Load libraries and data
#####################Read and Pre-Clean the Data#######################
require(Amelia)
## Loading required package: Amelia
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.6, built: 2019-11-24)
## ## Copyright (C) 2005-2020 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
library(car)
## Loading required package: carData
library(corrplot)
## corrplot 0.84 loaded
library(ggcorrplot)
## Loading required package: ggplot2
library(heplots)
library(kableExtra)
library(MANOVA.RM)
## Warning: package 'MANOVA.RM' was built under R version 4.0.3
library(MASS)
library(MVN)
## Warning: package 'MVN' was built under R version 4.0.3
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
## sROC 0.1-2 loaded
library(mvtnorm)
require(psych) #to describe
## Loading required package: psych
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## The following object is masked from 'package:car':
##
## logit
require(ggplot2)
library(ggcorrplot)
require(reticulate) #to use Python in R as well
## Loading required package: reticulate
require(ResourceSelection)
## Loading required package: ResourceSelection
## ResourceSelection 0.3-5 2019-07-22
library(rstatix)
## Warning: package 'rstatix' was built under R version 4.0.3
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:MASS':
##
## select
## The following object is masked from 'package:ggcorrplot':
##
## cor_pmat
## The following object is masked from 'package:stats':
##
## filter
library(tidyverse)
## -- Attaching packages --------------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------------ tidyverse_conflicts() --
## x psych::%+%() masks ggplot2::%+%()
## x psych::alpha() masks ggplot2::alpha()
## x dplyr::filter() masks rstatix::filter(), stats::filter()
## x dplyr::group_rows() masks kableExtra::group_rows()
## x dplyr::lag() masks stats::lag()
## x dplyr::recode() masks car::recode()
## x dplyr::select() masks rstatix::select(), MASS::select()
## x purrr::some() masks car::some()
corfunction=function(d){
mycorr=cor(d[, 1:ncol(d)]); p.mat=ggcorrplot::cor_pmat(d[,1:ncol(d)])
myplot=ggcorrplot(mycorr, hc.order=TRUE,type="lower",colors=c("red", "white","green"),tl.cex = 8, tl.col = "black", lab=TRUE, lab_size=3, p.mat=p.mat, insig="pch", pch=4)
print(myplot)}
mydata=read.csv("C:/Users/lfult/Desktop/Education/2020spring.csv", stringsAsFactors = TRUE)
colnames(mydata)
## [1] "Subject" "Gender" "Ethnicity" "Age" "Yr"
## [6] "DaysBetween" "GPA" "T_GPA" "PrePost" "Fin"
## [11] "Mgt" "HR" "Sys" "HIM" "Ldr"
## [16] "Chg" "Cli" "QI" "Strat" "Com"
## [21] "Lgl" "Score" "Rank" "Time"
#########################################################################
#########################################################################
missmap(mydata)
#########################################################################
#########################################################################
as.data.frame(100*round(table(mydata$Gender)/length(mydata$Gender),4))%>%
kbl(col.names = c("Gender", "%"))%>%kable_classic(full_width=F)
| Gender | % |
|---|---|
| F | 79.63 |
| M | 20.37 |
#########################################################################
#########################################################################
as.data.frame(100*round(table(mydata$Ethnicity)/length(mydata$Ethnicity),4))%>%
kbl(col.names = c("Ethnicity", "%"))%>%kable_classic(full_width=F)
| Ethnicity | % |
|---|---|
| A | 3.70 |
| B | 22.22 |
| C | 37.04 |
| H | 37.04 |
#########################################################################
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$Age, horizontal=TRUE, main="Age", col="blue")
boxplot(mydata$Age~mydata$Gender, horizontal=TRUE, main="Age~Gender", col="red")
boxplot(mydata$Age~mydata$Ethnicity, horizontal=TRUE, main="Age~Ethnicity", col="orange")
kable(t(round(describe(mydata$Age),3)), col.names="GPA")%>%kable_classic(full_width=F)
| GPA | |
|---|---|
| vars | 1.000 |
| n | 108.000 |
| mean | 22.963 |
| sd | 3.304 |
| median | 22.000 |
| trimmed | 22.295 |
| mad | 1.483 |
| min | 20.000 |
| max | 42.000 |
| range | 22.000 |
| skew | 3.863 |
| kurtosis | 18.162 |
| se | 0.318 |
#########################################################################
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$GPA, horizontal=TRUE, main="GPA", col="blue")
boxplot(mydata$GPA~mydata$Gender, horizontal=TRUE, main="GPA~Gender", col="red")
boxplot(mydata$GPA~mydata$Ethnicity, horizontal=TRUE, main="GPA~Ethnicity", col="orange")
