rolling time 3 hour, predict time 2 hours later,training set is 2000 samples,features are 155
modelErrors <- function(predicted, actual) {
sal <- vector(mode="numeric", length=3)
names(sal) <- c( "MAE", "RMSE", "RELE")
meanPredicted <- mean(predicted)
meanActual <- mean(actual)
sumPred <- sum((predicted - meanPredicted)^2)
sumActual <- sum((actual - meanActual)^2)
n<- length(actual)
p3<-vector(mode="numeric", length=n)
for (i in c(1:n)) {
if (actual[i]==0) {p3[i]<-abs(predicted[i])
} else { p3[i]<-((abs(predicted[i]-actual[i]))/actual[i])
}}
sal[1] <- mean(abs(predicted - actual))
sal[2] <- sqrt(sum((predicted - actual)^2)/n)
sal[3] <- mean(p3)
sal
}
unormalized<-function(x,y){
((y-0.1)*(max(x)-min(x))/0.8) + min(x)
}
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
library(xtable)
load("~/PED/newWayPrepareData/finalData/PED_r3_p2_feaOrig_100.RData")
load("~/PED/SA/r3_p2_training2000_feaOrig_100/dataset_PED_r3_p2_train2000_feaOrig_100_rf_sa.RData")
plot(rf_sa) + theme_bw()
rf_sa$optVariables
## [1] "DAY.end" "HORA.end"
## [3] "WDR.MAX" "NOX_NO2.MAX"
## [5] "NOx.MIN" "RH.MIN"
## [7] "TMP.MIN" "WDR.MIN"
## [9] "WSP.MIN" "CO.MIN"
## [11] "NOx.MEAN" "NO2.MEAN"
## [13] "WDR.MEAN" "O3.MEDIAN"
## [15] "NOx.MEDIAN" "NO2.MEDIAN"
## [17] "WSP.MEDIAN" "CO.MEDIAN"
## [19] "NO2.SUM" "RH.SUM"
## [21] "CO.SUM" "NOX_NO2.SUM"
## [23] "NOx.SUM._.TMP.SUM" "NOx.MEAN._.RH.SUM"
## [25] "WDR.MAX._.RH.MEDIAN" "NO2.MEDIAN._.NO2.MAX"
## [27] "WSP.MIN._.NO2.MEAN" "NOx.MEAN._.CO.SUM"
## [29] "RH.MAX._.TMP.MEDIAN" "O3.MAX._.NO2.MAX"
## [31] "RH.MEDIAN._.TMP.MEAN" "SO2.MEDIAN._.WDR.SUM"
## [33] "RH.MAX._.WDR.MIN" "NO2.MEAN._.WEEKDAY.end"
## [35] "NOx.MIN._.CO.MIN" "O3.SUM._.WSP.MEDIAN"
## [37] "NO2.MIN._.TMP.MIN" "O3.SUM._.WDR.MEAN"
## [39] "HORA.end._.WDR.MAX" "SO2.MEAN._.NO2.MEAN"
## [41] "CO.MEDIAN._.WDR.MEDIAN" "NO2.MAX._.WSP.SUM"
## [43] "TMP.MAX._.RH.MAX" "MONTH.end._.WDR.SUM"
## [45] "TMP.MAX._.SEASON.end" "NOX_NO2.MAX._.TMP.MAX"
## [47] "SO2.SUM._.HORA.end" "CO.MEAN._.RH.MIN"
## [49] "NOx.MEDIAN._.RH.MAX" "RH.SUM._.CO.MIN"
## [51] "O3.MEDIAN._.NO2.MEAN" "HORA.end._.SO2.SUM"
## [53] "NO2.MEAN._.SO2.MEDIAN" "CO.SUM._.WSP.MAX"
## [55] "CO.MEDIAN._.TMP.SUM" "TMP.MEAN._.WDR.MAX"
## [57] "SO2.MIN._.O3.MEAN" "DAY.end._.RH.MIN"
#########variable importance#########
data.frame(rf_sa$fit$importance)->imp
imp$rank<-rank(-imp)
imp[ order(imp[,"rank"]), ]
