (78%) 25 (47%) 261 (73%)
   Yes 39 (13%) 2 (4%) 41 (12%)
   Unknown 28 (9%) 26 (49%) 54 (15%)
Altered mental status on presentation < 0.001
   N-Miss 1 0 1
   No 245 (80%) 18 (34%) 263 (73%)
   Yes 58 (19%) 35 (66%) 93 (26%)
   Unknown 2 (1%) 0 (0%) 2 (1%)

Initial Values

summary(tableby(died ~ temp_max + temp_min + hr_max + hr_min + sbp_min + max_map + 
    min_map + rr_max + rr_min + sao2_min + sao2_fio2 + dopamine_sofa + dobutamine_sofa + 
    epinepherine_sofa + norepinephrine_sofa + na + k + creatinine + alt + ast + tbili + 
    lactate + wbc + hgb + hct + platelets + lymphocytes + abg_pao2 + abg_paco2 + 
    abg_spo2 + abg_ph, data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
Temperature maximum, °C 0.905
   N-Miss 1 1 2
   Mean (SD) 38 (4) 38 (1) 38 (4)
   Range 15 - 101 36 - 40 15 - 101
Temperature minimum, °C 0.277
   N-Miss 1 1 2
   Mean (SD) 37 (4) 36 (1) 37 (3)
   Range 34 - 99 33 - 38 33 - 99
Heart rate maximum, bpm 0.003
   N-Miss 1 1 2
   Mean (SD) 101 (19) 110 (18) 103 (19)
   Range 36 - 168 73 - 158 36 - 168
Heart rate minimum, bpm 0.288
   N-Miss 1 1 2
   Mean (SD) 75 (15) 77 (13) 75 (14)
   Range 41 - 127 44 - 106 41 - 127
Systolic blood pressure minimum, mm Hg < 0.001
   N-Miss 1 1 2
   Mean (SD) 112 (18) 97 (20) 110 (19)
   Range 63 - 180 32 - 146 32 - 180
Mean arterial pressure maximum, mm Hg 0.035
   N-Miss 2 1 3
   Mean (SD) 107 (17) 112 (19) 108 (17)
   Range 65 - 166 83 - 196 65 - 196
Mean arterial pressure minimum, mm Hg < 0.001
   N-Miss 2 1 3
   Mean (SD) 78 (13) 69 (15) 77 (14)
   Range 42 - 136 27 - 98 27 - 136
Respiratory rate maximum, bpm < 0.001
   N-Miss 1 1 2
   Mean (SD) 26 (7) 31 (8) 26 (8)
   Range 11 - 54 12 - 51 11 - 54
Respiratory rate minimum, bpm < 0.001
   N-Miss 1 1 2
   Mean (SD) 15 (3) 18 (8) 16 (4)
   Range 5 - 34 9 - 65 5 - 65
Oxygen saturation minimum, % < 0.001
   N-Miss 1 1 2
   Mean (SD) 93 (5) 88 (7) 92 (6)
   Range 55 - 100 58 - 97 55 - 100
FiO2 at saturation minimum, decimal < 0.001
   N-Miss 4 1 5
   Mean (SD) 0 (0) 1 (0) 0 (0)
   Range 0 - 1 0 - 1 0 - 1
Dopamine < 0.001
   N-Miss 3 1 4
   No 303 (100%) 52 (100%) 355 (100%)