kable(t(round(describe(mydata$GPA),3)), col.names="GPA")%>%kable_classic(full_width=F)
| GPA | |
|---|---|
| vars | 1.000 |
| n | 108.000 |
| mean | 3.195 |
| sd | 0.229 |
| median | 3.185 |
| trimmed | 3.181 |
| mad | 0.274 |
| min | 2.850 |
| max | 3.700 |
| range | 0.850 |
| skew | 0.441 |
| kurtosis | -0.850 |
| se | 0.022 |
#########################################################################
#########################################################################
par(mfrow=c(1,3))
boxplot(mydata$DaysBetween, horizontal=TRUE, main="Days Between Test", col="blue")
boxplot(mydata$DaysBetween~mydata$Gender, horizontal=TRUE, main="Days Between Tests~Gender", col="red")
boxplot(mydata$DaysBetween~mydata$Ethnicity, horizontal=TRUE, main="Days Between Tests~Ethnicity", col="orange")
kable(t(round(describe(mydata$DaysBetween),3)), col.names="Days Between Tests")%>%kable_classic(full_width=F)
| Days Between Tests | |
|---|---|
| vars | 1.000 |
| n | 108.000 |
| mean | 435.537 |
| sd | 43.973 |
| median | 430.000 |
| trimmed | 430.045 |
| mad | 22.980 |
| min | 333.000 |
| max | 560.000 |
| range | 227.000 |
| skew | 1.186 |
| kurtosis | 1.649 |
| se | 4.231 |
#########################################################################
#########################################################################
mycorr=cor(mydata[, -c(1:3,5,9)])
corfunction(mycorr)
#########################################################################
Look at bivariate pairs
#########################################################################
mysub=subset(mydata, select=c(Age, GPA, Score)) #get a subset for plotting
colnames(mysub)=c("Age", "GPA", "Score") #set column names
kdepairs(mysub) #plot
as.data.frame(cor(mydata$Score[1:54], mydata$Score[55:108]))%>%kbl(col.names="Pre-Post Test Score Correlation")%>%kable_classic()
| Pre-Post Test Score Correlation |
|---|
| 0.1988327 |
#########################################################################
#########################################################################
pre=round(describe(mydata[1:54,10:24]),3)
post=round(describe(mydata[55:108, 10:24]),3)
mydelta=mydata[55:108, 10:24]-mydata[1:54, 10:24]
delta=round(describe(mydelta),3)
mynames=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems & Organizations", "Information Managment", "Leadership Skills and Behavior", "Managing Change", "Organizational Climate and Culture", "Quality Improvement", "Strategic Planning and Marketing", "Community and the Environment", "Legal Environment of Healthcare Administration", "Final Score", "Percentile Rank", "Time" )
row.names(pre)=row.names(post)=row.names(delta)=mynames
pre%>%kbl(caption="Pre-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 54 | 55.926 | 18.173 | 50.00 | 55.909 | 14.826 | 10.00 | 100.00 | 90.00 | 0.011 | -0.165 | 2.473 |
| General Management | 2 | 54 | 59.259 | 16.119 | 60.00 | 59.545 | 14.826 | 30.00 | 90.00 | 60.00 | -0.148 | -0.752 | 2.194 |
| Healthcare Personnel | 3 | 54 | 64.630 | 14.500 | 60.00 | 65.000 | 14.826 | 30.00 | 90.00 | 60.00 | -0.238 | -0.178 | 1.973 |
| Healthcare Systems & Organizations | 4 | 54 | 53.333 | 19.230 | 50.00 | 52.727 | 14.826 | 10.00 | 100.00 | 90.00 | 0.281 | -0.239 | 2.617 |
| Information Managment | 5 | 54 | 58.333 | 18.300 | 60.00 | 59.318 | 14.826 | 10.00 | 90.00 | 80.00 | -0.393 | -0.539 | 2.490 |
| Leadership Skills and Behavior | 6 | 54 | 58.704 | 15.667 | 60.00 | 59.091 | 14.826 | 20.00 | 90.00 | 70.00 | -0.165 | -0.369 | 2.132 |
| Managing Change | 7 | 54 | 61.481 | 12.945 | 60.00 | 61.591 | 14.826 | 30.00 | 90.00 | 60.00 | -0.168 | -0.033 | 1.762 |
| Organizational Climate and Culture | 8 | 54 | 63.889 | 16.981 | 60.00 | 64.091 | 14.826 | 30.00 | 100.00 | 70.00 | -0.085 | -0.390 | 2.311 |
| Quality Improvement | 9 | 54 | 57.963 | 18.262 | 60.00 | 58.409 | 14.826 | 20.00 | 90.00 | 70.00 | -0.251 | -0.770 | 2.485 |
| Strategic Planning and Marketing | 10 | 54 | 56.111 | 17.953 | 60.00 | 56.364 | 14.826 | 10.00 | 90.00 | 80.00 | -0.149 | -0.565 | 2.443 |
| Community and the Environment | 11 | 54 | 53.148 | 16.577 | 50.00 | 52.727 | 14.826 | 20.00 | 100.00 | 80.00 | 0.284 | -0.057 | 2.256 |
| Legal Environment of Healthcare Administration | 12 | 54 | 61.111 | 16.214 | 60.00 | 60.455 | 14.826 | 30.00 | 100.00 | 70.00 | 0.319 | -0.521 | 2.206 |
| Final Score | 13 | 54 | 58.654 | 7.920 | 59.58 | 58.879 | 8.036 | 39.16 | 78.33 | 39.17 | -0.124 | -0.100 | 1.078 |
