Figures for all COVID Tests
Daily Total
ggplot(covid.daily, aes(x = sarscov2_collected_date)) + geom_bar(aes(y = N), stat = "identity",
fill = "dark grey", color = "black") + geom_bar(aes(y = Positive), stat = "identity",
fill = "dark red", color = "black") + geom_text(aes(y = N, label = N), nudge_y = 20,
angle = 90) + geom_text(aes(y = 0, label = Positive), nudge_y = -20, color = "dark red",
angle = 90) + theme_bw() + scale_x_date(breaks = "1 week", date_labels = "%b %d") +
labs(title = "Total Daily Tests Performed", x = "Date of SARS-CoV- 2 Test", y = "Number of tests") +
theme(axis.title = element_text(size = 14), axis.text.x = element_text(angle = 60,
hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Daily Cumulative
ggplot(covid.daily, aes(x = sarscov2_collected_date)) + geom_bar(aes(y = Cum.N),
stat = "identity", fill = "dark grey", color = "black") + geom_bar(aes(y = Cum.P),
stat = "identity", fill = "dark red", color = "black") + geom_text(aes(y = Cum.N,
label = Cum.N), nudge_y = 500, angle = 90, color = "black") + geom_text(aes(y = 0,
label = Cum.P), nudge_y = -500, angle = 90, color = "dark red") + theme_bw() +
scale_x_date(breaks = "1 week", date_labels = "%b %d") + labs(title = "Cumulative Number of Tests Performed",
x = "Date of SARS-CoV- 2 Test", y = "Number of tests") + theme(axis.title = element_text(size = 14),
axis.text.x = element_text(angle = 60, hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Daily Percent
ggplot(covid.daily, aes(x = sarscov2_collected_date)) + geom_bar(aes(y = Percent.positive),
stat = "identity", fill = "dark red", color = "black") + geom_text(aes(y = Percent.positive,
label = Percent.positive), nudge_y = 10, angle = 90) + theme_bw() + scale_x_date(breaks = "1 week",
date_labels = "%b %d") + labs(title = "Percent of Daily Tests Performed Resulted Positive",
x = "Date of SARS-CoV- 2 Test", y = "%") + theme(axis.title = element_text(size = 14),
axis.text.x = element_text(angle = 60, hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Weekly Total
ggplot(covid.weekly, aes(x = week)) + geom_bar(aes(y = N), stat = "identity", fill = "dark grey",
color = "black") + geom_bar(aes(y = Positive), stat = "identity", fill = "dark red",
color = "black") + geom_text(aes(y = N, label = N), nudge_y = 30, angle = 90) +
geom_text(aes(y = 0, label = Positive), nudge_y = -30, color = "dark red", angle = 90) +
theme_bw() + # scale_x_date(breaks = '1 week', date_labels = '%b %d')+
labs(title = "Total Weekly Tests Performed", x = "Monday of Week of SARS-CoV- 2 Test",
y = "Number of tests") + theme(axis.title = element_text(size = 14), axis.text.x = element_text(angle = 60,
hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Weekly Cumulative
ggplot(covid.weekly, aes(x = week)) + geom_bar(aes(y = Cum.N), stat = "identity",
fill = "dark grey", color = "black") + geom_bar(aes(y = Cum.P), stat = "identity",
fill = "dark red", color = "black") + geom_text(aes(y = Cum.N, label = Cum.N),
nudge_y = 1000, angle = 90, color = "black") + geom_text(aes(y = 0, label = Cum.P),
nudge_y = -1000, angle = 90, color = "dark red") + theme_bw() + labs(title = "Cumulative Number of Tests Performed",
x = "Monday Date of Week of SARS-CoV- 2 Test", y = "Number of tests") + theme(axis.title = element_text(size = 14),
axis.text.x = element_text(angle = 60, hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Weekly Percent
ggplot(covid.weekly, aes(x = week)) + geom_bar(aes(y = Percent.positive), stat = "identity",
fill = "dark red", color = "black") + geom_text(aes(y = Percent.positive, label = Percent.positive),
nudge_y = 10, angle = 90) + theme_bw() + # scale_x_date(breaks = '1 week', date_labels = '%b %d')+
labs(title = "Percent of Weekly Tests Performed Resulted Positive", x = "Monday Date of Week of SARS-CoV- 2 Test",
y = "%") + theme(axis.title = element_text(size = 14), axis.text.x = element_text(angle = 60,
hjust = 1, size = 12), axis.text.y = element_text(size = 12))