Dobutamine < 0.001
   N-Miss 2 1 3
   No 304 (100%) 52 (100%) 356 (100%)
Epinepherine < 0.001
   N-Miss 2 0 2
   No 303 (100%) 49 (92%) 352 (99%)
   Yes 1 (0%) 4 (8%) 5 (1%)
Norepinephrine < 0.001
   N-Miss 2 0 2
   No 296 (97%) 42 (79%) 338 (95%)
   Yes 8 (3%) 11 (21%) 19 (5%)
Initial Sodium, meql/L < 0.001
   N-Miss 17 1 18
   Mean (SD) 138 (6) 144 (7) 139 (6)
   Range 119 - 168 134 - 158 119 - 168
Initial Potassium, meq/L 0.003
   N-Miss 17 1 18
   Mean (SD) 4 (1) 4 (1) 4 (1)
   Range 2 - 8 3 - 8 2 - 8
Initial Creatinine, mg/dL 0.081
   N-Miss 17 1 18
   Mean (SD) 2 (3) 3 (3) 2 (3)
   Range 0 - 15 0 - 18 0 - 18
ALT initial, IU/L < 0.001
   N-Miss 20 2 22
   Mean (SD) 31 (37) 56 (64) 35 (43)
   Range 3 - 452 7 - 310 3 - 452
AST initial, IU/L < 0.001
   N-Miss 20 2 22
   Mean (SD) 42 (77) 92 (108) 49 (84)
   Range 5 - 1197 15 - 578 5 - 1197
Total bilirubin initial, mg/dL 0.400
   N-Miss 20 2 22
   Mean (SD) 1 (0) 1 (0) 1 (0)
   Range 0 - 3 0 - 2 0 - 3
Lactate initial, mmol/L < 0.001
   N-Miss 161 6 167
   Mean (SD) 2 (1) 4 (3) 3 (2)
   Range 0 - 10 1 - 15 0 - 15
WBC count initial, K/mcL 0.022
   N-Miss 14 1 15
   Mean (SD) 7 (3) 8 (4) 7 (3)
   Range 1 - 28 2 - 19 1 - 28
Hemoglobin initial, g/dL 0.698
   N-Miss 14 1 15
   Mean (SD) 13 (2) 12 (3) 13 (2)
   Range 5 - 17 6 - 17 5 - 17
Hematocrit initial, % 0.613
   N-Miss 14 1 15
   Mean (SD) 38 (7) 39 (8) 38 (7)
   Range 10 - 54 17 - 53 10 - 54
Platelet Count initial, K/mcL 0.673
   N-Miss 14 1 15
   Mean (SD) 233 (93) 227 (114) 232 (97)
   Range 13 - 675 55 - 742 13 - 742
Lymphocytes initial, K/mcL 0.213
   N-Miss 22 2 24
   Mean (SD) 1 (1) 1 (2) 1 (1)
   Range 0 - 5 0 - 10 0 - 10
PA02 initial, mm Hg 0.286
   N-Miss 263 25 288
   Mean (SD) 104 (48) 120 (77) 110 (61)
   Range 33 - 234 32 - 346 32 - 346
PAC02 initial, mm Hg 0.846
   N-Miss 263 25 288
   Mean (SD) 38 (9) 39 (15) 38 (12)
   Range 20 - 68 21 - 92 20 - 92
Arterial SpO2 initial, % 0.419
   N-Miss 264 27 291
   Mean (SD) 93 (9) 91 (12) 93 (10)
   Range 50 - 99 38 - 99 38 - 99
pH initial 0.300
   N-Miss 263 25 288
   Mean (SD) 7 (0) 7 (0) 7 (0)
   Range 7 - 8 7 - 8 7 - 8