| Percentile Rank | 14 | 54 | 58.685 | 22.862 | 63.00 | 60.045 | 26.687 | 7.00 | 98.00 | 91.00 | -0.361 | -0.680 | 3.111 |
| Time | 15 | 54 | 41.721 | 15.714 | 39.75 | 40.428 | 16.019 | 13.75 | 82.08 | 68.33 | 0.672 | -0.159 | 2.138 |
post%>%kbl(caption="Post-Test")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 54 | 73.519 | 15.192 | 70.000 | 73.636 | 14.826 | 40.00 | 100.0 | 60.00 | -0.087 | -0.537 | 2.067 |
| General Management | 2 | 54 | 77.222 | 11.561 | 80.000 | 77.500 | 14.826 | 50.00 | 100.0 | 50.00 | -0.178 | -0.248 | 1.573 |
| Healthcare Personnel | 3 | 54 | 79.444 | 13.091 | 80.000 | 80.227 | 14.826 | 30.00 | 100.0 | 70.00 | -0.940 | 1.867 | 1.782 |
| Healthcare Systems & Organizations | 4 | 54 | 67.963 | 16.297 | 70.000 | 68.636 | 14.826 | 30.00 | 100.0 | 70.00 | -0.191 | -0.796 | 2.218 |
| Information Managment | 5 | 54 | 66.667 | 12.286 | 70.000 | 66.136 | 14.826 | 50.00 | 90.0 | 40.00 | 0.100 | -0.973 | 1.672 |
| Leadership Skills and Behavior | 6 | 54 | 77.037 | 15.126 | 80.000 | 77.273 | 14.826 | 50.00 | 100.0 | 50.00 | -0.047 | -1.078 | 2.058 |
| Managing Change | 7 | 54 | 70.556 | 13.656 | 70.000 | 71.364 | 14.826 | 40.00 | 90.0 | 50.00 | -0.447 | -0.620 | 1.858 |
| Organizational Climate and Culture | 8 | 54 | 75.741 | 16.206 | 80.000 | 76.364 | 14.826 | 30.00 | 100.0 | 70.00 | -0.483 | -0.330 | 2.205 |
| Quality Improvement | 9 | 54 | 72.963 | 13.822 | 70.000 | 73.409 | 14.826 | 40.00 | 100.0 | 60.00 | -0.192 | -0.622 | 1.881 |
| Strategic Planning and Marketing | 10 | 54 | 77.407 | 12.004 | 80.000 | 77.955 | 14.826 | 50.00 | 100.0 | 50.00 | -0.339 | -0.609 | 1.634 |
| Community and the Environment | 11 | 54 | 68.148 | 16.261 | 70.000 | 69.318 | 14.826 | 0.00 | 90.0 | 90.00 | -1.463 | 3.879 | 2.213 |
| Legal Environment of Healthcare Administration | 12 | 54 | 74.630 | 17.344 | 80.000 | 75.455 | 14.826 | 30.00 | 100.0 | 70.00 | -0.461 | -0.520 | 2.360 |
| Final Score | 13 | 54 | 71.505 | 5.129 | 71.915 | 71.691 | 4.559 | 58.46 | 82.3 | 23.84 | -0.348 | -0.142 | 0.698 |
| Percentile Rank | 14 | 54 | 80.389 | 15.674 | 84.000 | 82.864 | 8.896 | 0.00 | 97.0 | 97.00 | -2.801 | 10.824 | 2.133 |
| Time | 15 | 54 | 74.930 | 19.011 | 73.665 | 74.719 | 18.147 | 34.77 | 119.9 | 85.13 | 0.152 | -0.364 | 2.587 |
delta%>%kbl(caption="Difference, Post Minus Pre")%>%kable_classic(full_width = F, html_font = "Cambria")
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 1 | 54 | 17.593 | 22.565 | 20.00 | 17.500 | 29.652 | -20.00 | 60.00 | 80.00 | 0.053 | -1.230 | 3.071 |
| General Management | 2 | 54 | 17.963 | 20.775 | 20.00 | 17.273 | 14.826 | -20.00 | 70.00 | 90.00 | 0.193 | -0.533 | 2.827 |
| Healthcare Personnel | 3 | 54 | 14.815 | 21.168 | 10.00 | 15.000 | 14.826 | -40.00 | 60.00 | 100.00 | -0.080 | -0.226 | 2.881 |
| Healthcare Systems & Organizations | 4 | 54 | 14.630 | 26.330 | 15.00 | 15.455 | 37.065 | -40.00 | 70.00 | 110.00 | -0.175 | -0.662 | 3.583 |
| Information Managment | 5 | 54 | 8.333 | 21.956 | 10.00 | 8.182 | 29.652 | -30.00 | 50.00 | 80.00 | 0.135 | -0.847 | 2.988 |
| Leadership Skills and Behavior | 6 | 54 | 18.333 | 20.990 | 20.00 | 17.727 | 14.826 | -20.00 | 70.00 | 90.00 | 0.288 | -0.386 | 2.856 |
| Managing Change | 7 | 54 | 9.074 | 19.549 | 10.00 | 9.091 | 14.826 | -50.00 | 60.00 | 110.00 | -0.081 | 0.516 | 2.660 |
| Organizational Climate and Culture | 8 | 54 | 11.852 | 19.433 | 10.00 | 11.591 | 14.826 | -30.00 | 60.00 | 90.00 | 0.243 | -0.406 | 2.644 |
| Quality Improvement | 9 | 54 | 15.000 | 20.443 | 20.00 | 14.318 | 14.826 | -30.00 | 60.00 | 90.00 | 0.156 | -0.460 | 2.782 |
| Strategic Planning and Marketing | 10 | 54 | 21.296 | 19.815 | 20.00 | 20.909 | 29.652 | -20.00 | 70.00 | 90.00 | 0.167 | -0.655 | 2.696 |
| Community and the Environment | 11 | 54 | 15.000 | 22.882 | 15.00 | 15.682 | 22.239 | -40.00 | 70.00 | 110.00 | -0.195 | -0.136 | 3.114 |
| Legal Environment of Healthcare Administration | 12 | 54 | 13.519 | 23.804 | 10.00 | 13.182 | 22.239 | -40.00 | 60.00 | 100.00 | 0.049 | -0.628 | 3.239 |
| Final Score | 13 | 54 | 12.851 | 8.537 | 12.37 | 12.344 | 9.592 | 0.76 | 35.45 | 34.69 | 0.456 | -0.586 | 1.162 |
| Percentile Rank | 14 | 54 | 21.704 | 25.458 | 20.00 | 20.523 | 26.687 | -48.00 | 82.00 | 130.00 | 0.193 | -0.100 | 3.464 |
| Time | 15 | 54 | 33.209 | 18.266 | 33.21 | 31.934 | 17.732 | -5.55 | 77.88 | 83.43 | 0.479 | -0.194 | 2.486 |
#########################################################################
a=pre[1:14,3]; b=post[1:14,3]; g=delta[1:14,3]
m1=pre[1:14,5 ]; m2=post[1:14,5]; m3=delta[1:14,5]