Tables for Mortality
Demographics
summary(tableby(died ~ age + age_cat + sex + race_adj + ethnic + bmi + bmi_cat +
covid_contact + home, data = covid1, control = mytables))
Age, years |
|
|
|
< 0.001 |
   Mean (SD) |
55 (17) |
73 (12) |
58 (18) |
|
   Range |
17 - 101 |
46 - 96 |
17 - 101 |
|
age_cat |
|
|
|
< 0.001 |
   <20 |
7 (2%) |
0 (0%) |
7 (2%) |
|
   >/=80 |
19 (6%) |
15 (28%) |
34 (9%) |
|
   20-39 |
55 (18%) |
0 (0%) |
55 (15%) |
|
   40-59 |
110 (36%) |
6 (11%) |
116 (32%) |
|
   60-79 |
115 (38%) |
32 (60%) |
147 (41%) |
|
Sex |
|
|
|
0.028 |
   Female |
142 (46%) |
16 (30%) |
158 (44%) |
|
   Male |
164 (54%) |
37 (70%) |
201 (56%) |
|
Race |
|
|
|
0.514 |
   N-Miss |
1 |
0 |
1 |
|
   Black |
239 (78%) |
46 (87%) |
285 (80%) |
|
   Other |
4 (1%) |
0 (0%) |
4 (1%) |
|
   Unknown |
8 (3%) |
1 (2%) |
9 (3%) |
|
   White |
54 (18%) |
6 (11%) |
60 (17%) |
|
Ethnicity |
|
|
|
0.310 |
   N-Miss |
5 |
1 |
6 |
|
   Hispanic |
38 (13%) |
4 (8%) |
42 (12%) |
|
   Non-Hispanic |
263 (87%) |
48 (92%) |
311 (88%) |
|
BMI,kg/m2 |
|
|
|
0.440 |
   N-Miss |
11 |
1 |
12 |
|
   Mean (SD) |
30 (16) |
28 (7) |
29 (15) |
|
   Range |
0 - 239 |
16 - 44 |
0 - 239 |
|
BMI,kg/m2 categories |
|
|
|
0.297 |
   N-Miss |
11 |
1 |
12 |
|
   <18.5 |
22 (7%) |
4 (8%) |
26 (7%) |
|
   18.5-24.9 |
77 (26%) |
20 (38%) |
97 (28%) |
|
   25-29.9 |
82 (28%) |
13 (25%) |
95 (27%) |
|
   30+ |
114 (39%) |
15 (29%) |
129 (37%) |
|
Contact with suspected/confirmed COVID-19 case |
|
|
|
0.045 |
   N-Miss |
1 |
0 |
1 |
|
   No |
218 (71%) |
30 (57%) |
248 (69%) |
|
   Yes |
63 (21%) |
14 (26%) |
77 (22%) |
|
   Unknown |
24 (8%) |
9 (17%) |
33 (9%) |
|
Housing type |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   Correctional facility |
14 (5%) |
0 (0%) |
14 (4%) |
|
   Homeless/shelter |
17 (6%) |
0 (0%) |
17 (5%) |
|
   Long term health facility |
7 (2%) |
1 (2%) |
8 (2%) |
|
   Nursing home |
59 (19%) |
39 (74%) |
98 (27%) |
|
   Stable Home |
206 (68%) |
13 (25%) |
219 (61%) |
|
   Unknown |
2 (1%) |
0 (0%) |
2 (1%) |
|
Comorbidity
summary(tableby(died ~ htn + diabetes + chf + cad + stroke + dementia + ckd + cirrhosis +
copd + asthma + other_lung + osa + malignancy + transplant + hiv + art + pregnant,
data = covid1, control = mytables))
Hypertension |
|
|
|
0.001 |
   No |
116 (38%) |
8 (15%) |
124 (35%) |
|
   Yes |
190 (62%) |
45 (85%) |
235 (65%) |
|
Diabetes mellitus |
|
|
|
0.004 |
   N-Miss |
0 |
1 |
1 |
|
   IDDM |
43 (14%) |
4 (8%) |
47 (13%) |
|
   NIDDM |
53 (17%) |
11 (21%) |
64 (18%) |
|
   No |
210 (69%) |
35 (67%) |
245 (68%) |
|
   Unknown |
0 (0%) |
2 (4%) |
2 (1%) |
|
Congestive heart failure |
|
|
|
0.038 |
   N-Miss |
1 |
1 |
2 |
|
   No |
263 (86%) |
39 (75%) |
302 (85%) |
|
   Yes |
42 (14%) |
13 (25%) |
55 (15%) |
|
Coronary artery disease |
|
|
|
0.859 |
   N-Miss |
1 |
1 |
2 |
|
   No |
278 (91%) |
47 (90%) |
325 (91%) |
|
   Yes |
27 (9%) |
5 (10%) |
32 (9%) |
|
Stroke |
|
|
|
< 0.001 |
   No |
245 (80%) |
27 (51%) |
272 (76%) |
|
   Yes |
61 (20%) |
26 (49%) |
87 (24%) |
|
Dementia |
|
|
|
< 0.001 |
   No |
258 (84%) |
24 (45%) |
282 (79%) |
|
   Yes |
47 (15%) |
29 (55%) |
76 (21%) |
|
   Unknown |
1 (0%) |
0 (0%) |
1 (0%) |
|
Chronic kidney disease |
|
|
|
0.004 |
   No |
253 (83%) |
40 (75%) |
293 (82%) |
|
   Unknown |
0 (0%) |
1 (2%) |
1 (0%) |
|
   Yes |
29 (9%) |
11 (21%) |
40 (11%) |
|
   Yes, on dialysis |
24 (8%) |
1 (2%) |
25 (7%) |
|
Cirrhosis |
|
|
|
0.564 |
   N-Miss |
1 |
0 |
1 |
|
   No |
302 (99%) |
52 (98%) |
354 (99%) |
|
   Yes |
3 (1%) |
1 (2%) |
4 (1%) |
|
COPD |
|
|
|
0.277 |
   No |
289 (94%) |
48 (91%) |
337 (94%) |
|
   Yes |
17 (6%) |
5 (9%) |
22 (6%) |
|
Asthma |
|
|
|
0.236 |
   No |
280 (92%) |
51 (96%) |
331 (92%) |
|
   Yes |
26 (8%) |
2 (4%) |
28 (8%) |
|
Structural lung disease |
|
|
|
0.740 |
   No |
302 (99%) |
52 (98%) |
354 (99%) |
|
   Yes |
4 (1%) |
1 (2%) |
5 (1%) |
|
OSA/OHS |
|
|
|
0.678 |
   N-Miss |
2 |
0 |
2 |
|
   No |
288 (95%) |
49 (92%) |
337 (94%) |
|
   Yes |
15 (5%) |
4 (8%) |
19 (5%) |
|
   Unknown |
1 (0%) |
0 (0%) |
1 (0%) |
|
Malignancy |
|
|
|
0.780 |
   N-Miss |
1 |
0 |
1 |
|
   Current |
10 (3%) |
1 (2%) |
11 (3%) |
|
   No |
286 (94%) |
51 (96%) |
337 (94%) |
|
   Prior |
9 (3%) |
1 (2%) |
10 (3%) |
|
Solid organ or stem cell transplant |
|
|
|
0.677 |
   No |
305 (100%) |
53 (100%) |
358 (100%) |
|
   Yes |
1 (0%) |
0 (0%) |
1 (0%) |
|
HIV/AIDs |
|
|
|
0.283 |
   No |
292 (95%) |
53 (100%) |
345 (96%) |
|
   Yes |
13 (4%) |
0 (0%) |
13 (4%) |
|
   Unknown |
1 (0%) |
0 (0%) |
1 (0%) |
|
Prescribed antiretroviral therapy |
|
|
|
|
   N-Miss |
293 |
53 |
346 |
|
   No |