## IncNodePurity rank
## HORA.end 4.24206 1
## O3.SUM._.WSP.MEDIAN 2.51220 2
## O3.SUM._.WDR.MEAN 2.38739 3
## O3.MEDIAN 1.21585 4
## HORA.end._.WDR.MAX 0.63823 5
## SO2.SUM._.HORA.end 0.57238 6
## HORA.end._.SO2.SUM 0.51401 7
## NO2.MAX._.WSP.SUM 0.49037 8
## CO.MEDIAN._.WDR.MEDIAN 0.46285 9
## WDR.MEAN 0.44170 10
## NO2.MEDIAN._.NO2.MAX 0.34984 11
## O3.MAX._.NO2.MAX 0.32758 12
## SO2.MIN._.O3.MEAN 0.31595 13
## WDR.MAX 0.28278 14
## NO2.MEAN 0.27195 15
## CO.SUM._.WSP.MAX 0.25817 16
## NO2.SUM 0.25487 17
## SO2.MEDIAN._.WDR.SUM 0.25308 18
## WSP.MIN._.NO2.MEAN 0.23973 19
## NOx.MIN 0.21987 20
## NOx.MEDIAN 0.20623 21
## O3.MEDIAN._.NO2.MEAN 0.20423 22
## CO.MEAN._.RH.MIN 0.19820 23
## NO2.MEDIAN 0.19630 24
## NO2.MIN._.TMP.MIN 0.18881 25
## TMP.MEAN._.WDR.MAX 0.18569 26
## NOX_NO2.SUM 0.18225 27
## TMP.MIN 0.18040 28
## TMP.MAX._.SEASON.end 0.17844 29
## NOX_NO2.MAX 0.17639 30
## WSP.MEDIAN 0.16656 31
## NOX_NO2.MAX._.TMP.MAX 0.16462 32
## NO2.MEAN._.WEEKDAY.end 0.15933 33
## NOx.SUM._.TMP.SUM 0.15701 34
## SO2.MEAN._.NO2.MEAN 0.15635 35
## NOx.MEAN._.RH.SUM 0.15535 36
## WSP.MIN 0.15440 37
## NOx.MEAN 0.15267 38
## WDR.MAX._.RH.MEDIAN 0.15192 39
## NO2.MEAN._.SO2.MEDIAN 0.15165 40
## NOx.MEDIAN._.RH.MAX 0.15097 41
## RH.MIN 0.14976 42
## WDR.MIN 0.14475 43
## CO.MIN 0.14006 44
## RH.SUM._.CO.MIN 0.13839 45
## NOx.MIN._.CO.MIN 0.13626 46
## MONTH.end._.WDR.SUM 0.13447 47
## CO.SUM 0.12816 48
## RH.MAX._.WDR.MIN 0.12375 49
## DAY.end._.RH.MIN 0.12313 50
## CO.MEDIAN._.TMP.SUM 0.11873 51
## NOx.MEAN._.CO.SUM 0.11819 52
## DAY.end 0.11465 53
## RH.MEDIAN._.TMP.MEAN 0.10335 54
## CO.MEDIAN 0.10268 55
## TMP.MAX._.RH.MAX 0.10084 56
## RH.SUM 0.09682 57
## RH.MAX._.TMP.MEDIAN 0.09198 58
xtable(imp[ order(imp[,"rank"]), ],caption="rolling time 3 hour, predict time 2 hours later,training set is 2000 samples,features are 155",digits=c(3,3,0))
## % latex table generated in R 3.1.2 by xtable 1.7-1 package
## % Mon Mar 23 11:31:20 2015
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrr}
## \hline
## & IncNodePurity & rank \\
## \hline
## HORA.end & 4.242 & 1 \\
## O3.SUM.\_.WSP.MEDIAN & 2.512 & 2 \\
## O3.SUM.\_.WDR.MEAN & 2.387 & 3 \\
## O3.MEDIAN & 1.216 & 4 \\
## HORA.end.\_.WDR.MAX & 0.638 & 5 \\
## SO2.SUM.\_.HORA.end & 0.572 & 6 \\
## HORA.end.\_.SO2.SUM & 0.514 & 7 \\
## NO2.MAX.\_.WSP.SUM & 0.490 & 8 \\
## CO.MEDIAN.\_.WDR.MEDIAN & 0.463 & 9 \\
## WDR.MEAN & 0.442 & 10 \\
## NO2.MEDIAN.\_.NO2.MAX & 0.350 & 11 \\
## O3.MAX.\_.NO2.MAX & 0.328 & 12 \\
## SO2.MIN.\_.O3.MEAN & 0.316 & 13 \\
## WDR.MAX & 0.283 & 14 \\
## NO2.MEAN & 0.272 & 15 \\
## CO.SUM.\_.WSP.MAX & 0.258 & 16 \\
## NO2.SUM & 0.255 & 17 \\
## SO2.MEDIAN.\_.WDR.SUM & 0.253 & 18 \\
## WSP.MIN.