Libraries
library(fpp2)
## Warning: package 'fpp2' was built under R version 3.6.2
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching packages ──────────────────────────────────────────────────────────────────────────── fpp2 2.4 ──
## ✓ ggplot2 3.3.2 ✓ fma 2.4
## ✓ forecast 8.13 ✓ expsmooth 2.3
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'forecast' was built under R version 3.6.2
##
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(knitr)
Download and trim data
w=read.csv("/Users/nelsonwhite/Documents/ms applied economics/Predictive Analytics:Forecasting/week 1 discussion/WDFC.csv")
w=ts(w[,2],start=c(2018,10,23),end=c(2020,10,22),frequency=250)
WDFC over time
autoplot(w)

Linear model prediction
model1 = tslm(w~trend)
autoplot(w, series="Data") +
autolayer(fitted(model1), series="Fit") +
autolayer(forecast(model1), series="Projection") +
xlab("Year") + ylab("Price") +
ggtitle("WDFC Linear Forecast")

Check residials and accuracy
checkresiduals(model1)

##
## Breusch-Godfrey test for serial correlation of order up to 100
##
## data: Residuals from Linear regression model
## LM test = 423.72, df = 100, p-value < 2.2e-16
accuracy(model1)
## ME RMSE MAE MPE MAPE MASE
## Training set -3.433696e-16 10.08061 7.353367 -0.2821188 3.91959 1.228065
## ACF1
## Training set 0.8884767