1 (8%) |
0 |
1 (8%) |
|
   Yes |
12 (92%) |
0 |
12 (92%) |
|
Pregnant |
|
|
|
0.300 |
   N-Miss |
164 |
37 |
201 |
|
   No |
133 (94%) |
16 (100%) |
149 (94%) |
|
   Yes |
9 (6%) |
0 (0%) |
9 (6%) |
|
Symptoms
summary(tableby(died ~ time2test + time2hospital + fever + cough + sob + myalgias +
chills + fatigue + sore_throat + diarrhea + nausea + vomit + headache + anosmia +
ageusia + abdominal_pain + ams, data = covid1, control = mytables))
ED to test date, days |
|
|
|
0.912 |
   Mean (SD) |
0 (1) |
0 (1) |
0 (1) |
|
   Range |
-4 - 4 |
0 - 4 |
-4 - 4 |
|
Symptoms to ED, days |
|
|
|
< 0.001 |
   N-Miss |
5 |
2 |
7 |
|
   Mean (SD) |
6 (7) |
2 (4) |
5 (7) |
|
   Range |
-3 - 61 |
-3 - 21 |
-3 - 61 |
|
Fever |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
128 (42%) |
13 (25%) |
141 (39%) |
|
   Yes |
153 (50%) |
22 (42%) |
175 (49%) |
|
   Unknown |
23 (8%) |
18 (34%) |
41 (11%) |
|
Cough |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
93 (30%) |
13 (25%) |
106 (30%) |
|
   Yes |
189 (62%) |
17 (32%) |
206 (58%) |
|
   Unknown |
23 (8%) |
23 (43%) |
46 (13%) |
|
Dyspnea |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
136 (45%) |
12 (23%) |
148 (41%) |
|
   Yes |
145 (48%) |
28 (53%) |
173 (48%) |
|
   Unknown |
23 (8%) |
13 (25%) |
36 (10%) |
|
Myalgias |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
175 (58%) |
19 (36%) |
194 (54%) |
|
   Yes |
99 (33%) |
7 (13%) |
106 (30%) |
|
   Unknown |
30 (10%) |
27 (51%) |
57 (16%) |
|
Chills |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
187 (61%) |
21 (40%) |
208 (58%) |
|
   Yes |
88 (29%) |
8 (15%) |
96 (27%) |
|
   Unknown |
30 (10%) |
24 (45%) |
54 (15%) |
|
Fatigue |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
168 (55%) |
16 (30%) |
184 (51%) |
|
   Yes |
107 (35%) |
10 (19%) |
117 (33%) |
|
   Unknown |
30 (10%) |
27 (51%) |
57 (16%) |
|
Sore throat |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
246 (81%) |
24 (45%) |
270 (75%) |
|
   Yes |
29 (10%) |
2 (4%) |
31 (9%) |
|
   Unknown |
30 (10%) |
27 (51%) |
57 (16%) |
|
Diarrhea |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
200 (66%) |
23 (43%) |
223 (62%) |
|
   Yes |
78 (26%) |
5 (9%) |
83 (23%) |
|
   Unknown |
27 (9%) |
25 (47%) |
52 (15%) |
|
Nausea |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
215 (70%) |
25 (47%) |
240 (67%) |
|
   Yes |
62 (20%) |
3 (6%) |
65 (18%) |
|
   Unknown |
28 (9%) |
25 (47%) |
53 (15%) |
|
Vomiting |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
237 (78%) |
25 (47%) |
262 (73%) |
|
   Yes |
41 (13%) |
4 (8%) |
45 (13%) |
|
   Unknown |
27 (9%) |
24 (45%) |
51 (14%) |
|
Headache |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
224 (74%) |
26 (49%) |
250 (70%) |
|
   Yes |
50 (16%) |
0 (0%) |
50 (14%) |
|
   Unknown |
30 (10%) |
27 (51%) |
57 (16%) |
|
Loss of smell |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
257 (84%) |
25 (47%) |
282 (79%) |
|
   Yes |
17 (6%) |
0 (0%) |
17 (5%) |
|
   Unknown |
31 (10%) |
28 (53%) |
59 (16%) |
|
Loss of taste |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
249 (82%) |
26 (49%) |
275 (77%) |
|
   Yes |
25 (8%) |
0 (0%) |
25 (7%) |
|
   Unknown |
31 (10%) |
27 (51%) |
58 (16%) |
|
Abdominal pain |
|
|
|
< 0.001 |
   N-Miss |
3 |
0 |
3 |
|
   No |
236 (78%) |
25 (47%) |
261 (73%) |
|
   Yes |
39 (13%) |
2 (4%) |
41 (12%) |
|
   Unknown |
28 (9%) |
26 (49%) |
54 (15%) |
|
Altered mental status on presentation |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
245 (80%) |
18 (34%) |
263 (73%) |
|
   Yes |
58 (19%) |
35 (66%) |
93 (26%) |
|
   Unknown |
2 (1%) |
0 (0%) |
2 (1%) |
|
Initial Values
summary(tableby(died ~ temp_max + temp_min + hr_max + hr_min + sbp_min + max_map +
min_map + rr_max + rr_min + sao2_min + sao2_fio2 + dopamine_sofa + dobutamine_sofa +
epinepherine_sofa + norepinephrine_sofa + na + k + creatinine + alt + ast + tbili +
lactate + wbc + hgb + hct + platelets + lymphocytes + abg_pao2 + abg_paco2 +
abg_spo2 + abg_ph, data = covid1, control = mytables))
Temperature maximum, °C |
|
|
|
0.905 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
38 (4) |
38 (1) |
38 (4) |
|
   Range |
15 - 101 |
36 - 40 |
15 - 101 |
|
Temperature minimum, °C |
|
|
|
0.277 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
37 (4) |
36 (1) |
37 (3) |
|
   Range |
34 - 99 |
33 - 38 |
33 - 99 |
|
Heart rate maximum, bpm |
|
|
|
0.003 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
101 (19) |
110 (18) |
103 (19) |
|
   Range |
36 - 168 |
73 - 158 |
36 - 168 |
|
Heart rate minimum, bpm |
|
|
|
0.288 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
75 (15) |
77 (13) |