\_.NO2.MEAN & 0.240 & 19 \\
## NOx.MIN & 0.220 & 20 \\
## NOx.MEDIAN & 0.206 & 21 \\
## O3.MEDIAN.\_.NO2.MEAN & 0.204 & 22 \\
## CO.MEAN.\_.RH.MIN & 0.198 & 23 \\
## NO2.MEDIAN & 0.196 & 24 \\
## NO2.MIN.\_.TMP.MIN & 0.189 & 25 \\
## TMP.MEAN.\_.WDR.MAX & 0.186 & 26 \\
## NOX\_NO2.SUM & 0.182 & 27 \\
## TMP.MIN & 0.180 & 28 \\
## TMP.MAX.\_.SEASON.end & 0.178 & 29 \\
## NOX\_NO2.MAX & 0.176 & 30 \\
## WSP.MEDIAN & 0.167 & 31 \\
## NOX\_NO2.MAX.\_.TMP.MAX & 0.165 & 32 \\
## NO2.MEAN.\_.WEEKDAY.end & 0.159 & 33 \\
## NOx.SUM.\_.TMP.SUM & 0.157 & 34 \\
## SO2.MEAN.\_.NO2.MEAN & 0.156 & 35 \\
## NOx.MEAN.\_.RH.SUM & 0.155 & 36 \\
## WSP.MIN & 0.154 & 37 \\
## NOx.MEAN & 0.153 & 38 \\
## WDR.MAX.\_.RH.MEDIAN & 0.152 & 39 \\
## NO2.MEAN.\_.SO2.MEDIAN & 0.152 & 40 \\
## NOx.MEDIAN.\_.RH.MAX & 0.151 & 41 \\
## RH.MIN & 0.150 & 42 \\
## WDR.MIN & 0.145 & 43 \\
## CO.MIN & 0.140 & 44 \\
## RH.SUM.\_.CO.MIN & 0.138 & 45 \\
## NOx.MIN.\_.CO.MIN & 0.136 & 46 \\
## MONTH.end.\_.WDR.SUM & 0.134 & 47 \\
## CO.SUM & 0.128 & 48 \\
## RH.MAX.\_.WDR.MIN & 0.124 & 49 \\
## DAY.end.\_.RH.MIN & 0.123 & 50 \\
## CO.MEDIAN.\_.TMP.SUM & 0.119 & 51 \\
## NOx.MEAN.\_.CO.SUM & 0.118 & 52 \\
## DAY.end & 0.115 & 53 \\
## RH.MEDIAN.\_.TMP.MEAN & 0.103 & 54 \\
## CO.MEDIAN & 0.103 & 55 \\
## TMP.MAX.\_.RH.MAX & 0.101 & 56 \\
## RH.SUM & 0.097 & 57 \\
## RH.MAX.\_.TMP.MEDIAN & 0.092 & 58 \\
## \hline
## \end{tabular}
## \caption{rolling time 3 hour, predict time 2 hours later,training set is 2000 samples,features are 155}
## \end{table}
subset(inputsTest,select=rownames(rf_sa$fit$importance))->inputsTestImp
#########predict sa+rf############
rfSA$pred(rf_sa$fit,inputsTestImp)->r3_p2_train2000_feaOrg_100_sa_pred
#############predict rf######################
load("~/PED/SA/r3_p2_training2000_feaOrig_100/dataset_PED_r3_p2_train2000_feaOrig_100_rfFit.RData")
predict(rfFit,inputsTest)->r3_p2_train2000_feaOrg_100_pred
cbind(r3_p2_train2000_feaOrg_100_pred,r3_p2_train2000_feaOrg_100_sa_pred,targetsTest)->r3_p2_train2000_feaOrg_100_predVsReal
colnames(r3_p2_train2000_feaOrg_100_predVsReal)<-c("RF","SA+RF","Real")
############errors of normalization data set##############################
modelErrors(r3_p2_train2000_feaOrg_100_predVsReal[,"RF"],r3_p2_train2000_feaOrg_100_predVsReal[,"Real"])->error_norm_rf
modelErrors(r3_p2_train2000_feaOrg_100_predVsReal[,"SA+RF"],r3_p2_train2000_feaOrg_100_predVsReal[,"Real"])->error_norm_sa_rf
error_norm_rf
## MAE RMSE RELE
## 0.02596 0.03571 0.16221
error_norm_sa_rf