s1=pre[1:14,4 ]; s2=post[1:14,4]; s3=delta[1:14,4]
mydf=data.frame(PreXbar=a, PostXbar=b, DeltaXbar=g,
PreMed=m1, PostMed=m2, DeltaMed=m3,
PreSD=s1, PostSD=s2, DeltaSD=s3)
row.names(mydf)=mynames[1:14]
mydf%>%kbl()%>%kable_classic(full_width=F, html_font="Calibri")
| PreXbar | PostXbar | DeltaXbar | PreMed | PostMed | DeltaMed | PreSD | PostSD | DeltaSD | |
|---|---|---|---|---|---|---|---|---|---|
| Financial Management | 55.926 | 73.519 | 17.593 | 50.00 | 70.000 | 20.00 | 18.173 | 15.192 | 22.565 |
| General Management | 59.259 | 77.222 | 17.963 | 60.00 | 80.000 | 20.00 | 16.119 | 11.561 | 20.775 |
| Healthcare Personnel | 64.630 | 79.444 | 14.815 | 60.00 | 80.000 | 10.00 | 14.500 | 13.091 | 21.168 |
| Healthcare Systems & Organizations | 53.333 | 67.963 | 14.630 | 50.00 | 70.000 | 15.00 | 19.230 | 16.297 | 26.330 |
| Information Managment | 58.333 | 66.667 | 8.333 | 60.00 | 70.000 | 10.00 | 18.300 | 12.286 | 21.956 |
| Leadership Skills and Behavior | 58.704 | 77.037 | 18.333 | 60.00 | 80.000 | 20.00 | 15.667 | 15.126 | 20.990 |
| Managing Change | 61.481 | 70.556 | 9.074 | 60.00 | 70.000 | 10.00 | 12.945 | 13.656 | 19.549 |
| Organizational Climate and Culture | 63.889 | 75.741 | 11.852 | 60.00 | 80.000 | 10.00 | 16.981 | 16.206 | 19.433 |
| Quality Improvement | 57.963 | 72.963 | 15.000 | 60.00 | 70.000 | 20.00 | 18.262 | 13.822 | 20.443 |
| Strategic Planning and Marketing | 56.111 | 77.407 | 21.296 | 60.00 | 80.000 | 20.00 | 17.953 | 12.004 | 19.815 |
| Community and the Environment | 53.148 | 68.148 | 15.000 | 50.00 | 70.000 | 15.00 | 16.577 | 16.261 | 22.882 |
| Legal Environment of Healthcare Administration | 61.111 | 74.630 | 13.519 | 60.00 | 80.000 | 10.00 | 16.214 | 17.344 | 23.804 |
| Final Score | 58.654 | 71.505 | 12.851 | 59.58 | 71.915 | 12.37 | 7.920 | 5.129 | 8.537 |
| Percentile Rank | 58.685 | 80.389 | 21.704 | 63.00 | 84.000 | 20.00 | 22.862 | 15.674 | 25.458 |
#########################################################################
levels(mydata$Ethnicity)=c("Asian", "African American", "Caucasian", "Any Hispanic") #Assign new names to factor levels
ethtable=as.data.frame(table(mydata$Ethnicity[1:54],mydata$Gender[1:54])/length(mydata$Ethnicity[1:54])) #get a cross-tabs table for race and gender
colnames(ethtable)=c("Race","Gender", "Percentage")#set the colum names for the table
mylab=paste0(round(ethtable$Percentage,2)*100,"%, ", ethtable$Percentage*54, " students") #Get the labels for the graph
ggplot(data=ethtable, aes(x=Race,y=Percentage, fill=Gender))+
geom_bar(stat="identity")+
geom_text(aes( label = mylab, vjust = 1))
#########################################################################
Analyze age as a function of race and gender
#########################################################################
describe(mydata$Age[1:54]) #get the descriptive statistics
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 22.96 3.32 22 22.3 1.48 20 42 22 3.81 17.77 0.45
ggplot(data=mydata[1:54,], aes(x=Age,color=Gender))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age ~Gender
ggplot(data=mydata[1:54,], aes(x=Age,color=Ethnicity))+
geom_histogram(fill="white", binwidth=1)+
ylab("Frequency") #plot Age~ Race
#########################################################################
#########################################################################
describe(mydata$GPA[1:54]) #Get descriptives
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 3.19 0.23 3.18 3.18 0.27 2.85 3.7 0.85 0.44 -0.89 0.03
ggplot(mydata[1:54, ], aes(x = Ethnicity, y = GPA, fill=Ethnicity))+
geom_boxplot(aes(color=Gender))+
coord_flip() #plot based on ethnicity and gender
#########################################################################
Evaluating GPA as a function of race and gender
#########################################################################
newdata1=aggregate(mydata$GPA[1:54], b=list(mydata$Ethnicity[1:54],mydata$Gender[1:54]), FUN=mean) #aggregate the data based on race and gender, get the means by those groups
newdata2=aggregate(mydata$GPA[1:54],b=list(mydata$Ethnicity[1:54],mydata$Gender[1:54]),function(x){qnorm(.975)*sd(x)/sqrt(length(x))}) #get the CI adjustment
newdata=cbind(newdata1,newdata2$x) #bind the data together by columns
colnames(newdata)=c("Race", "Gender", "GPA", "SD") #name the columns
newdata$RaceGender=as.factor(paste0(newdata$Race,", ",newdata$Gender)) #make a new variable that has both race and gender
ggplot( #plot
newdata,