75 (14) |
|
   Range |
41 - 127 |
44 - 106 |
41 - 127 |
|
Systolic blood pressure minimum, mm Hg |
|
|
|
< 0.001 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
112 (18) |
97 (20) |
110 (19) |
|
   Range |
63 - 180 |
32 - 146 |
32 - 180 |
|
Mean arterial pressure maximum, mm Hg |
|
|
|
0.035 |
   N-Miss |
2 |
1 |
3 |
|
   Mean (SD) |
107 (17) |
112 (19) |
108 (17) |
|
   Range |
65 - 166 |
83 - 196 |
65 - 196 |
|
Mean arterial pressure minimum, mm Hg |
|
|
|
< 0.001 |
   N-Miss |
2 |
1 |
3 |
|
   Mean (SD) |
78 (13) |
69 (15) |
77 (14) |
|
   Range |
42 - 136 |
27 - 98 |
27 - 136 |
|
Respiratory rate maximum, bpm |
|
|
|
< 0.001 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
26 (7) |
31 (8) |
26 (8) |
|
   Range |
11 - 54 |
12 - 51 |
11 - 54 |
|
Respiratory rate minimum, bpm |
|
|
|
< 0.001 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
15 (3) |
18 (8) |
16 (4) |
|
   Range |
5 - 34 |
9 - 65 |
5 - 65 |
|
Oxygen saturation minimum, % |
|
|
|
< 0.001 |
   N-Miss |
1 |
1 |
2 |
|
   Mean (SD) |
93 (5) |
88 (7) |
92 (6) |
|
   Range |
55 - 100 |
58 - 97 |
55 - 100 |
|
FiO2 at saturation minimum, decimal |
|
|
|
< 0.001 |
   N-Miss |
4 |
1 |
5 |
|
   Mean (SD) |
0 (0) |
1 (0) |
0 (0) |
|
   Range |
0 - 1 |
0 - 1 |
0 - 1 |
|
Dopamine |
|
|
|
< 0.001 |
   N-Miss |
3 |
1 |
4 |
|
   No |
303 (100%) |
52 (100%) |
355 (100%) |
|
Dobutamine |
|
|
|
< 0.001 |
   N-Miss |
2 |
1 |
3 |
|
   No |
304 (100%) |
52 (100%) |
356 (100%) |
|
Epinepherine |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
303 (100%) |
49 (92%) |
352 (99%) |
|
   Yes |
1 (0%) |
4 (8%) |
5 (1%) |
|
Norepinephrine |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
296 (97%) |
42 (79%) |
338 (95%) |
|
   Yes |
8 (3%) |
11 (21%) |
19 (5%) |
|
Initial Sodium, meql/L |
|
|
|
< 0.001 |
   N-Miss |
17 |
1 |
18 |
|
   Mean (SD) |
138 (6) |
144 (7) |
139 (6) |
|
   Range |
119 - 168 |
134 - 158 |
119 - 168 |
|
Initial Potassium, meq/L |
|
|
|
0.003 |
   N-Miss |
17 |
1 |
18 |
|
   Mean (SD) |
4 (1) |
4 (1) |
4 (1) |
|
   Range |
2 - 8 |
3 - 8 |
2 - 8 |
|
Initial Creatinine, mg/dL |
|
|
|
0.081 |
   N-Miss |
17 |
1 |
18 |
|
   Mean (SD) |
2 (3) |
3 (3) |
2 (3) |
|
   Range |
0 - 15 |
0 - 18 |
0 - 18 |
|
ALT initial, IU/L |
|
|
|
< 0.001 |
   N-Miss |
20 |
2 |
22 |
|
   Mean (SD) |
31 (37) |
56 (64) |
35 (43) |
|
   Range |
3 - 452 |
7 - 310 |
3 - 452 |
|
AST initial, IU/L |
|
|
|
< 0.001 |
   N-Miss |
20 |
2 |
22 |
|
   Mean (SD) |
42 (77) |
92 (108) |
49 (84) |
|
   Range |
5 - 1197 |
15 - 578 |
5 - 1197 |
|
Total bilirubin initial, mg/dL |
|
|
|
0.400 |
   N-Miss |
20 |
2 |
22 |
|
   Mean (SD) |
1 (0) |
1 (0) |
1 (0) |
|
   Range |
0 - 3 |
0 - 2 |
0 - 3 |
|
Lactate initial, mmol/L |
|
|
|
< 0.001 |
   N-Miss |
161 |
6 |
167 |
|
   Mean (SD) |
2 (1) |
4 (3) |
3 (2) |
|
   Range |
0 - 10 |
1 - 15 |
0 - 15 |
|
WBC count initial, K/mcL |
|
|
|
0.022 |
   N-Miss |
14 |
1 |
15 |
|
   Mean (SD) |
7 (3) |
8 (4) |
7 (3) |
|
   Range |
1 - 28 |
2 - 19 |
1 - 28 |
|
Hemoglobin initial, g/dL |
|
|
|
0.698 |
   N-Miss |
14 |
1 |
15 |
|
   Mean (SD) |
13 (2) |
12 (3) |
13 (2) |
|
   Range |
5 - 17 |
6 - 17 |
5 - 17 |
|
Hematocrit initial, % |
|
|
|
0.613 |
   N-Miss |
14 |
1 |
15 |
|
   Mean (SD) |
38 (7) |
39 (8) |
38 (7) |
|
   Range |
10 - 54 |
17 - 53 |
10 - 54 |
|
Platelet Count initial, K/mcL |
|
|
|
0.673 |
   N-Miss |
14 |
1 |
15 |
|
   Mean (SD) |
233 (93) |
227 (114) |
232 (97) |
|
   Range |
13 - 675 |
55 - 742 |
13 - 742 |
|
Lymphocytes initial, K/mcL |
|
|
|
0.213 |
   N-Miss |
22 |
2 |
24 |
|
   Mean (SD) |
1 (1) |
1 (2) |
1 (1) |
|
   Range |
0 - 5 |
0 - 10 |
0 - 10 |
|
PA02 initial, mm Hg |
|
|
|
0.286 |
   N-Miss |
263 |
25 |
288 |
|
   Mean (SD) |
104 (48) |
120 (77) |
110 (61) |
|
   Range |
33 - 234 |
32 - 346 |
32 - 346 |
|
PAC02 initial, mm Hg |
|
|
|
0.846 |
   N-Miss |
263 |
25 |
288 |
|
   Mean (SD) |
38 (9) |
39 (15) |
38 (12) |
|
   Range |
20 - 68 |
21 - 92 |
20 - 92 |
|
Arterial SpO2 initial, % |
|
|
|
0.419 |
   N-Miss |
264 |
27 |
291 |
|
   Mean (SD) |
93 (9) |
91 (12) |
93 (10) |
|
   Range |
50 - 99 |
38 - 99 |
38 - 99 |
|
pH initial |
|
|
|
0.300 |
   N-Miss |
263 |
25 |
288 |
|
   Mean (SD) |
7 (0) |
7 (0) |
7 (0) |
|
   Range |
7 - 8 |
7 - 8 |
7 - 8 |
|
Extreme Values
summary(tableby(died ~ max_creat + cpk_max + troponin_max + bnp_max + crp_max + ldh_max +
hgb_a1c_max + ferritin_max + alt_max + ast_max + lactate_max + min_lymp + ddimer_max,
data = covid1, control = mytables))
Creatinine maximum, mg/dL |
|
|
|
0.002 |
   N-Miss |
17 |
1 |
18 |
|
   Mean (SD) |
2 (3) |
4 (3) |
2 (3) |
|
   Range |
0 - 18 |
1 - 18 |
0 - 18 |
|
CPK maximum, U/L |