Extreme Values

summary(tableby(died ~ max_creat + cpk_max + troponin_max + bnp_max + crp_max + ldh_max + 
    hgb_a1c_max + ferritin_max + alt_max + ast_max + lactate_max + min_lymp + ddimer_max, 
    data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
Creatinine maximum, mg/dL 0.002
   N-Miss 17 1 18
   Mean (SD) 2 (3) 4 (3) 2 (3)
   Range 0 - 18 1 - 18 0 - 18
CPK maximum, U/L 0.899
   N-Miss 222 14 236
   Mean (SD) 1213 (5502) 1329 (2046) 1250 (4680)
   Range 0 - 50000 0 - 8613 0 - 50000
Troponin-I maximum, ng/mL 0.087
   N-Miss 114 6 120
   Mean (SD) 0 (1) 1 (1) 0 (1)
   Range 0 - 16 0 - 8 0 - 16
BNP maximum, pg/mL 0.307
   N-Miss 186 14 200
   Mean (SD) 442 (1246) 233 (396) 390 (1102)
   Range 6 - 7906 14 - 2274 6 - 7906
HS-CRP maximum, mg/L < 0.001
   N-Miss 173 18 191
   Mean (SD) 109 (88) 187 (66) 125 (89)
   Range 0 - 240 0 - 240 0 - 240
Lactate dehydrogenase maximum, U/L 0.001
   N-Miss 134 12 146
   Mean (SD) 335 (187) 782 (1787) 421 (813)
   Range 0 - 1518 237 - 11894 0 - 11894
Hemoglobin A1c maximum, % 0.568
   N-Miss 191 30 221
   Mean (SD) 7 (3) 7 (3) 7 (3)
   Range 0 - 17 0 - 14 0 - 17
Ferritin maximum, ng/mL 0.004
   N-Miss 185 20 205
   Mean (SD) 945 (1553) 2304 (4169) 1236 (2417)
   Range 0 - 9751 52 - 15000 0 - 15000
ALT maximum, IU/L < 0.001
   N-Miss 20 1 21
   Mean (SD) 74 (451) 500 (1524) 140 (740)
   Range 6 - 7500 8 - 7500 6 - 7500
AST maximum, IU/L < 0.001
   N-Miss 20 1 21
   Mean (SD) 70 (187) 1058 (3258) 222 (1328)
   Range 8 - 2585 19 - 16762 8 - 16762
Lactate maximum, mmol/L < 0.001
   N-Miss 156 2 158
   Mean (SD) 2 (1) 6 (6) 3 (4)
   Range 1 - 10 1 - 30 1 - 30
Lymphocytes minimum, K/mcL 0.042
   N-Miss 21 2 23
   Mean (SD) 1 (1) 1 (1) 1 (1)
   Range 0 - 5 0 - 10 0 - 10
D-dimer maximum, ng/mL < 0.001
   N-Miss 154 8 162
   Mean (SD) 5991 (16023) 22394 (37365) 9738 (23641)
   Range 250 - 128000 471 - 128000 250 - 128000

Radiology

summary(tableby(died ~ cxr_done + cxr_abnormal + cxr_atelectasis + cxr_bilateral + 
    cxr_cavity + cxr_consolidation + cxr_interstital + cxr_mass + cxr_multifocal + 
    cxr_effusion + cxr_nodule + ct_done + us_done + vq_done + tte_done, data = covid1, 
    control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
CXR performed 0.230
   No 18 (6%) 1 (2%) 19 (5%)
   Yes 288 (94%) 52 (98%) 340 (95%)
CXR abnormal < 0.001
   N-Miss 18 1 19
   No 94 (33%) 4 (8%) 98 (29%)
   Yes 194 (67%) 48 (92%) 242 (71%)
Atelectasis 0.683
   N-Miss 18 1 19
   No 202 (70%) 35 (67%) 237 (70%)
   Yes 86 (30%) 17 (33%) 103 (30%)
Bilateral Opacities, not effusions 0.004
   N-Miss 18 1 19
   No 168 (58%) 19 (37%) 187 (55%)
   Yes 120 (42%) 33 (63%) 153 (45%)
Cavity/abscess < 0.001
   N-Miss 18 1 19
   No 288 (100%) 52 (100%) 340 (100%)
Consolidation 0.050
   N-Miss 18 1 19
   No 271 (94%) 45 (87%) 316 (93%)
   Yes 17 (6%) 7 (13%) 24 (7%)
Interstitial 0.300
   N-Miss 19 1 20
   No 257 (90%) 44 (85%) 301 (89%)
   Yes 30 (10%) 8 (15%) 38 (11%)
Mass/mass-like 0.018
   N-Miss 18 1 19
   No 288 (100%) 51 (98%) 339 (100%)
   Yes 0 (0%) 1 (2%) 1 (0%)
Multifocal 0.018
   N-Miss 18 1 19
   No 248 (86%) 38 (73%) 286 (84%)
   Yes 40 (14%) 14 (27%) 54 (16%)
Pleural effusion < 0.001
   N-Miss 19 1 20
   No 273 (95%) 39 (75%) 312 (92%)
   Yes 14 (5%) 13 (25%) 27 (8%)
Reticulonodular 0.933
   N-Miss 21 1 22
   No 280 (98%) 51 (98%) 331 (98%)
   Yes 5 (2%) 1 (2%) 6 (2%)
Chest CT performed 0.152
   No 237 (77%) 36 (68%) 273 (76%)
   Yes, with IV contrast 50 (16%) 10 (19%) 60 (17%)
   Yes, without IV contrast 19 (6%) 7 (13%) 26 (7%)
Ultrasound of extremities performed < 0.001
   N-Miss 1 0 1
   No 268 (88%) 35 (66%) 303 (85%)
   Yes 37 (12%) 18 (34%) 55 (15%)
VQ scan performed < 0.001
   N-Miss 0 1 1
   No 306 (100%) 52 (100%) 358 (100%)
TTE performed < 0.001
   N-Miss 1 0 1
   No 242 (79%) 28 (53%) 270 (75%)
   Yes 63 (21%) 25 (47%) 88 (25%)

