rolling time 3 hour, predict time 2 hours later,training set is 2000 samples,features are 195
modelErrors <- function(predicted, actual) {
sal <- vector(mode="numeric", length=3)
names(sal) <- c( "MAE", "RMSE", "RELE")
meanPredicted <- mean(predicted)
meanActual <- mean(actual)
sumPred <- sum((predicted - meanPredicted)^2)
sumActual <- sum((actual - meanActual)^2)
n<- length(actual)
p3<-vector(mode="numeric", length=n)
for (i in c(1:n)) {
if (actual[i]==0) {p3[i]<-abs(predicted[i])
} else { p3[i]<-((abs(predicted[i]-actual[i]))/actual[i])
}}
sal[1] <- mean(abs(predicted - actual))
sal[2] <- sqrt(sum((predicted - actual)^2)/n)
sal[3] <- mean(p3)
sal
}
unormalized<-function(x,y){
((y-0.1)*(max(x)-min(x))/0.8) + min(x)
}
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(randomForest)
## randomForest 4.6-10
## Type rfNews() to see new features/changes/bug fixes.
library(xtable)
load("~/PED/newWayPrepareData/finalData/PED_r3_p2_fea100.RData")
load("~/PED/SA/r3_p2_training2000_fea100/dataset_PED_r3_p2_train2000_fea100_rf_sa.RData")
plot(rf_sa) + theme_bw()
rf_sa$optVariables
## [1] "MONTH.end" "SEASON.end"
## [3] "HORA.end" "O3.MAX"
## [5] "RH.MAX" "WDR.MAX"
## [7] "WSP.MAX" "O3.MIN"
## [9] "RH.MIN" "TMP.MIN"
## [11] "WSP.MIN" "CO.MIN"
## [13] "NOX_NO2.MIN" "RH.MEAN"
## [15] "WDR.MEAN" "O3.MEDIAN"
## [17] "NO2.MEDIAN" "TMP.MEDIAN"
## [19] "SO2.MEDIAN" "SO2.SUM"
## [21] "MAXO3P" "SUMO3P"
## [23] "AVGNO2P" "SUMNO2P"
## [25] "MAXNOXP" "AVGNOXP"
## [27] "SUMNOXP" "MAXRHP"
## [29] "AVGRHP" "SUMRHP"
## [31] "MINTMPP" "AVGTMPP"
## [33] "MINWDRP" "AVGWDRP"
## [35] "SUMWDRP" "MAXWSPP"
## [37] "MAXCOP" "AVGSO2P"
## [39] "MAXNOXP_MAXNO2P" "TMP.MEDIAN._.WEEKDAY.end"
## [41] "MINO3P._.NOX_NO2.MAX" "MINNOXP_MINNO2P._.NO2.MIN"
## [43] "AVGWDRP._.TMP.SUM" "AVGRHP._.WDR.MEDIAN"
## [45] "CO.SUM._.SEASON.end" "WEEKDAY.end._.DAY.end"
## [47] "AVGRHP._.NOx.MEDIAN" "O3.SUM._.RH.MEDIAN"
## [49] "SUMWSPP._.MINSO2P" "NOx.MEDIAN._.NOX_NO2.MEAN"
## [51] "RH.MAX._.WEEKDAY.end" "TMP.MAX._.MAXO3P"
## [53] "RH.SUM._.MINNO2P" "MINWDRP._.MAXWDRP"
## [55] "WDR.MAX._.WDR.MEDIAN" "WSP.MAX._.MAXNOXP"
## [57] "MINNOXP._.AVGRHP" "AVGO3P._.SUMCOP"
## [59] "TMP.MEAN._.CO.MEAN" "SUMNO2P._.RH.MEAN"
## [61] "MINNOXP_MINNO2P._.O3.SUM" "MONTH.end._.CO.SUM"
## [63] "WDR.SUM._.MONTH.end" "TMP.SUM._.NO2.MEAN"
## [65] "SUMO3P._.AVGNO2P" "AVGTMPP._.RH.MIN"
## [67] "NO2.MEDIAN._.NO2.MAX" "TMP.SUM._.NOx.MIN"
## [69] "SUMNOXP._.NO2.MIN" "SUMNO2P._.SUMNOXP"
## [71] "AVGNOXP._.WEEKDAY.end" "NOX_NO2.MIN._.CO.MEAN"
## [73] "WSP.MEDIAN._.RH.MAX" "AVGNO2P._.WDR.SUM"
## [75] "AVGO3P._.SUMNOXP" "TMP.MAX._.AVGWDRP"
## [77] "NOx.MEAN._.WDR.MIN" "SO2.MIN._.SUMNOXP"
## [79] "CO.MEAN._.AVGNO2P" "WSP.MIN._.NO2.MIN"
#########variable importance#########
data.frame(rf_sa$fit$importance)->imp