|
|
|
0.899 |
   N-Miss |
222 |
14 |
236 |
|
   Mean (SD) |
1213 (5502) |
1329 (2046) |
1250 (4680) |
|
   Range |
0 - 50000 |
0 - 8613 |
0 - 50000 |
|
Troponin-I maximum, ng/mL |
|
|
|
0.087 |
   N-Miss |
114 |
6 |
120 |
|
   Mean (SD) |
0 (1) |
1 (1) |
0 (1) |
|
   Range |
0 - 16 |
0 - 8 |
0 - 16 |
|
BNP maximum, pg/mL |
|
|
|
0.307 |
   N-Miss |
186 |
14 |
200 |
|
   Mean (SD) |
442 (1246) |
233 (396) |
390 (1102) |
|
   Range |
6 - 7906 |
14 - 2274 |
6 - 7906 |
|
HS-CRP maximum, mg/L |
|
|
|
< 0.001 |
   N-Miss |
173 |
18 |
191 |
|
   Mean (SD) |
109 (88) |
187 (66) |
125 (89) |
|
   Range |
0 - 240 |
0 - 240 |
0 - 240 |
|
Lactate dehydrogenase maximum, U/L |
|
|
|
0.001 |
   N-Miss |
134 |
12 |
146 |
|
   Mean (SD) |
335 (187) |
782 (1787) |
421 (813) |
|
   Range |
0 - 1518 |
237 - 11894 |
0 - 11894 |
|
Hemoglobin A1c maximum, % |
|
|
|
0.568 |
   N-Miss |
191 |
30 |
221 |
|
   Mean (SD) |
7 (3) |
7 (3) |
7 (3) |
|
   Range |
0 - 17 |
0 - 14 |
0 - 17 |
|
Ferritin maximum, ng/mL |
|
|
|
0.004 |
   N-Miss |
185 |
20 |
205 |
|
   Mean (SD) |
945 (1553) |
2304 (4169) |
1236 (2417) |
|
   Range |
0 - 9751 |
52 - 15000 |
0 - 15000 |
|
ALT maximum, IU/L |
|
|
|
< 0.001 |
   N-Miss |
20 |
1 |
21 |
|
   Mean (SD) |
74 (451) |
500 (1524) |
140 (740) |
|
   Range |
6 - 7500 |
8 - 7500 |
6 - 7500 |
|
AST maximum, IU/L |
|
|
|
< 0.001 |
   N-Miss |
20 |
1 |
21 |
|
   Mean (SD) |
70 (187) |
1058 (3258) |
222 (1328) |
|
   Range |
8 - 2585 |
19 - 16762 |
8 - 16762 |
|
Lactate maximum, mmol/L |
|
|
|
< 0.001 |
   N-Miss |
156 |
2 |
158 |
|
   Mean (SD) |
2 (1) |
6 (6) |
3 (4) |
|
   Range |
1 - 10 |
1 - 30 |
1 - 30 |
|
Lymphocytes minimum, K/mcL |
|
|
|
0.042 |
   N-Miss |
21 |
2 |
23 |
|
   Mean (SD) |
1 (1) |
1 (1) |
1 (1) |
|
   Range |
0 - 5 |
0 - 10 |
0 - 10 |
|
D-dimer maximum, ng/mL |
|
|
|
< 0.001 |
   N-Miss |
154 |
8 |
162 |
|
   Mean (SD) |
5991 (16023) |
22394 (37365) |
9738 (23641) |
|
   Range |
250 - 128000 |
471 - 128000 |
250 - 128000 |
|
Radiology
summary(tableby(died ~ cxr_done + cxr_abnormal + cxr_atelectasis + cxr_bilateral +
cxr_cavity + cxr_consolidation + cxr_interstital + cxr_mass + cxr_multifocal +
cxr_effusion + cxr_nodule + ct_done + us_done + vq_done + tte_done, data = covid1,
control = mytables))
CXR performed |
|
|
|
0.230 |
   No |
18 (6%) |
1 (2%) |
19 (5%) |
|
   Yes |
288 (94%) |
52 (98%) |
340 (95%) |
|
CXR abnormal |
|
|
|
< 0.001 |
   N-Miss |
18 |
1 |
19 |
|
   No |
94 (33%) |
4 (8%) |
98 (29%) |
|
   Yes |
194 (67%) |
48 (92%) |
242 (71%) |
|
Atelectasis |
|
|
|
0.683 |
   N-Miss |
18 |
1 |
19 |
|
   No |
202 (70%) |
35 (67%) |
237 (70%) |
|
   Yes |
86 (30%) |
17 (33%) |
103 (30%) |
|
Bilateral Opacities, not effusions |
|
|
|
0.004 |
   N-Miss |
18 |
1 |
19 |
|
   No |
168 (58%) |
19 (37%) |
187 (55%) |
|
   Yes |
120 (42%) |
33 (63%) |
153 (45%) |
|
Cavity/abscess |
|
|
|
< 0.001 |
   N-Miss |
18 |
1 |
19 |
|
   No |
288 (100%) |
52 (100%) |
340 (100%) |
|
Consolidation |
|
|
|
0.050 |
   N-Miss |
18 |
1 |
19 |
|
   No |
271 (94%) |
45 (87%) |
316 (93%) |
|
   Yes |
17 (6%) |
7 (13%) |
24 (7%) |
|
Interstitial |
|
|
|
0.300 |
   N-Miss |
19 |
1 |
20 |
|
   No |
257 (90%) |
44 (85%) |
301 (89%) |
|
   Yes |
30 (10%) |
8 (15%) |
38 (11%) |
|
Mass/mass-like |
|
|
|
0.018 |
   N-Miss |
18 |
1 |
19 |
|
   No |
288 (100%) |
51 (98%) |
339 (100%) |
|
   Yes |
0 (0%) |
1 (2%) |
1 (0%) |
|
Multifocal |
|
|
|
0.018 |
   N-Miss |
18 |
1 |
19 |
|
   No |
248 (86%) |
38 (73%) |
286 (84%) |
|
   Yes |
40 (14%) |
14 (27%) |
54 (16%) |
|
Pleural effusion |
|
|
|
< 0.001 |
   N-Miss |
19 |
1 |
20 |
|
   No |
273 (95%) |
39 (75%) |
312 (92%) |
|
   Yes |
14 (5%) |
13 (25%) |
27 (8%) |
|
Reticulonodular |
|
|
|
0.933 |
   N-Miss |
21 |
1 |
22 |
|
   No |
280 (98%) |
51 (98%) |
331 (98%) |
|
   Yes |
5 (2%) |
1 (2%) |
6 (2%) |
|
Chest CT performed |
|
|
|
0.152 |
   No |
237 (77%) |
36 (68%) |
273 (76%) |
|
   Yes, with IV contrast |
50 (16%) |
10 (19%) |
60 (17%) |
|
   Yes, without IV contrast |
19 (6%) |
7 (13%) |
26 (7%) |
|
Ultrasound of extremities performed |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
268 (88%) |
35 (66%) |
303 (85%) |
|
   Yes |
37 (12%) |
18 (34%) |
55 (15%) |
|
VQ scan performed |
|
|
|
< 0.001 |
   N-Miss |
0 |
1 |
1 |
|
   No |
306 (100%) |
52 (100%) |
358 (100%) |
|
TTE performed |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
242 (79%) |
28 (53%) |
270 (75%) |
|
   Yes |
63 (21%) |
25 (47%) |
88 (25%) |
|
Microbiology
summary(tableby(died ~ sars_samples + blood_cx + resp_cx + procal_72 + influenza +
legionella + hiv_test_alt + hiv_vl + cd4, data = covid1, control = mytables))