Microbiology

summary(tableby(died ~ sars_samples + blood_cx + resp_cx + procal_72 + influenza + 
    legionella + hiv_test_alt + hiv_vl + cd4, data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
Number of SARS-CoV-2 tests 0.802
   N-Miss 1 0 1
   Mean (SD) 2 (2) 2 (1) 2 (2)
   Range 0 - 15 1 - 7 0 - 15
Blood cultures in first 48 hours < 0.001
   N-Miss 2 0 2
   Negative 118 (39%) 38 (72%) 156 (44%)
   Not done 174 (57%) 7 (13%) 181 (51%)
   Positive 12 (4%) 8 (15%) 20 (6%)
Respiratory cultures in first 48 hours < 0.001
   N-Miss 3 0 3
   Negative 21 (7%) 7 (13%) 28 (8%)
   Not done 279 (92%) 41 (77%) 320 (90%)
   Positive 3 (1%) 5 (9%) 8 (2%)
Procalcitonin initial (48h), ng/mL 0.803
   N-Miss 179 16 195
   Mean (SD) 3 (16) 3 (7) 3 (14)
   Range 0 - 164 0 - 28 0 - 164
Influenza PCR 0.046
   N-Miss 4 2 6
   A/B+ 81 (27%) 7 (14%) 88 (25%)
   Not Done 221 (73%) 44 (86%) 265 (75%)
Legionella urine antigen 0.043
   Negative 29 (9%) 10 (19%) 39 (11%)
   Not done 277 (91%) 43 (81%) 320 (89%)
HIV test 0.042
   N-Miss 1 0 1
   Current or Prior negative < 1 year 132 (43%) 16 (30%) 148 (41%)
   Current or Prior Positive 12 (4%) 0 (0%) 12 (3%)
   Not done, no prior 161 (53%) 37 (70%) 198 (55%)
Viral load undetectable
   N-Miss 294 53 347
   No 6 (50%) 0 6 (50%)
   Yes 5 (42%) 0 5 (42%)
   Not done 1 (8%) 0 1 (8%)
CD4, K/L
   N-Miss 296 53 349
   Mean (SD) 314 (269) NA 314 (269)
   Range 75 - 874 NA 75 - 874

