Олеся Волченко
28 октября 2020
Мы уже видели, что далеко не всегда переменные распределены нормально. Что же делать?
У нас есть агрегированные данные о голосовании за партию Х в разных субъектах федерации на выборах 2007 и 2011 года (база данных vote.csv, переменная unit – номер субъекта федерации). Можно ли сказать, что поддержка партии Х изменилась?
Тест Шапиро-Уилка
##
## Shapiro-Wilk normality test
##
## data: data$votes_2007 - data$votes_2011
## W = 0.94717, p-value = 0.001898
Q-Q plot
t-тест (который на самом деле использовать не стоит)
##
## Paired t-test
##
## data: data$votes_2007 and data$votes_2011
## t = 17.147, df = 82, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 14.00645 17.68295
## sample estimates:
## mean of the differences
## 15.8447
тест Вилкоксона
##
## Wilcoxon signed rank test with continuity correction
##
## data: data$votes_2007 and data$votes_2011
## V = 3458, p-value = 7.023e-15
## alternative hypothesis: true location shift is not equal to 0
Различается ли заработная плата (переменная logsalary, измеренная в условных единицах) у респондентов, предпочитающих живое общение, и респондентов, предпочитающих взаимодействие онлайн (переменная Extraversion).
Равенство дисперсий
##
## F test to compare two variances
##
## data: data1$logsalary by data1$Extraversion
## F = 0.87974, num df = 10006, denom df = 4687, p-value = 2.47e-07
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.8374275 0.9237738
## sample estimates:
## ratio of variances
## 0.879736
Нормальность распределения
## Warning in ks.test(data1$logsalary[data1$Extraversion == "Online"], "pnorm"):
## ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: data1$logsalary[data1$Extraversion == "Online"]
## D = 0.99743, p-value < 2.2e-16
## alternative hypothesis: two-sided
## Warning in ks.test(data1$logsalary[data1$Extraversion == "In real life (in
## person)"], : ties should not be present for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: data1$logsalary[data1$Extraversion == "In real life (in person)"]
## D = 0.99777, p-value < 2.2e-16
## alternative hypothesis: two-sided
qqnorm(data1$logsalary[data1$Extraversion == "Online"])
qqline(data1$logsalary[data1$Extraversion == "Online"], col= 2)qqnorm(data1$logsalary[data1$Extraversion == "In real life (in person)"])
qqline(data1$logsalary[data1$Extraversion == "In real life (in person)"], col= 2)t-test
##
## Welch Two Sample t-test
##
## data: data1$logsalary by data1$Extraversion
## t = 2.0237, df = 8657.6, p-value = 0.04303
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.001764868 0.110816548
## sample estimates:
## mean in group In real life (in person) mean in group Online
## 11.66063 11.60434
Тест Манна-Уитни-Вилкоксона
##
## Wilcoxon rank sum test with continuity correction
##
## data: data1$logsalary by data1$Extraversion
## W = 23962724, p-value = 0.03464
## alternative hypothesis: true location shift is not equal to 0
##
## Kruskal-Wallis rank sum test
##
## data: ESS5$Power by ESS5$netuse
## Kruskal-Wallis chi-squared = 48.963, df = 7, p-value = 2.307e-08
## ## FSA v0.8.30. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
## Warning: Some rows deleted from 'x' and 'g' because missing data.
## Dunn (1964) Kruskal-Wallis multiple comparison
## p-values adjusted with the Bonferroni method.
## Comparison Z P.unadj
## 1 Every day - Less than once a month -1.14510283 2.521666e-01
## 2 Every day - Never use -5.34376579 9.103518e-08
## 3 Less than once a month - Never use -0.68181608 4.953553e-01
## 4 Every day - No access at home or work -4.01144351 6.034862e-05
## 5 Less than once a month - No access at home or work 0.02736291 9.781703e-01
## 6 Never use - No access at home or work 1.95483648 5.060237e-02
## 7 Every day - Once a month -2.36368663 1.809411e-02
## 8 Less than once a month - Once a month -0.98374668 3.252401e-01
## 9 Never use - Once a month -0.65609217 5.117648e-01
## 10 No access at home or work - Once a month -1.33003948 1.835053e-01
## 11 Every day - Once a week -4.02649886 5.661351e-05
## 12 Less than once a month - Once a week -1.19443340 2.323085e-01
## 13 Never use - Once a week -1.00453905 3.151189e-01
## 14 No access at home or work - Once a week -2.19000408 2.852394e-02
## 15 Once a month - Once a week 0.04645370 9.629486e-01
## 16 Every day - Several times a month -0.06496405 9.482026e-01
## 17 Less than once a month - Several times a month 0.91617461 3.595753e-01
## 18 Never use - Several times a month 2.40952294 1.597339e-02
## 19 No access at home or work - Several times a month 1.49000705 1.362224e-01
## 20 Once a month - Several times a month 1.98494074 4.715107e-02
## 21 Once a week - Several times a month 2.71681500 6.591344e-03
## 22 Every day - Several times a week -2.79834400 5.136537e-03
## 23 Less than once a month - Several times a week 0.12966041 8.968351e-01
## 24 Never use - Several times a week 1.90789621 5.640463e-02
## 25 No access at home or work - Several times a week 0.27498367 7.833288e-01
## 26 Once a month - Several times a week 1.39675246 1.624880e-01
## 27 Once a week - Several times a week 2.21831037 2.653368e-02
## 28 Several times a month - Several times a week -1.27797569 2.012580e-01
## P.adj
## 1 1.000000e+00
## 2 2.548985e-06
## 3 1.000000e+00
## 4 1.689761e-03
## 5 1.000000e+00
## 6 1.000000e+00
## 7 5.066351e-01
## 8 1.000000e+00
## 9 1.000000e+00
## 10 1.000000e+00
## 11 1.585178e-03
## 12 1.000000e+00
## 13 1.000000e+00
## 14 7.986703e-01
## 15 1.000000e+00
## 16 1.000000e+00
## 17 1.000000e+00
## 18 4.472550e-01
## 19 1.000000e+00
## 20 1.000000e+00
## 21 1.845576e-01
## 22 1.438230e-01
## 23 1.000000e+00
## 24 1.000000e+00
## 25 1.000000e+00
## 26 1.000000e+00
## 27 7.429430e-01
## 28 1.000000e+00
| Бинарная | Номинальная/ординальная | Интервальная/отношений | |
|---|---|---|---|
| Бинарная | Тест хи-квадрат с поправкой Йетса | Тест хи-квадрат | t-test; тест Манна-Уитни-Вилкоксона |
| Номинальная/ординальная | Тест хи-квадрат | Тест хи-квадрат | anova, тест Краскела-Уоллиса |
| Интервальная/отношений | t-test; тест Манна-Уитни-Вилкоксона | anova, тест Краскела-Уоллиса | ? |