Number of SARS-CoV-2 tests |
|
|
|
0.802 |
   N-Miss |
1 |
0 |
1 |
|
   Mean (SD) |
2 (2) |
2 (1) |
2 (2) |
|
   Range |
0 - 15 |
1 - 7 |
0 - 15 |
|
Blood cultures in first 48 hours |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   Negative |
118 (39%) |
38 (72%) |
156 (44%) |
|
   Not done |
174 (57%) |
7 (13%) |
181 (51%) |
|
   Positive |
12 (4%) |
8 (15%) |
20 (6%) |
|
Respiratory cultures in first 48 hours |
|
|
|
< 0.001 |
   N-Miss |
3 |
0 |
3 |
|
   Negative |
21 (7%) |
7 (13%) |
28 (8%) |
|
   Not done |
279 (92%) |
41 (77%) |
320 (90%) |
|
   Positive |
3 (1%) |
5 (9%) |
8 (2%) |
|
Procalcitonin initial (48h), ng/mL |
|
|
|
0.803 |
   N-Miss |
179 |
16 |
195 |
|
   Mean (SD) |
3 (16) |
3 (7) |
3 (14) |
|
   Range |
0 - 164 |
0 - 28 |
0 - 164 |
|
Influenza PCR |
|
|
|
0.046 |
   N-Miss |
4 |
2 |
6 |
|
   A/B+ |
81 (27%) |
7 (14%) |
88 (25%) |
|
   Not Done |
221 (73%) |
44 (86%) |
265 (75%) |
|
Legionella urine antigen |
|
|
|
0.043 |
   Negative |
29 (9%) |
10 (19%) |
39 (11%) |
|
   Not done |
277 (91%) |
43 (81%) |
320 (89%) |
|
HIV test |
|
|
|
0.042 |
   N-Miss |
1 |
0 |
1 |
|
   Current or Prior negative < 1 year |
132 (43%) |
16 (30%) |
148 (41%) |
|
   Current or Prior Positive |
12 (4%) |
0 (0%) |
12 (3%) |
|
   Not done, no prior |
161 (53%) |
37 (70%) |
198 (55%) |
|
Viral load undetectable |
|
|
|
|
   N-Miss |
294 |
53 |
347 |
|
   No |
6 (50%) |
0 |
6 (50%) |
|
   Yes |
5 (42%) |
0 |
5 (42%) |
|
   Not done |
1 (8%) |
0 |
1 (8%) |
|
CD4, K/L |
|
|
|
|
   N-Miss |
296 |
53 |
349 |
|
   Mean (SD) |
314 (269) |
NA |
314 (269) |
|
   Range |
75 - 874 |
NA |
75 - 874 |
|
Drugs
summary(tableby(died ~ covid_tx___1 + covid_tx___2 + covid_tx___3 + covid_tx___4 +
covid_tx___5 + covid_tx___0 + abx_received___1 + abx_received___2 + abx_received___3 +
abx_received___4 + abx_received___5 + abx_received___6 + abx_received___7 + abx_other +
steroid + anticoagulation, data = covid1, control = mytables))
Redesmivir, on clinical trial |
|
|
|
0.014 |
   No |
298 (97%) |
48 (91%) |
346 (96%) |
|
   Yes |
8 (3%) |
5 (9%) |
13 (4%) |
|
Redesmivir, not on clinical trial |
|
|
|
0.677 |
   No |
305 (100%) |
53 (100%) |
358 (100%) |
|
   Yes |
1 (0%) |
0 (0%) |
1 (0%) |
|
Lopinavir/ritonavir |
|
|
|
0.677 |
   No |
305 (100%) |
53 (100%) |
358 (100%) |
|
   Yes |
1 (0%) |
0 (0%) |
1 (0%) |
|
Hydroxycloroquine |
|
|
|
0.363 |
   No |
268 (88%) |
44 (83%) |
312 (87%) |
|
   Yes |
38 (12%) |
9 (17%) |
47 (13%) |
|
Tocilizumab |
|
|
|
0.159 |
   No |
305 (100%) |
52 (98%) |
357 (99%) |
|
   Yes |
1 (0%) |
1 (2%) |
2 (1%) |
|
No SARS-CoV-2 Therapies |
|
|
|
0.016 |
   Mean (SD) |
1 (0) |
1 (0) |
1 (0) |
|
   Range |
0 - 1 |
0 - 1 |
0 - 1 |
|
Azithromycin |
|
|
|
0.018 |
   No |
207 (68%) |
27 (51%) |
234 (65%) |
|
   Yes |
99 (32%) |
26 (49%) |
125 (35%) |
|
Ceftriaxone |
|
|
|
0.060 |
   No |
208 (68%) |
29 (55%) |
237 (66%) |
|
   Yes |
98 (32%) |
24 (45%) |
122 (34%) |
|
Doxycycline |
|
|
|
0.297 |
   No |
293 (96%) |
49 (92%) |
342 (95%) |
|
   Yes |
13 (4%) |
4 (8%) |
17 (5%) |
|
ESBLactam |
|
|
|
< 0.001 |
   No |
261 (85%) |
24 (45%) |
285 (79%) |
|
   Yes |
45 (15%) |
29 (55%) |
74 (21%) |
|
Fluoroquinolone |
|
|
|
0.562 |
   No |
303 (99%) |
52 (98%) |
355 (99%) |
|
   Yes |
3 (1%) |
1 (2%) |
4 (1%) |
|
Vancomycin |
|
|
|
< 0.001 |
   No |
256 (84%) |
23 (43%) |
279 (78%) |
|
   Yes |
50 (16%) |
30 (57%) |
80 (22%) |
|
Other Antibiotic |
|
|
|
0.505 |
   No |
280 (92%) |
47 (89%) |
327 (91%) |
|
   Yes |
26 (8%) |
6 (11%) |
32 (9%) |
|
Other Antibiotics description |
|
|
|
0.360 |
   N-Miss |
282 |
47 |
329 |
|
   Acyclovir |
1 (4%) |
0 (0%) |
1 (3%) |
|
   acyclovir (home med) |
1 (4%) |
0 (0%) |
1 (3%) |
|
   amoxicillin |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Amoxicillin-clavulanate |
1 (4%) |
0 (0%) |
1 (3%) |
|
   ampicillin |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Augmentin |
3 (12%) |
0 (0%) |
3 (10%) |
|
   aztreonam |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Bactrim |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Bactrim (HIV prophylactic dose) |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Cefazolin |
1 (4%) |
1 (17%) |
2 (7%) |
|
   cefazolin (peri-op) |
1 (4%) |
0 (0%) |
1 (3%) |
|
   cefazolin, cefoxitin |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Cefepime |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Cefuroxime |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Dapsone |
1 (4%) |
0 (0%) |
1 (3%) |
|
   flagyl (empiric treatment for STIs, pyuria) |
1 (4%) |
0 (0%) |
1 (3%) |
|
   Linezolid, clindamycin, Tobramycin |
0 (0%) |
1 (17%) |
1 (3%) |