Drugs

summary(tableby(died ~ covid_tx___1 + covid_tx___2 + covid_tx___3 + covid_tx___4 + 
    covid_tx___5 + covid_tx___0 + abx_received___1 + abx_received___2 + abx_received___3 + 
    abx_received___4 + abx_received___5 + abx_received___6 + abx_received___7 + abx_other + 
    steroid + anticoagulation, data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
Redesmivir, on clinical trial 0.014
   No 298 (97%) 48 (91%) 346 (96%)
   Yes 8 (3%) 5 (9%) 13 (4%)
Redesmivir, not on clinical trial 0.677
   No 305 (100%) 53 (100%) 358 (100%)
   Yes 1 (0%) 0 (0%) 1 (0%)
Lopinavir/ritonavir 0.677
   No 305 (100%) 53 (100%) 358 (100%)
   Yes 1 (0%) 0 (0%) 1 (0%)
Hydroxycloroquine 0.363
   No 268 (88%) 44 (83%) 312 (87%)
   Yes 38 (12%) 9 (17%) 47 (13%)
Tocilizumab 0.159
   No 305 (100%) 52 (98%) 357 (99%)
   Yes 1 (0%) 1 (2%) 2 (1%)
No SARS-CoV-2 Therapies 0.016
   Mean (SD) 1 (0) 1 (0) 1 (0)
   Range 0 - 1 0 - 1 0 - 1
Azithromycin 0.018
   No 207 (68%) 27 (51%) 234 (65%)
   Yes 99 (32%) 26 (49%) 125 (35%)
Ceftriaxone 0.060
   No 208 (68%) 29 (55%) 237 (66%)
   Yes 98 (32%) 24 (45%) 122 (34%)
Doxycycline 0.297
   No 293 (96%) 49 (92%) 342 (95%)
   Yes 13 (4%) 4 (8%) 17 (5%)
ESBLactam < 0.001
   No 261 (85%) 24 (45%) 285 (79%)
   Yes 45 (15%) 29 (55%) 74 (21%)
Fluoroquinolone 0.562
   No 303 (99%) 52 (98%) 355 (99%)
   Yes 3 (1%) 1 (2%) 4 (1%)
Vancomycin < 0.001
   No 256 (84%) 23 (43%) 279 (78%)
   Yes 50 (16%) 30 (57%) 80 (22%)
Other Antibiotic 0.505
   No 280 (92%) 47 (89%) 327 (91%)
   Yes 26 (8%) 6 (11%) 32 (9%)
Other Antibiotics description 0.360
   N-Miss 282 47 329
   Acyclovir 1 (4%) 0 (0%) 1 (3%)
   acyclovir (home med) 1 (4%) 0 (0%) 1 (3%)
   amoxicillin 1 (4%) 0 (0%) 1 (3%)
   Amoxicillin-clavulanate 1 (4%) 0 (0%) 1 (3%)
   ampicillin 1 (4%) 0 (0%) 1 (3%)
   Augmentin 3 (12%) 0 (0%) 3 (10%)
   aztreonam 1 (4%) 0 (0%) 1 (3%)
   Bactrim 1 (4%) 0 (0%) 1 (3%)
   Bactrim (HIV prophylactic dose) 1 (4%) 0 (0%) 1 (3%)
   Cefazolin 1 (4%) 1 (17%) 2 (7%)
   cefazolin (peri-op) 1 (4%) 0 (0%) 1 (3%)
   cefazolin, cefoxitin 1 (4%) 0 (0%) 1 (3%)
   Cefepime 1 (4%) 0 (0%) 1 (3%)
   Cefuroxime 1 (4%) 0 (0%) 1 (3%)
   Dapsone 1 (4%) 0 (0%) 1 (3%)
   flagyl (empiric treatment for STIs, pyuria) 1 (4%) 0 (0%) 1 (3%)
   Linezolid, clindamycin, Tobramycin 0 (0%) 1 (17%) 1 (3%)
   metronidazole 4 (17%) 0 (0%) 4 (13%)
   Metronidazole 1 (4%) 1 (17%) 2 (7%)
   Nitrofurantoin 1 (4%) 0 (0%) 1 (3%)
   tobramycin 0 (0%) 1 (17%) 1 (3%)
   Tobramycin 0 (0%) 1 (17%) 1 (3%)
   tobramycin, aztrenam 0 (0%) 1 (17%) 1 (3%)
Steroid Combined < 0.001
   N-Miss 3 2 5
   No 277 (91%) 35 (69%) 312 (88%)
   Yes 26 (9%) 16 (31%) 42 (12%)
Therapeutic anticoagulation < 0.001
   No 247 (81%) 30 (57%) 277 (77%)
   Yes, chronic 22 (7%) 3 (6%) 25 (7%)
   Yes, new 37 (12%) 20 (38%) 57 (16%)