aes(x = GPA, y = RaceGender, xmin = GPA-SD, xmax = GPA+SD)
) +
geom_point(aes(color = Gender)) +
geom_errorbarh(aes(color = Gender), height=.2)+
theme_light()+
xlab("95% Confidence Interval for GPA")
#########################################################################
Analyze the time between pretests and posttests
#########################################################################
describe(mydata$DaysBetween[1:54]) #describe the days between
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 54 435.54 44.18 430 430.05 22.98 333 560 227 1.17 1.56 6.01
ggplot(data=mydata[1:54,], aes(x=DaysBetween,color=Gender))+ #plot it
geom_histogram(fill="white", binwidth=30)+
ylab("Frequency")
#########################################################################
Plot the Delta scores.
#########################################################################
par(mfrow=c(1,1))
myscores=as.data.frame(mydelta[1:13]) #Variables for plotting
mybars=error.bars(myscores)
plot(error.bars(myscores),ylab="Variable", xlab="Delta Score",
xlim=c(.5, 13.5), ylim=c(0,length(myscores)),lty="dashed", las=2)
#########################################################################
#########################################################################
myf=function(x){
myt=t.test(x)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate,3),round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3), round(myt$parameter,3),
round(newp,3))
return(a)
}
a=matrix(rep(NA, 6*15), 15)
for (i in 1:15){a[i,1:6]=myf(mydelta[i])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems and Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change","Organizational Climate and Culture", "Quality Improvement", "Strategic Planning and Marketing","The Community and the Environment","The Legal Environment", "Total Score", "Percentile Rank", "Test Time")
colnames(a)=c("Estimate","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
| Estimate | Lower 95% CI | Upper 95% CI | t-Value | df | Holm-Adjusted p | |
|---|---|---|---|---|---|---|
| Financial Management | 17.593 | 11.433 | 23.752 | 5.729 | 53 | 0.000 |
| General Management | 17.963 | 12.292 | 23.634 | 6.354 | 53 | 0.000 |
| Healthcare Personnel | 14.815 | 9.037 | 20.593 | 5.143 | 53 | 0.000 |
| Healthcare Systems and Organizations | 14.630 | 7.443 | 21.816 | 4.083 | 53 | 0.000 |
| Information Management | 8.333 | 2.340 | 14.326 | 2.789 | 53 | 0.007 |
| Leadership Skills and Behavior | 18.333 | 12.604 | 24.062 | 6.418 | 53 | 0.000 |
| Managing Change | 9.074 | 3.738 | 14.410 | 3.411 | 53 | 0.001 |
| Organizational Climate and Culture | 11.852 | 6.548 | 17.156 | 4.482 | 53 | 0.000 |
| Quality Improvement | 15.000 | 9.420 | 20.580 | 5.392 | 53 | 0.000 |
| Strategic Planning and Marketing | 21.296 | 15.888 | 26.705 | 7.898 | 53 | 0.000 |
| The Community and the Environment | 15.000 | 8.754 | 21.246 | 4.817 | 53 | 0.000 |
| The Legal Environment | 13.519 | 7.021 | 20.016 | 4.173 | 53 | 0.000 |
| Total Score | 12.851 | 10.521 | 15.181 | 11.062 | 53 | 0.000 |
| Percentile Rank | 21.704 | 14.755 | 28.652 | 6.265 | 53 | 0.000 |
| Test Time | 33.209 | 28.224 | 38.195 | 13.360 | 53 | 0.000 |
#########################################################################
#########################################################################
myf=function(x,y){
myt=t.test(x, y)
newp=round(p.adjust(myt$p.value),3)
a=c(round(myt$estimate[1],3),round(myt$estimate[2],3),
round(myt$conf.int[1],3),
round(myt$conf.int[2],3),round(myt$statistic,3),
round(myt$parameter,3),round(newp,3))
return(a)
}
a=matrix(rep(NA, 7*15), 15)
for (i in 1:15){a[i,1:7]=myf(mydata[1:54,i+9], mydata[55:108,i+9])}
a=as.data.frame(a)
for (i in 1:6){a[,i]=as.numeric(a[,i])}
rownames(a)=c("Financial Management", "General Management", "Healthcare Personnel", "Healthcare Systems and Organizations", "Information Management", "Leadership Skills and Behavior", "Managing Change","Organizational Climate and Culture", "Quality Improvement", "Strategic Planning and Marketing","The Community and the Environment","The Legal Environment", "Total Score", "Percentile Rank", "Test Time")
colnames(a)=c("Mean Pre","Mean Post","Lower 95% CI", "Upper 95% CI", "t-Value", "df", "Holm-Adjusted p")
a%>%kbl()%>%kable_classic()
| Mean Pre | Mean Post | Lower 95% CI | Upper 95% CI | t-Value | df | Holm-Adjusted p | |
|---|---|---|---|---|---|---|---|
| Financial Management | 55.926 | 73.519 | -23.985 | -11.200 | -5.458 | 102.769 | 0.000 |
| General Management | 59.259 | 77.222 | -23.321 | -12.605 | -6.655 | 96.117 | 0.000 |
