library(tidyverse)
library(ggplot2)
library(ggpubr)
library(plyr)
library(magick)
library(png)
library(EBImage)
library(lme4)
library(lmerTest)
setwd("/Users/adambarnas/Box/MetaAwareness/data/")
Rensink_RTs_likelihood_no_NA <- read_csv("Rensink_RTs_likelihood_no_NA.csv")
Ma_RTs_likelihood_no_NA <- read_csv("Ma_RTs_likelihood_no_NA.csv")
Wolfe1_RTs_likelihood_no_NA <- read_csv("Wolfe1_RTs_likelihood_no_NA.csv")
tbl_all <- rbind(Rensink_RTs_likelihood_no_NA, Ma_RTs_likelihood_no_NA, Wolfe1_RTs_likelihood_no_NA)
tbl_all_subj_avg <- tbl_all %>%
group_by(workerId,image) %>%
dplyr::summarize(average = mean(likelihood_rating)) %>%
spread(image,average) %>%
mutate(subj_avg = rowMeans(.[-1], na.rm = TRUE))
mean(tbl_all_subj_avg$subj_avg)
## [1] 3.213581
fit0 <- lmer(detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image) + (1 | stim_set) + (1 | change_type), data=tbl_all)
summary(fit0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image) +
## (1 | stim_set) + (1 | change_type)
## Data: tbl_all
##
## REML criterion at convergence: 12214.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.3766 -0.4017 -0.1133 0.1294 8.0915
##
## Random effects:
## Groups Name Variance Std.Dev.
## image (Intercept) 1.7024 1.3048
## workerId (Intercept) 7.9384 2.8175
## change_type (Intercept) 0.4031 0.6349
## stim_set (Intercept) 0.9475 0.9734
## Residual 24.9922 4.9992
## Number of obs: 1970, groups:
## image, 228; workerId, 83; change_type, 5; stim_set, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.4817 0.8167 4.2250 12.834 0.000153 ***
## likelihood_rating -0.3682 0.1063 1236.3604 -3.462 0.000554 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## liklhd_rtng -0.407
corr <- tbl_all %>%
group_by(image) %>%
dplyr::summarize(detection_rt = mean(detection_rt), likelihood_rating = mean(likelihood_rating))
corr %>%
ggscatter(y = "detection_rt", x = "likelihood_rating", ylab = "Change Detection RT (sec)", xlab = "Likelihood of Detecting Change", title = "N = 83", fill = "#f7a800", color = "#f7a800", add = "reg.line", cor.coef = TRUE, cor.coeff.args = list(method = "pearson", label.x = 1, label.y = 5, label.sep = "\n"), xlim = c(1, 5), ylim = c(0, 50))
Dropping image-116 (Wolfe1) from the analyses. Obvious outlier.
tbl_all_no_outlier <- tbl_all %>%
filter(image != "image-116")
fit1 <- lmer(detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image) + (1 | stim_set) + (1 | change_type), data=tbl_all_no_outlier)
summary(fit1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image) +
## (1 | stim_set) + (1 | change_type)
## Data: tbl_all_no_outlier
##
## REML criterion at convergence: 12154.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.4197 -0.4004 -0.1127 0.1210 8.1924
##
## Random effects:
## Groups Name Variance Std.Dev.
## image (Intercept) 1.4334 1.1973
## workerId (Intercept) 7.7222 2.7789
## change_type (Intercept) 0.3936 0.6274
## stim_set (Intercept) 0.8443 0.9189
## Residual 24.5541 4.9552
## Number of obs: 1968, groups:
## image, 227; workerId, 83; change_type, 5; stim_set, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.5721 0.7881 4.3490 13.416 0.000105 ***
## likelihood_rating -0.4048 0.1046 1228.4465 -3.869 0.000115 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## liklhd_rtng -0.415
corr %>%
filter(image!="image-116") %>%
ggscatter(y = "detection_rt", x = "likelihood_rating", ylab = "Change Detection RT (sec)", xlab = "Likelihood of Detecting Change", title = "N = 83", fill = "#f7a800", color = "#f7a800", add = "reg.line", cor.coef = TRUE, cor.coeff.args = list(method = "pearson", label.x = 1, label.y = 5, label.sep = "\n"), xlim = c(1, 5), ylim = c(0, 40))