imp$rank<-rank(-imp)
imp[ order(imp[,"rank"]), ]
## IncNodePurity rank
## HORA.end 5.07029 1
## O3.MAX 3.26165 2
## MINNOXP_MINNO2P._.O3.SUM 1.41351 3
## O3.MEDIAN 1.05932 4
## WDR.MEAN 0.64890 5
## O3.MIN 0.52258 6
## O3.SUM._.RH.MEDIAN 0.51157 7
## TMP.SUM._.NOx.MIN 0.49041 8
## NO2.MEDIAN._.NO2.MAX 0.37768 9
## WSP.MAX 0.36550 10
## WSP.MIN._.NO2.MIN 0.31092 11
## NOx.MEDIAN._.NOX_NO2.MEAN 0.29965 12
## WDR.MAX 0.28613 13
## TMP.SUM._.NO2.MEAN 0.27605 14
## NOx.MEAN._.WDR.MIN 0.23266 15
## NO2.MEDIAN 0.22961 16
## MINNOXP_MINNO2P._.NO2.MIN 0.20603 17
## TMP.MIN 0.20355 18
## NOX_NO2.MIN._.CO.MEAN 0.19936 19
## SUMO3P 0.18760 20
## TMP.MEAN._.CO.MEAN 0.17574 21
## MINO3P._.NOX_NO2.MAX 0.16488 22
## NOX_NO2.MIN 0.16187 23
## WDR.MAX._.WDR.MEDIAN 0.16181 24
## AVGRHP._.NOx.MEDIAN 0.15846 25
## AVGO3P._.SUMCOP 0.15784 26
## AVGNO2P._.WDR.SUM 0.15095 27
## WSP.MEDIAN._.RH.MAX 0.14740 28
## MAXO3P 0.14424 29
## SUMNOXP._.NO2.MIN 0.13691 30
## WSP.MIN 0.13624 31
## SUMO3P._.AVGNO2P 0.12972 32
## CO.MIN 0.12667 33
## TMP.MEDIAN 0.12519 34
## AVGRHP._.WDR.MEDIAN 0.12197 35
## AVGTMPP 0.11426 36
## SO2.SUM 0.11402 37
## SUMNO2P._.SUMNOXP 0.11199 38
## WDR.SUM._.MONTH.end 0.11171 39
## AVGO3P._.SUMNOXP 0.11110 40
## TMP.MAX._.MAXO3P 0.10706 41
## SUMWSPP._.MINSO2P 0.09899 42
## AVGSO2P 0.09819 43
## MAXWSPP 0.09573 44
## CO.MEAN._.AVGNO2P 0.09403 45
## CO.SUM._.SEASON.end 0.09233 46
## AVGTMPP._.RH.MIN 0.09028 47
## RH.MIN 0.08603 48
## MINWDRP._.MAXWDRP 0.08389 49
## SUMWDRP 0.08383 50
## MINTMPP 0.08284 51
## MAXNOXP_MAXNO2P 0.08160 52
## MAXRHP 0.08068 53
## RH.SUM._.MINNO2P 0.08057 54
## MAXCOP 0.08035 55
## TMP.MEDIAN._.WEEKDAY.end 0.08015 56
## AVGNOXP._.WEEKDAY.end 0.08007 57
## WEEKDAY.end._.DAY.end 0.07848 58
## MINWDRP 0.07690 59
## SO2.MIN._.SUMNOXP 0.07656 60
## MINNOXP._.AVGRHP 0.07654 61
## RH.MAX._.WEEKDAY.end 0.07473 62
## TMP.MAX._.AVGWDRP 0.07375 63
## SUMRHP 0.07332 64
## AVGRHP 0.07299 65
## WSP.MAX._.MAXNOXP 0.07295 66
## AVGWDRP._.TMP.SUM 0.07099 67
## SO2.MEDIAN 0.06959 68
## RH.MEAN 0.06592 69
## MONTH.end._.CO.SUM 0.06435 70
## SUMNO2P._.RH.MEAN 0.06309 71
## RH.MAX 0.06132 72
## AVGWDRP 0.06043 73
## SUMNO2P 0.06041 74
## AVGNOXP 0.05885 75
## SUMNOXP 0.05863 76
## MAXNOXP 0.05630 77
## AVGNO2P 0.05585 78
## MONTH.end 0.03835 79
## SEASON.end 0.01350 80
xtable(imp[ order(imp[,"rank"]), ],caption="rolling time 3 hour, predict time 2 hours later,training set is 2000 samples,features are 195",digits=c(3,3,0))
## % latex table generated in R 3.1.2 by xtable 1.7-1 package
## % Mon Mar 23 11:21:03 2015
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrr}