| Healthcare Personnel | 64.630 | 79.444 | -20.086 | -9.544 | -5.573 | 104.912 | 0.000 |
| Healthcare Systems and Organizations | 53.333 | 67.963 | -21.433 | -7.827 | -4.265 | 103.222 | 0.000 |
| Information Management | 58.333 | 66.667 | -14.290 | -2.377 | -2.778 | 92.708 | 0.007 |
| Leadership Skills and Behavior | 58.704 | 77.037 | -24.209 | -12.458 | -6.186 | 105.869 | 0.000 |
| Managing Change | 61.481 | 70.556 | -14.151 | -3.997 | -3.544 | 105.699 | 0.001 |
| Organizational Climate and Culture | 63.889 | 75.741 | -18.185 | -5.519 | -3.710 | 105.770 | 0.000 |
| Quality Improvement | 57.963 | 72.963 | -21.185 | -8.815 | -4.813 | 98.720 | 0.000 |
| Strategic Planning and Marketing | 56.111 | 77.407 | -27.133 | -15.460 | -7.246 | 92.494 | 0.000 |
| The Community and the Environment | 53.148 | 68.148 | -21.265 | -8.735 | -4.747 | 105.961 | 0.000 |
| The Legal Environment | 61.111 | 74.630 | -19.924 | -7.113 | -4.184 | 105.523 | 0.000 |
| Total Score | 58.654 | 71.505 | -15.401 | -10.300 | -10.009 | 90.803 | 0.000 |
| Percentile Rank | 58.685 | 80.389 | -29.193 | -14.214 | -5.754 | 93.808 | 0.000 |
| Test Time | 41.721 | 74.930 | -39.867 | -26.552 | -9.894 | 102.375 | 0.000 |
#########################################################################
#########################################################################
Fin=-mydata$Fin[1:54]+mydata$Fin[55:108]
Mgt=-mydata$Mgt[1:54]+mydata$Mgt[55:108]
HR=-mydata$HR[1:54]+mydata$HR[55:108]
Sys=-mydata$Sys[1:54]+mydata$Sys[55:108]
HIM=-mydata$HIM[1:54]+mydata$HIM[55:108]
Ldr=-mydata$Ldr[1:54]+mydata$Ldr[55:108]
Chg=-mydata$Chg[1:54]+mydata$Chg[55:108]
Cli=-mydata$Cli[1:54]+mydata$Cli[55:108]
QI=-mydata$QI[1:54]+mydata$QI[55:108]
Strat=-mydata$Strat[1:54]+mydata$Strat[55:108]
Com=-mydata$Com[1:54]+mydata$Com[55:108]
Lgl=-mydata$Lgl[1:54]+mydata$Lgl[55:108]
newdata=mydata[1:54,]
newdata$Fin=Fin;newdata$Mgt=Mgt;newdata$HR=HR;newdata$Sys=Sys
newdata$HIM=HIM;newdata$Ldr=Ldr;newdata$Chg=Chg;newdata$Cli=Cli
newdata$QI=QI;newdata$Strat=Strat;newdata$Com=Com;newdata$Lgl=Lgl
corcheck=cor(cbind(Fin, Mgt, HR, Sys, HIM, Ldr,
Chg, Cli, QI, Strat, Com, Lgl)) #no significant correlations
mvn(newdata[, 10:21])$multivariateNormality #multivariate normal, Mardia
## Test Statistic p value Result
## 1 Mardia Skewness 343.159997680128 0.77720968699161 YES
## 2 Mardia Kurtosis -1.42054530581446 0.155448988576426 YES
## 3 MVN <NA> <NA> YES
myt=powerTransform(as.matrix(newdata[, 10:21]+100)~1)#Likelihood after location shift
testTransform(myt)%>%kbl()%>%kable_classic(full_width = F, html_font = "Cambria")
| LRT | df | pval | |
|---|---|---|---|
| LR test, lambda = (1 1 1 1 1 1 1 1 1 1 1 1) | 4.409743 | 12 | 0.97486 |
corfunction(corcheck)
#########################################################################
#########################################################################
temp=matrix(rep(NA, 12*3), nrow=12)
mynames=colnames(newdata[, 10:21])
newdata$GPA2=newdata$GPA
newdata$GPA2[newdata$GPA2<3]=0
newdata$GPA2[newdata$GPA2>=3.0]=1
newdata$GPA2=as.factor(newdata$GPA2)
for (i in 1:12){temp[i,1]=leveneTest(newdata[,i+9], newdata$Gender)$`Pr(>F)`[1]
temp[i,2]=leveneTest(newdata[,i+9], newdata$Ethnicity)$`Pr(>F)`[1]
temp[i,3]=leveneTest(newdata[,i+9], newdata$GPA2)$`Pr(>F)`[1]}
row.names(temp)=mynames
colnames(temp)=c("Gender", "Ethnicity", "GPA>=3.0")
temp%>%kbl(caption="Levene's Test p-values")%>%kable_classic()
| Gender | Ethnicity | GPA>=3.0 | |
|---|---|---|---|
| Fin | 0.0928212 | 0.6074220 | 0.5080666 |
| Mgt | 0.1716459 | 0.2030549 | 0.0856700 |
| HR | 0.0599184 | 0.2881177 | 0.7126853 |
| Sys | 0.7212492 | 0.1477615 | 0.1697116 |
| HIM | 0.0860040 | 0.1563606 | 0.8221869 |
| Ldr | 0.0168099 | 0.7034436 | 0.4775388 |
| Chg | 0.5583924 | 0.0373990 | 0.4825184 |
| Cli | 0.2084158 | 0.6818831 | 0.5671587 |
| QI | 0.4336224 | 0.8549995 | 0.2452317 |
| Strat | 0.6999897 | 0.2740675 | 0.2025926 |
| Com | 0.3335336 | 0.1772415 | 0.1896661 |
| Lgl | 0.4015062 | 0.7404763 | 0.4932374 |
#########################################################################
#########################################################################
res.man <- manova(cbind(Fin, Mgt, HR, Sys, HIM, Ldr,
Chg, Cli, QI, Strat, Com, Lgl) ~
1+Gender+Ethnicity+GPA2, data = newdata)
summary(res.man, intercept=TRUE)