Other Tx & Dispo

summary(tableby(died ~ patient_location + admit_loc + admit_service + fu_loc + hosp_los + 
    icu_los + hfnc + niv + ett + extubated + rrt + arrest + discharge_hai + discharge_disposition + 
    discharge_o2 + discharge_hd, data = covid1, control = mytables))
Alive (N=306) Died (N=53) Total (N=359) p value
SARS-CoV-2 Location < 0.001
   ECC/Hospital 306 (100%) 53 (100%) 359 (100%)
Admission Level of Care < 0.001
   Discharged from ED 67 (22%) 2 (4%) 69 (19%)
   General 184 (60%) 20 (38%) 204 (57%)
   Intensive 21 (7%) 21 (40%) 42 (12%)
   Intermediate 34 (11%) 10 (19%) 44 (12%)
Admission Service 0.013
   N-Miss 1 0 1
   ECC/Hospital 67 (22%) 2 (4%) 69 (19%)
   Medical 219 (72%) 50 (94%) 269 (75%)
   Neurology 1 (0%) 0 (0%) 1 (0%)
   Other 7 (2%) 0 (0%) 7 (2%)
   Surgical 11 (4%) 1 (2%) 12 (3%)
Highest Level of Care < 0.001
   N-Miss 1 1 2
   ECC 67 (22%) 2 (4%) 69 (19%)
   General 168 (55%) 8 (15%) 176 (49%)
   Intensive 34 (11%) 35 (67%) 69 (19%)
   Intermediate 36 (12%) 7 (13%) 43 (12%)
Hospital LOS 0.377
   N-Miss 2 1 3
   Mean (SD) 9 (14) 11 (8) 9 (13)
   Range 0 - 123 0 - 37 0 - 123
ICU LOS 0.359
   N-Miss 272 18 290
   Mean (SD) 14 (15) 113 (622) 64 (443)
   Range 1 - 61 0 - 3688 0 - 3688
High flow nasal cannula < 0.001
   N-Miss 2 0 2
   No 282 (93%) 29 (55%) 311 (87%)
   Yes 22 (7%) 24 (45%) 46 (13%)
Non-invasive ventilation 0.200
   N-Miss 2 0 2
   Mean (SD) 0 (0) 0 (0) 0 (0)
   Range 0 - 1 0 - 1 0 - 1
Endotracheal intubation < 0.001
   No 280 (92%) 23 (43%) 303 (84%)
   Yes 26 (8%) 30 (57%) 56 (16%)
Disposition of ETT < 0.001
   N-Miss 0 3 3
   Discharged with ETT 1 (0%) 1 (2%) 2 (1%)
   Extubated < 24 hours before death/hospice 0 (0%) 5 (10%) 5 (1%)
   No ETT 280 (92%) 23 (46%) 303 (85%)
   Other 0 (0%) 1 (2%) 1 (0%)
   Present at death 0 (0%) 17 (34%) 17 (5%)
   Removed for tracheostomy 4 (1%) 0 (0%) 4 (1%)
   To spontaneous breathing 21 (7%) 3 (6%) 24 (7%)
Renal replacement therapy < 0.001
   N-Miss 1 0 1
   Continuous 4 (1%) 6 (11%) 10 (3%)
   Intermittent 11 (4%) 3 (6%) 14 (4%)
   No 290 (95%) 44 (83%) 334 (93%)
Cardiac Arrest < 0.001
   N-Miss 1 0 1
   No 301 (99%) 38 (72%) 339 (95%)
   Yes 4 (1%) 15 (28%) 19 (5%)
Hospital-Acquired Infection 0.896
   N-Miss 1 1 2
   No 279 (91%) 48 (92%) 327 (92%)
   Yes 16 (5%) 2 (4%) 18 (5%)
   Unknown 10 (3%) 2 (4%) 12 (3%)
Discharge disposition detail < 0.001
   AMA 4 (1%) 0 (0%) 4 (1%)
   Died 0 (0%) 31 (58%) 31 (9%)
   Home 231 (75%) 0 (0%) 231 (64%)
   Hospice 0 (0%) 22 (42%) 22 (6%)
   Long-term Acute Care (LTAC) 3 (1%) 0 (0%) 3 (1%)
   Nursing Home/Rehabilitation Facility 64 (21%) 0 (0%) 64 (18%)
   Transfer to the hospital 4 (1%) 0 (0%) 4 (1%)
New or increased oxygen requirement at discharge/death < 0.001
   N-Miss 1 0 1
   No 291 (95%) 5 (9%) 296 (83%)
   Yes 13 (4%) 46 (87%) 59 (16%)
   Unknown 1 (0%) 2 (4%) 3 (1%)
New HD requirement at discharge/death < 0.001
   N-Miss 1 0 1
   No 304 (100%) 47 (89%) 351 (98%)
   Yes 1 (0%) 6 (11%) 7 (2%)