## \hline
## & IncNodePurity & rank \\
## \hline
## HORA.end & 5.070 & 1 \\
## O3.MAX & 3.262 & 2 \\
## MINNOXP\_MINNO2P.\_.O3.SUM & 1.414 & 3 \\
## O3.MEDIAN & 1.059 & 4 \\
## WDR.MEAN & 0.649 & 5 \\
## O3.MIN & 0.523 & 6 \\
## O3.SUM.\_.RH.MEDIAN & 0.512 & 7 \\
## TMP.SUM.\_.NOx.MIN & 0.490 & 8 \\
## NO2.MEDIAN.\_.NO2.MAX & 0.378 & 9 \\
## WSP.MAX & 0.366 & 10 \\
## WSP.MIN.\_.NO2.MIN & 0.311 & 11 \\
## NOx.MEDIAN.\_.NOX\_NO2.MEAN & 0.300 & 12 \\
## WDR.MAX & 0.286 & 13 \\
## TMP.SUM.\_.NO2.MEAN & 0.276 & 14 \\
## NOx.MEAN.\_.WDR.MIN & 0.233 & 15 \\
## NO2.MEDIAN & 0.230 & 16 \\
## MINNOXP\_MINNO2P.\_.NO2.MIN & 0.206 & 17 \\
## TMP.MIN & 0.204 & 18 \\
## NOX\_NO2.MIN.\_.CO.MEAN & 0.199 & 19 \\
## SUMO3P & 0.188 & 20 \\
## TMP.MEAN.\_.CO.MEAN & 0.176 & 21 \\
## MINO3P.\_.NOX\_NO2.MAX & 0.165 & 22 \\
## NOX\_NO2.MIN & 0.162 & 23 \\
## WDR.MAX.\_.WDR.MEDIAN & 0.162 & 24 \\
## AVGRHP.\_.NOx.MEDIAN & 0.158 & 25 \\
## AVGO3P.\_.SUMCOP & 0.158 & 26 \\
## AVGNO2P.\_.WDR.SUM & 0.151 & 27 \\
## WSP.MEDIAN.\_.RH.MAX & 0.147 & 28 \\
## MAXO3P & 0.144 & 29 \\
## SUMNOXP.\_.NO2.MIN & 0.137 & 30 \\
## WSP.MIN & 0.136 & 31 \\
## SUMO3P.\_.AVGNO2P & 0.130 & 32 \\
## CO.MIN & 0.127 & 33 \\
## TMP.MEDIAN & 0.125 & 34 \\
## AVGRHP.\_.WDR.MEDIAN & 0.122 & 35 \\
## AVGTMPP & 0.114 & 36 \\
## SO2.SUM & 0.114 & 37 \\
## SUMNO2P.\_.SUMNOXP & 0.112 & 38 \\
## WDR.SUM.\_.MONTH.end & 0.112 & 39 \\
## AVGO3P.\_.SUMNOXP & 0.111 & 40 \\
## TMP.MAX.\_.MAXO3P & 0.107 & 41 \\
## SUMWSPP.\_.MINSO2P & 0.099 & 42 \\
## AVGSO2P & 0.098 & 43 \\
## MAXWSPP & 0.096 & 44 \\
## CO.MEAN.\_.AVGNO2P & 0.094 & 45 \\
## CO.SUM.\_.SEASON.end & 0.092 & 46 \\
## AVGTMPP.\_.RH.MIN & 0.090 & 47 \\
## RH.MIN & 0.086 & 48 \\
## MINWDRP.\_.MAXWDRP & 0.084 & 49 \\
## SUMWDRP & 0.084 & 50 \\
## MINTMPP & 0.083 & 51 \\
## MAXNOXP\_MAXNO2P & 0.082 & 52 \\
## MAXRHP & 0.081 & 53 \\
## RH.SUM.\_.MINNO2P & 0.081 & 54 \\
## MAXCOP & 0.080 & 55 \\
## TMP.MEDIAN.\_.WEEKDAY.end & 0.080 & 56 \\
## AVGNOXP.\_.WEEKDAY.end & 0.080 & 57 \\
## WEEKDAY.end.\_.DAY.end & 0.078 & 58 \\
## MINWDRP & 0.077 & 59 \\
## SO2.MIN.\_.SUMNOXP & 0.077 & 60 \\
## MINNOXP.\_.AVGRHP & 0.077 & 61 \\
## RH.MAX.\_.WEEKDAY.end & 0.075 & 62 \\
## TMP.MAX.\_.AVGWDRP & 0.074 & 63 \\
## SUMRHP & 0.073 & 64 \\
## AVGRHP & 0.073 & 65 \\
## WSP.MAX.\_.MAXNOXP & 0.073 & 66 \\
## AVGWDRP.\_.TMP.SUM & 0.071 & 67 \\
## SO2.MEDIAN & 0.070 & 68 \\
## RH.MEAN & 0.066 & 69 \\
## MONTH.end.\_.CO.SUM & 0.064 & 70 \\
## SUMNO2P.\_.RH.MEAN & 0.063 & 71 \\
## RH.MAX & 0.061 & 72 \\
## AVGWDRP & 0.060 & 73 \\
## SUMNO2P & 0.060 & 74 \\
## AVGNOXP & 0.059 & 75 \\
## SUMNOXP & 0.059 & 76 \\
## MAXNOXP & 0.056 & 77 \\
## AVGNO2P & 0.056 & 78 \\
## MONTH.end & 0.038 & 79 \\
## SEASON.end & 0.014 & 80 \\
## \hline
## \end{tabular}
## \caption{rolling time 3 hour, predict time 2 hours later,training set is 2000 samples,features are 195}
## \end{table}
subset(inputsTest,select=rownames(rf_sa$fit$importance))->inputsTestImp