|
   metronidazole |
4 (17%) |
0 (0%) |
4 (13%) |
|
   Metronidazole |
1 (4%) |
1 (17%) |
2 (7%) |
|
   Nitrofurantoin |
1 (4%) |
0 (0%) |
1 (3%) |
|
   tobramycin |
0 (0%) |
1 (17%) |
1 (3%) |
|
   Tobramycin |
0 (0%) |
1 (17%) |
1 (3%) |
|
   tobramycin, aztrenam |
0 (0%) |
1 (17%) |
1 (3%) |
|
Steroid Combined |
|
|
|
< 0.001 |
   N-Miss |
3 |
2 |
5 |
|
   No |
277 (91%) |
35 (69%) |
312 (88%) |
|
   Yes |
26 (9%) |
16 (31%) |
42 (12%) |
|
Therapeutic anticoagulation |
|
|
|
< 0.001 |
   No |
247 (81%) |
30 (57%) |
277 (77%) |
|
   Yes, chronic |
22 (7%) |
3 (6%) |
25 (7%) |
|
   Yes, new |
37 (12%) |
20 (38%) |
57 (16%) |
|
Other Tx & Dispo
summary(tableby(died ~ patient_location + admit_loc + admit_service + fu_loc + hosp_los +
icu_los + hfnc + niv + ett + extubated + rrt + arrest + discharge_hai + discharge_disposition +
discharge_o2 + discharge_hd, data = covid1, control = mytables))
SARS-CoV-2 Location |
|
|
|
< 0.001 |
   ECC/Hospital |
306 (100%) |
53 (100%) |
359 (100%) |
|
Admission Level of Care |
|
|
|
< 0.001 |
   Discharged from ED |
67 (22%) |
2 (4%) |
69 (19%) |
|
   General |
184 (60%) |
20 (38%) |
204 (57%) |
|
   Intensive |
21 (7%) |
21 (40%) |
42 (12%) |
|
   Intermediate |
34 (11%) |
10 (19%) |
44 (12%) |
|
Admission Service |
|
|
|
0.013 |
   N-Miss |
1 |
0 |
1 |
|
   ECC/Hospital |
67 (22%) |
2 (4%) |
69 (19%) |
|
   Medical |
219 (72%) |
50 (94%) |
269 (75%) |
|
   Neurology |
1 (0%) |
0 (0%) |
1 (0%) |
|
   Other |
7 (2%) |
0 (0%) |
7 (2%) |
|
   Surgical |
11 (4%) |
1 (2%) |
12 (3%) |
|
Highest Level of Care |
|
|
|
< 0.001 |
   N-Miss |
1 |
1 |
2 |
|
   ECC |
67 (22%) |
2 (4%) |
69 (19%) |
|
   General |
168 (55%) |
8 (15%) |
176 (49%) |
|
   Intensive |
34 (11%) |
35 (67%) |
69 (19%) |
|
   Intermediate |
36 (12%) |
7 (13%) |
43 (12%) |
|
Hospital LOS |
|
|
|
0.377 |
   N-Miss |
2 |
1 |
3 |
|
   Mean (SD) |
9 (14) |
11 (8) |
9 (13) |
|
   Range |
0 - 123 |
0 - 37 |
0 - 123 |
|
ICU LOS |
|
|
|
0.359 |
   N-Miss |
272 |
18 |
290 |
|
   Mean (SD) |
14 (15) |
113 (622) |
64 (443) |
|
   Range |
1 - 61 |
0 - 3688 |
0 - 3688 |
|
High flow nasal cannula |
|
|
|
< 0.001 |
   N-Miss |
2 |
0 |
2 |
|
   No |
282 (93%) |
29 (55%) |
311 (87%) |
|
   Yes |
22 (7%) |
24 (45%) |
46 (13%) |
|
Non-invasive ventilation |
|
|
|
0.200 |
   N-Miss |
2 |
0 |
2 |
|
   Mean (SD) |
0 (0) |
0 (0) |
0 (0) |
|
   Range |
0 - 1 |
0 - 1 |
0 - 1 |
|
Endotracheal intubation |
|
|
|
< 0.001 |
   No |
280 (92%) |
23 (43%) |
303 (84%) |
|
   Yes |
26 (8%) |
30 (57%) |
56 (16%) |
|
Disposition of ETT |
|
|
|
< 0.001 |
   N-Miss |
0 |
3 |
3 |
|
   Discharged with ETT |
1 (0%) |
1 (2%) |
2 (1%) |
|
   Extubated < 24 hours before death/hospice |
0 (0%) |
5 (10%) |
5 (1%) |
|
   No ETT |
280 (92%) |
23 (46%) |
303 (85%) |
|
   Other |
0 (0%) |
1 (2%) |
1 (0%) |
|
   Present at death |
0 (0%) |
17 (34%) |
17 (5%) |
|
   Removed for tracheostomy |
4 (1%) |
0 (0%) |
4 (1%) |
|
   To spontaneous breathing |
21 (7%) |
3 (6%) |
24 (7%) |
|
Renal replacement therapy |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   Continuous |
4 (1%) |
6 (11%) |
10 (3%) |
|
   Intermittent |
11 (4%) |
3 (6%) |
14 (4%) |
|
   No |
290 (95%) |
44 (83%) |
334 (93%) |
|
Cardiac Arrest |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
301 (99%) |
38 (72%) |
339 (95%) |
|
   Yes |
4 (1%) |
15 (28%) |
19 (5%) |
|
Hospital-Acquired Infection |
|
|
|
0.896 |
   N-Miss |
1 |
1 |
2 |
|
   No |
279 (91%) |
48 (92%) |
327 (92%) |
|
   Yes |
16 (5%) |
2 (4%) |
18 (5%) |
|
   Unknown |
10 (3%) |
2 (4%) |
12 (3%) |
|
Discharge disposition detail |
|
|
|
< 0.001 |
   AMA |
4 (1%) |
0 (0%) |
4 (1%) |
|
   Died |
0 (0%) |
31 (58%) |
31 (9%) |
|
   Home |
231 (75%) |
0 (0%) |
231 (64%) |
|
   Hospice |
0 (0%) |
22 (42%) |
22 (6%) |
|
   Long-term Acute Care (LTAC) |
3 (1%) |
0 (0%) |
3 (1%) |
|
   Nursing Home/Rehabilitation Facility |
64 (21%) |
0 (0%) |
64 (18%) |
|
   Transfer to the hospital |
4 (1%) |
0 (0%) |
4 (1%) |
|
New or increased oxygen requirement at discharge/death |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
291 (95%) |
5 (9%) |
296 (83%) |
|
   Yes |
13 (4%) |
46 (87%) |
59 (16%) |
|
   Unknown |
1 (0%) |
2 (4%) |
3 (1%) |
|
New HD requirement at discharge/death |
|
|
|
< 0.001 |
   N-Miss |
1 |
0 |
1 |
|
   No |
304 (100%) |
47 (89%) |
351 (98%) |
|
   Yes |
1 (0%) |
6 (11%) |
7 (2%) |
|
Exploratory Figures for Markers of Mortality
Age
mort_na = glm(died.numeric ~ age, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$age), mort_na$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Age")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