Exploratory Figures for Markers of Mortality

Age

mort_na = glm(died.numeric ~ age, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$age), mort_na$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Age")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

na

mort_na = glm(died.numeric ~ na, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$na), mort_na$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial na")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

k

mort_k = glm(died.numeric ~ k, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$k), mort_k$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial k")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

max_creat

mort_max_creat = glm(died.numeric ~ max_creat, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$max_creat), mort_max_creat$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "max_creat")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

troponin_max

mort_troponin_max = glm(died.numeric ~ troponin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$troponin_max), mort_troponin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "troponin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

bnp_max

mort_bnp_max = glm(died.numeric ~ bnp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$bnp_max), mort_bnp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "bnp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ldh_max

mort_ldh_max = glm(died.numeric ~ ldh_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ldh_max), mort_ldh_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "ldh_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb_a1c_max

mort_hgb_a1c_max = glm(died.numeric ~ hgb_a1c_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb_a1c_max), mort_hgb_a1c_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "hgb_a1c_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ferritin_max

mort_ferritin_max = glm(died.numeric ~ ferritin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ferritin_max), mort_ferritin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "ferritin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

AST

mort_ast = glm(died.numeric ~ ast, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast), mort_ast$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial AST")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ALT

mort_alt = glm(died.numeric ~ alt, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt), mort_alt$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial alt")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

alt_max

mort_alt_max = glm(died.numeric ~ alt_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt_max), mort_alt_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "alt_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ast_max

mort_ast_max = glm(died.numeric ~ ast_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast_max), mort_ast_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "ast_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

tbili

mort_tbili = glm(died.numeric ~ tbili, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$tbili), mort_tbili$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial tbili")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

creatinine

mort_creatinine = glm(died.numeric ~ creatinine, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$creatinine), mort_creatinine$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial creatinine")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lactate

mort_lactate = glm(died.numeric ~ lactate, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate), mort_lactate$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial Lactate")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

lactate_max

mort_lactate_max = glm(died.numeric ~ lactate_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate_max), mort_lactate_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "lactate_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb

mort_hgb = glm(died.numeric ~ hgb, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb), mort_hgb$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hgb")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hct

mort_hct = glm(died.numeric ~ hct, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hct), mort_hct$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hct")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