## Df Pillai approx F num Df den Df Pr(>F)
## (Intercept) 1 0.80864 13.0292 12 37 7.214e-10 ***
## Gender 1 0.20957 0.8175 12 37 0.6316
## Ethnicity 3 0.65806 0.9132 36 117 0.6122
## GPA2 1 0.12783 0.4519 12 37 0.9296
## Residuals 48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(res.man, intercept = TRUE)
## Response Fin :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 16713.0 16713.0 33.7286 4.925e-07 ***
## Gender 1 1062.7 1062.7 2.1447 0.1496
## Ethnicity 3 1727.4 575.8 1.1620 0.3340
## GPA2 1 412.3 412.3 0.8320 0.3663
## Residuals 48 23784.6 495.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Mgt :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 17424.1 17424.1 40.2935 7.364e-08 ***
## Gender 1 17.6 17.6 0.0406 0.8411
## Ethnicity 3 1971.0 657.0 1.5193 0.2215
## GPA2 1 130.7 130.7 0.3024 0.5850
## Residuals 48 20756.6 432.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response HR :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 11851.9 11851.9 25.0833 7.836e-06 ***
## Gender 1 1.0 1.0 0.0021 0.9635
## Ethnicity 3 933.8 311.3 0.6587 0.5815
## GPA2 1 133.4 133.4 0.2823 0.5977
## Residuals 48 22680.0 472.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Sys :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 11557 11557.4 15.5446 0.0002612 ***
## Gender 1 174 174.3 0.2344 0.6304536
## Ethnicity 3 857 285.7 0.3842 0.7648231
## GPA2 1 23 23.3 0.0314 0.8600875
## Residuals 48 35688 743.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response HIM :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 3750.0 3750.0 7.6056 0.008207 **
## Gender 1 586.4 586.4 1.1892 0.280927
## Ethnicity 3 1101.2 367.1 0.7445 0.530859
## GPA2 1 195.6 195.6 0.3968 0.531756
## Residuals 48 23666.8 493.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Ldr :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 18150.0 18150.0 39.3321 9.635e-08 ***
## Gender 1 434.1 434.1 0.9408 0.3369
## Ethnicity 3 372.0 124.0 0.2687 0.8476
## GPA2 1 394.0 394.0 0.8539 0.3601
## Residuals 48 22149.9 461.5
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Chg :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 4446.3 4446.3 11.6939 0.001289 **
## Gender 1 181.0 181.0 0.4760 0.493574
## Ethnicity 3 1437.5 479.2 1.2602 0.298591
## GPA2 1 384.5 384.5 1.0112 0.319648
## Residuals 48 18250.8 380.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Cli :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 7585.2 7585.2 18.6813 7.744e-05 ***
## Gender 1 289.7 289.7 0.7134 0.4025
## Ethnicity 3 228.0 76.0 0.1871 0.9046
## GPA2 1 7.7 7.7 0.0189 0.8912
## Residuals 48 19489.5 406.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response QI :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 12150.0 12150.0 28.9819 2.159e-06 ***
## Gender 1 231.2 231.2 0.5515 0.4613
## Ethnicity 3 1783.4 594.5 1.4180 0.2490
## GPA2 1 12.5 12.5 0.0299 0.8635
## Residuals 48 20122.9 419.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Strat :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 24490.7 24490.7 60.8063 4.455e-10 ***
## Gender 1 134.0 134.0 0.3327 0.5668
## Ethnicity 3 1226.3 408.8 1.0149 0.3944
## GPA2 1 116.2 116.2 0.2884 0.5937
## Residuals 48 19332.8 402.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Com :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 12150.0 12150.0 23.0392 1.588e-05 ***
## Gender 1 71.4 71.4 0.1353 0.7146
## Ethnicity 3 2364.9 788.3 1.4948 0.2279
## GPA2 1 0.4 0.4 0.0007 0.9793
## Residuals 48 25313.4 527.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Response Lgl :
## Df Sum Sq Mean Sq F value Pr(>F)
## (Intercept) 1 9868.5 9868.5 18.0073 9.999e-05 ***
## Gender 1 580.3 580.3 1.0589 0.3086
## Ethnicity 3 1957.8 652.6 1.1908 0.3232
## GPA2 1 1188.0 1188.0 2.1678 0.1475
## Residuals 48 26305.4 548.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#########################################################################
#########################################################################
newdata$Gender=as.integer(newdata$Gender)
mymancova=jmv::mancova(
data=newdata,
deps=vars(Fin, Mgt, HR, Sys, HIM, Ldr,
Chg, Cli, QI, Strat, Com, Lgl),
factors=c(Ethnicity),
covs=c(Age, GPA, Gender),
multivar = list("pillai", "wilks", "hotel", "roy"),
)
options(digits=3)
a=mymancova$multivar
a