na
mort_na = glm(died.numeric ~ na, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$na), mort_na$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial na")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

k
mort_k = glm(died.numeric ~ k, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$k), mort_k$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial k")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

max_creat
mort_max_creat = glm(died.numeric ~ max_creat, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$max_creat), mort_max_creat$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "max_creat")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

troponin_max
mort_troponin_max = glm(died.numeric ~ troponin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$troponin_max), mort_troponin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "troponin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

bnp_max
mort_bnp_max = glm(died.numeric ~ bnp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$bnp_max), mort_bnp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "bnp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ldh_max
mort_ldh_max = glm(died.numeric ~ ldh_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ldh_max), mort_ldh_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "ldh_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb_a1c_max
mort_hgb_a1c_max = glm(died.numeric ~ hgb_a1c_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb_a1c_max), mort_hgb_a1c_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "hgb_a1c_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ferritin_max
mort_ferritin_max = glm(died.numeric ~ ferritin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ferritin_max), mort_ferritin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "ferritin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

AST
mort_ast = glm(died.numeric ~ ast, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast), mort_ast$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial AST")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ALT
mort_alt = glm(died.numeric ~ alt, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt), mort_alt$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial alt")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

alt_max
mort_alt_max = glm(died.numeric ~ alt_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt_max), mort_alt_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "alt_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ast_max
mort_ast_max = glm(died.numeric ~ ast_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast_max), mort_ast_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "ast_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

tbili
mort_tbili = glm(died.numeric ~ tbili, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$tbili), mort_tbili$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial tbili")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

creatinine
mort_creatinine = glm(died.numeric ~ creatinine, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$creatinine), mort_creatinine$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial creatinine")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lactate
mort_lactate = glm(died.numeric ~ lactate, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate), mort_lactate$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial Lactate")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

lactate_max
mort_lactate_max = glm(died.numeric ~ lactate_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate_max), mort_lactate_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "lactate_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb
mort_hgb = glm(died.numeric ~ hgb, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb), mort_hgb$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hgb")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hct
mort_hct = glm(died.numeric ~ hct, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hct), mort_hct$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hct")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

WBC
mort_wbc = glm(died.numeric ~ wbc, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$wbc), mort_wbc$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial wbc")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lymphs
mort_lymphocytes = glm(died.numeric ~ lymphocytes, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lymphocytes), mort_lymphocytes$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial lymphocytes")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

min_lymp
mort_min_lymp = glm(died.numeric ~ min_lymp, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$min_lymp), mort_min_lymp$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "min_lymp")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Procalcitonin
mort_procal_72 = glm(died.numeric ~ procal_72, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$procal_72), mort_procal_72$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial procal_72")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

CRP
mort_crp_max = glm(died.numeric ~ crp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$crp_max), mort_crp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "max crp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

DDimer
mort_ddimer_max = glm(died.numeric ~ ddimer_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ddimer_max), mort_ddimer_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "max ddimer_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Exploratory Figures for Markers of Mortality, Age-Adjusted
na
mort_na = glm(died.numeric ~ age + na, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$na), mort_na$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial na")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

k
mort_k = glm(died.numeric ~ age + k, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$k), mort_k$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial k")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

max_creat
mort_max_creat = glm(died.numeric ~ age + max_creat, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$max_creat), mort_max_creat$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "max_creat")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

troponin_max
mort_troponin_max = glm(died.numeric ~ age + troponin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$troponin_max), mort_troponin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "troponin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

bnp_max
mort_bnp_max = glm(died.numeric ~ age + bnp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$bnp_max), mort_bnp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "bnp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ldh_max
mort_ldh_max = glm(died.numeric ~ age + ldh_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ldh_max), mort_ldh_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "ldh_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb_a1c_max
mort_hgb_a1c_max = glm(died.numeric ~ age + hgb_a1c_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb_a1c_max), mort_hgb_a1c_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "hgb_a1c_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ferritin_max
mort_ferritin_max = glm(died.numeric ~ age + ferritin_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ferritin_max), mort_ferritin_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "ferritin_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

AST
mort_ast = glm(died.numeric ~ age + ast, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast), mort_ast$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial AST")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ALT
mort_alt = glm(died.numeric ~ age + alt, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt), mort_alt$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial alt")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

alt_max
mort_alt_max = glm(died.numeric ~ age + alt_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$alt_max), mort_alt_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "alt_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

ast_max
mort_ast_max = glm(died.numeric ~ age + ast_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ast_max), mort_ast_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "ast_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

tbili
mort_tbili = glm(died.numeric ~ age + tbili, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$tbili), mort_tbili$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial tbili")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

creatinine
mort_creatinine = glm(died.numeric ~ age + creatinine, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$creatinine), mort_creatinine$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial creatinine")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lactate
mort_lactate = glm(died.numeric ~ age + lactate, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate), mort_lactate$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial Lactate")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

lactate_max
mort_lactate_max = glm(died.numeric ~ age + lactate_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lactate_max), mort_lactate_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "lactate_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hgb
mort_hgb = glm(died.numeric ~ age + hgb, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hgb), mort_hgb$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hgb")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

hct
mort_hct = glm(died.numeric ~ age + hct, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$hct), mort_hct$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial hct")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

WBC
mort_wbc = glm(died.numeric ~ age + wbc, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$wbc), mort_wbc$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial wbc")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Lymphs
mort_lymphocytes = glm(died.numeric ~ age + lymphocytes, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$lymphocytes), mort_lymphocytes$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial lymphocytes")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

min_lymp
mort_min_lymp = glm(died.numeric ~ age + min_lymp, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$min_lymp), mort_min_lymp$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "min_lymp")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

Procalcitonin
mort_procal_72 = glm(died.numeric ~ age + procal_72, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$procal_72), mort_procal_72$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "Initial procal_72")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

CRP
mort_crp_max = glm(died.numeric ~ age + crp_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$crp_max), mort_crp_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "max crp_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

DDimer
mort_ddimer_max = glm(died.numeric ~ age + ddimer_max, data = covid1, family = "binomial")
data = as.data.frame(cbind(na.omit(covid1$ddimer_max), mort_ddimer_max$fitted))
ggplot(data = data, aes(x = V1, y = V2)) + geom_point() + geom_smooth() + theme_bw() +
labs(y = "Probability of Hospital Mortality/Hospice", x = "max ddimer_max")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