WBC

mort_wbc = glm(died.numeric ~ wbc, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$wbc), mort_wbc$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial wbc")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lymphs

mort_lymphocytes = glm(died.numeric ~ lymphocytes, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lymphocytes), mort_lymphocytes$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial lymphocytes")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

min_lymp

mort_min_lymp = glm(died.numeric ~ min_lymp, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$min_lymp), mort_min_lymp$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "min_lymp")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Procalcitonin

mort_procal_72 = glm(died.numeric ~ procal_72, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$procal_72), mort_procal_72$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial procal_72")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

CRP

mort_crp_max = glm(died.numeric ~ crp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$crp_max), mort_crp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "max crp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

DDimer

mort_ddimer_max = glm(died.numeric ~ ddimer_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ddimer_max), mort_ddimer_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "max ddimer_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Exploratory Figures for Markers of Mortality, Age-Adjusted

na

mort_na = glm(died.numeric ~ age + na, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$na), mort_na$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial na")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

k

mort_k = glm(died.numeric ~ age + k, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$k), mort_k$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial k")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

max_creat

mort_max_creat = glm(died.numeric ~ age + max_creat, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$max_creat), mort_max_creat$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "max_creat")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

troponin_max

mort_troponin_max = glm(died.numeric ~ age + troponin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$troponin_max), mort_troponin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "troponin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

bnp_max

mort_bnp_max = glm(died.numeric ~ age + bnp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$bnp_max), mort_bnp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "bnp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ldh_max

mort_ldh_max = glm(died.numeric ~ age + ldh_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ldh_max), mort_ldh_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "ldh_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb_a1c_max

mort_hgb_a1c_max = glm(died.numeric ~ age + hgb_a1c_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb_a1c_max), mort_hgb_a1c_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "hgb_a1c_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ferritin_max

mort_ferritin_max = glm(died.numeric ~ age + ferritin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ferritin_max), mort_ferritin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "ferritin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

AST

mort_ast = glm(died.numeric ~ age + ast, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast), mort_ast$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial AST")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ALT

mort_alt = glm(died.numeric ~ age + alt, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt), mort_alt$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial alt")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

alt_max

mort_alt_max = glm(died.numeric ~ age + alt_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt_max), mort_alt_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "alt_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ast_max

mort_ast_max = glm(died.numeric ~ age + ast_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast_max), mort_ast_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "ast_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

tbili

mort_tbili = glm(died.numeric ~ age + tbili, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$tbili), mort_tbili$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial tbili")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

creatinine

mort_creatinine = glm(died.numeric ~ age + creatinine, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$creatinine), mort_creatinine$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial creatinine")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lactate

mort_lactate = glm(died.numeric ~ age + lactate, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate), mort_lactate$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial Lactate")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

lactate_max

mort_lactate_max = glm(died.numeric ~ age + lactate_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate_max), mort_lactate_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "lactate_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb

mort_hgb = glm(died.numeric ~ age + hgb, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb), mort_hgb$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hgb")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hct

mort_hct = glm(died.numeric ~ age + hct, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hct), mort_hct$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hct")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

WBC

mort_wbc = glm(died.numeric ~ age + wbc, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$wbc), mort_wbc$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial wbc")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lymphs

mort_lymphocytes = glm(died.numeric ~ age + lymphocytes, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lymphocytes), mort_lymphocytes$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial lymphocytes")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

min_lymp

mort_min_lymp = glm(died.numeric ~ age + min_lymp, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$min_lymp), mort_min_lymp$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "min_lymp")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Procalcitonin

mort_procal_72 = glm(died.numeric ~ age + procal_72, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$procal_72), mort_procal_72$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial procal_72")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

CRP

mort_crp_max = glm(died.numeric ~ age + crp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$crp_max), mort_crp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "max crp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

DDimer

mort_ddimer_max = glm(died.numeric ~ age + ddimer_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ddimer_max), mort_ddimer_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() + 
    labs(y = "Probability of Hospital Mortality/Hospice", x = "max ddimer_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'