#########predict sa+rf############
rfSA$pred(rf_sa$fit,inputsTestImp)->r3_p2_train2000_fea100_sa_pred
#############predict rf######################
load("~/PED/SA/r3_p2_training2000_fea100/dataset_PED_r3_p2_train2000_fea100_rfFit.RData")
predict(rfFit,inputsTest)->r3_p2_train2000_fea100_pred
cbind(r3_p2_train2000_fea100_pred,r3_p2_train2000_fea100_sa_pred,targetsTest)->r3_p2_train2000_fea100_predVsReal
colnames(r3_p2_train2000_fea100_predVsReal)<-c("RF","SA+RF","Real")
############errors of normalization data set##############################
modelErrors(r3_p2_train2000_fea100_predVsReal[,"RF"],r3_p2_train2000_fea100_predVsReal[,"Real"])->error_norm_rf
modelErrors(r3_p2_train2000_fea100_predVsReal[,"SA+RF"],r3_p2_train2000_fea100_predVsReal[,"Real"])->error_norm_sa_rf
error_norm_rf
## MAE RMSE RELE
## 0.02749 0.03693 0.17613
error_norm_sa_rf
## MAE RMSE RELE
## 0.02483 0.03423 0.15604
#####denormalize##############
load("~/PED/newWayPrepareData/finalData/O3.RData")
apply(r3_p2_train2000_fea100_predVsReal,2,function(x) unormalized(O3,x))->r3_p2_train2000_fea100_predVsReal_denorm
colnames(r3_p2_train2000_fea100_predVsReal_denorm)<-c("RF","SA+RF","Real")
save(r3_p2_train2000_fea100_predVsReal_denorm,file="r3_p2_training2000_fea100_predVsReal_denorm.RData")
modelErrors(r3_p2_train2000_fea100_predVsReal_denorm[,"RF"],r3_p2_train2000_fea100_predVsReal_denorm[,"Real"])->error_denorm_rf
#error between SA+RF with real value#####
modelErrors(r3_p2_train2000_fea100_predVsReal_denorm[,"SA+RF"],r3_p2_train2000_fea100_predVsReal_denorm[,"Real"])->error_denorm_sa_rf
error_denorm_rf
## MAE RMSE RELE
## 0.01381 0.01856 1.37691
error_denorm_sa_rf
## MAE RMSE RELE
## 0.01248 0.01720 1.19082
##############reshape###############
# data.frame(r3_p2_train2000_fea100_predVsReal_denorm)->r3_p2_train2000_fea100_predVsReal_denorm
# reshape(r3_p2_train2000_fea100_predVsReal_denorm[1:400,],varying=list(names(r3_p2_train2000_fea100_predVsReal_denorm)),v.names="Ozone",timevar="modelType",times=names(r3_p2_train2000_fea100_predVsReal_denorm),direction = "long")->r3_p2_train2000_fea100_predVsReal_denorm_reshape
#
# pdf("r3_p2_train2000_fea100_test400.pdf",width=11,height=6,bg="transparent")
# ggplot(r3_p2_train2000_fea100_predVsReal_denorm_reshape,aes(x=id,y=Ozone,group=modelType,color=modelType,shape=modelType))+
# geom_line(aes(linetype=modelType),size=0.8)+
# geom_point(size=2,fill="white")+
# xlab("Samples")+ylab("Ozone")+ggtitle("Rolling time 3, predict next 2 hours, trainSize2000,features 195,testSize400")->r3_p2_plot
#
# r3_p2_plot<-r3_p2_plot+theme(
# panel.background = element_rect(fill = "transparent"), # or theme_blank()
# panel.grid.minor = element_blank(),
# panel.grid.major = element_blank(),
# plot.background = element_rect(fill = "transparent"),
# axis.line=element_line(colour="black")
# )
#
# r3_p2_plot<-r3_p2_plot+theme(axis.title.x=element_text(colour="black",size=17),axis.title.y=element_text(colour="black",size=17))
# r3_p2_plot<-r3_p2_plot+theme(axis.text.x=element_text(colour="black",size=15),axis.text.y=element_text(colour="black",size=13))
# r3_p2_plot<-r3_p2_plot+theme(legend.title = element_text(colour="black", size=17, face="bold"))
# r3_p2_plot
# dev.off()
# r3_p2_plot
# #############################high level############################
# r3_p2_train2000_fea100_predVsReal_denorm$level<-ifelse(r3_p2_train2000_fea100_predVsReal_denorm[,"Real"]>0.11,"H","L")
# r3_p2_train2000_fea100_predVsReal_denorm[r3_p2_train2000_fea100_predVsReal_denorm[,"Real"]>0.11,]->r3_p2_train2000_fea100_predVsReal_denorm_H
# r3_p2_train2000_fea100_predVsReal_denorm[r3_p2_train2000_fea100_predVsReal_denorm[,"Real"]<=0.11,]->r3_p2_train2000_predVsReal_denorm_L
# ####errors between RF and Real
# modelErrors(r3_p2_train2000_fea100_predVsReal_denorm_H[,"RF"],r3_p2_train2000_fea100_predVsReal_denorm_H[,"Real"])
# ###errors between SA + RF Real####
# modelErrors(r3_p2_train2000_fea100_predVsReal_denorm_H[,"SA.RF"],r3_p2_train2000_fea100_predVsReal_denorm_H[,"Real"])
# ####################plot high level
# reshape(r3_p2_train2000_fea100_predVsReal_denorm_H[1:400,],varying=list(names(r3_p2_train2000_fea100_predVsReal_denorm_H[,1:3])),v.names="Ozone",timevar="modelType",times=names(r3_p2_train2000_fea100_predVsReal_denorm_H[,1:3]),direction = "long")->r3_p2_train2000_fea100_test400_H_reshape
#
# pdf("r3_p2_train2000_fea100_test400_H.pdf",width=11,height=6,bg="transparent")
# ggplot(r3_p2_train2000_fea100_test400_H_reshape,aes(x=id,y=Ozone,group=modelType,color=modelType,shape=modelType))+
# geom_line(aes(linetype=modelType),size=0.8)+
# geom_point(size=2,fill="white")+
# xlab("Samples")+ylab("Ozone")+ggtitle("Rolling time 3, predict next 2 hours, trainSize1000,feature 95,testSize400,high Level")->r3_p2_H_plot
#
# r3_p2_H_plot<-r3_p2_H_plot+theme(
# panel.background = element_rect(fill = "transparent"), # or theme_blank()
# panel.grid.minor = element_blank(),
# panel.grid.major = element_blank(),
# plot.background = element_rect(fill = "transparent"),
# axis.line=element_line(colour="black")
# )
#
# r3_p2_H_plot<-r3_p2_H_plot+theme(axis.title.x=element_text(colour="black",size=17),axis.title.y=element_text(colour="black",size=17))
# r3_p2_H_plot<-r3_p2_H_plot+theme(axis.text.x=element_text(colour="black",size=15),axis.text.y=element_text(colour="black",size=13))
# r3_p2_H_plot<-r3_p2_H_plot+theme(legend.title = element_text(colour="black", size=17, face="bold"))
# r3_p2_H_plot
# dev.off()
# r3_p2_H_plot