## MAE RMSE RELE
## 0.02679 0.03685 0.16722
#####denormalize##############
load("~/PED/newWayPrepareData/finalData/O3.RData")
apply(r3_p2_train2000_feaOrg_100_predVsReal,2,function(x) unormalized(O3,x))->r3_p2_train2000_feaOrg_100_predVsReal_denorm
colnames(r3_p2_train2000_feaOrg_100_predVsReal_denorm)<-c("RF","SA+RF","Real")
save(r3_p2_train2000_feaOrg_100_predVsReal_denorm,file="r3_p2_train2000_feaOrg_100_predVsReal_denorm.RData")
modelErrors(r3_p2_train2000_feaOrg_100_predVsReal_denorm[,"RF"],r3_p2_train2000_feaOrg_100_predVsReal_denorm[,"Real"])->error_denorm_rf
#error between SA+RF with real value#####
modelErrors(r3_p2_train2000_feaOrg_100_predVsReal_denorm[,"SA+RF"],r3_p2_train2000_feaOrg_100_predVsReal_denorm[,"Real"])->error_denorm_sa_rf
error_denorm_rf
## MAE RMSE RELE
## 0.01304 0.01794 1.20173
error_denorm_sa_rf
## MAE RMSE RELE
## 0.01346 0.01852 1.22292
save(error_denorm_rf,error_denorm_sa_rf,error_norm_rf,error_norm_sa_rf,file="error_r3_p2_training2000_feaOrig_100.RData")
##############reshape###############
# data.frame(r3_p2_train2000_feaOrg_100_predVsReal_denorm)->r3_p2_train2000_feaOrg_100_predVsReal_denorm
# reshape(r3_p2_train2000_feaOrg_100_predVsReal_denorm[1:400,],varying=list(names(r3_p2_train2000_feaOrg_100_predVsReal_denorm)),v.names="Ozone",timevar="modelType",times=names(r3_p2_train2000_feaOrg_100_predVsReal_denorm),direction = "long")->r3_p2_train2000_feaOrg_100_predVsReal_denorm_reshape
# pdf("r3_p2_train2000_feaOrg_100_test400.pdf",width=11,height=6,bg="transparent")
# ggplot(r3_p2_train2000_feaOrg_100_predVsReal_denorm_reshape,aes(x=id,y=Ozone,group=modelType,color=modelType,shape=modelType))+
# geom_line(aes(linetype=modelType),size=0.8)+
# geom_point(size=2,fill="white")+
# xlab("Samples")+ylab("Ozone")+ggtitle("Rolling time 3, predict next 2 hours, trainSize2000,features 155,testSize400")->r3_p2_plot
#
# r3_p2_plot<-r3_p2_plot+theme(
# panel.background = element_rect(fill = "transparent"), # or theme_blank()
# panel.grid.minor = element_blank(),
# panel.grid.major = element_blank(),
# plot.background = element_rect(fill = "transparent"),
# axis.line=element_line(colour="black")
# )
#
# r3_p2_plot<-r3_p2_plot+theme(axis.title.x=element_text(colour="black",size=17),axis.title.y=element_text(colour="black",size=17))
# r3_p2_plot<-r3_p2_plot+theme(axis.text.x=element_text(colour="black",size=15),axis.text.y=element_text(colour="black",size=13))
# r3_p2_plot<-r3_p2_plot+theme(legend.title = element_text(colour="black", size=17, face="bold"))
# r3_p2_plot
# dev.off()