##
## Multivariate Tests
## -----------------------------------------------------------------------------
## value F df1 df2 p
## -----------------------------------------------------------------------------
## Ethnicity Pillai's Trace 0.7352 1.028 36 114 0.441
## Wilks' Lambda 0.423 1.007 36 107 0.472
## Hotelling's Trace 1.0223 0.984 36 104 0.505
## Roy's Largest Root 0.5379 1.703 12 38 0.105
##
## Age Pillai's Trace 0.2460 0.979 12 36 0.486
## Wilks' Lambda 0.754 0.979 12 36 0.486
## Hotelling's Trace 0.3263 0.979 12 36 0.486
## Roy's Largest Root 0.3263 0.979 12 36 0.486
##
## GPA Pillai's Trace 0.2593 1.050 12 36 0.428
## Wilks' Lambda 0.741 1.050 12 36 0.428
## Hotelling's Trace 0.3500 1.050 12 36 0.428
## Roy's Largest Root 0.3500 1.050 12 36 0.428
##
## Gender Pillai's Trace 0.0783 0.255 12 36 0.993
## Wilks' Lambda 0.922 0.255 12 36 0.993
## Hotelling's Trace 0.0850 0.255 12 36 0.993
## Roy's Largest Root 0.0850 0.255 12 36 0.993
## -----------------------------------------------------------------------------
#########################################################################
Teaching
T1. All faculty evaluations (100%) each term have a median of 4.0 or greater out of 5.0 on the question, “Instructor provided the opportunity to learn.” {1=Strongly Disagree,…5=Strongly Agree} PO
T2. 100% of faculty members support opportunities for learning professional behavior as evidenced by in class learning activities and activities in SOHA- sponsored functions. PO
T3. BHA majors will successfully complete (with a grade of 80% or better) a case study/project in HA 3376 (Financial Management). SLO
T4. BHA majors will successfully complete (with a grade of 80% or better) a final exam in HA 3375 (Financial Accounting). SLO
T5. 100% of students will successfully complete the field experience (HA 4848) with a passing evaluation by their preceptor. A preceptor analysis will be used to determine application of the above referenced skills needing improvement. SLO
T6. 100% of students will successfully complete the final project requirements in the field experience (HA 4848) with a passing evaluation by their preceptor. SLO
T7. BHA majors will successfully complete (with a grade of 80% or better) a capstone case study in HA 4325 (strategic management) including an internal audit of strategic assessment; an external environmental assessment; and an assessment of a healthcare organization strategic plan. SLO
T8. 90% of students will demonstrate success in the writing intensive courses by scoring B’s or better on the final writing intensive (WI) assignments in HA3324. SLO
T9. 90% of students will demonstrate success in oral communication by achieving B’s or better on HA3344 group presentations. SLO
T10. 80% of our students will attain IISE Lean Six Sigma Green Belt Certification. SLO
T11. 80% of our students will attain Excel Basic MOS Certification. SLO
T12. 80% of our students will attain Excel Expert MOS Certification. SLO
T13. 80% of our students will attain QuickBooks Certification. SLO
T14. 100% of students will successfully complete the comprehensive exam with greater than median (nationwide) comparative scores. SLO
T15. 100% of students will have higher post-test scores than pre-test scores on the Peregrine exit exam. SLO
Research
R1. 100% of faculty members are engaged in research activities that support the body of knowledge in their respective fields as evidenced by at least one peer-reviewed publication each year. PO
R2. 50% of faculty acquire research funding for the University and the Department (stretch goal). PO
R3. 50% of students present a paper, poster or other research outcome at a professional conference or research symposium. SLO
R4. 10% of students are a named author on an article submitted for publication in a peer- reviewed journal. SLO
R5. 100% of faculty will collaborate either internally or externally for research purposes to build the research portfolio of our program. PO
Service
S1. 100% of faculty members will have demonstrated professional service each year as evidenced by review of CV’s. PO
S2. 100% of faculty members will have demonstrated community service each year as evidenced by review of CV’s. PO
S3. 100% of faculty provide service at the University, College, School, or Department level. PO
Student Success and Admissions
SS1. 50% of students seeking employment will have jobs within 1 month after graduation. SLO
SS2. 100% of students seeking employment will have jobs within 9 months after graduation. SLO
SS3. 80% or more of available seats will be filled with highly qualified students each term. PO
SS4. 70% of original cohort graduate together. SLO
SS5. 25% or more of admitted students will be of minority status. SLO
Program Success
P1. The program will maintain AUPHA certification (binary). PO
P2. One or more students will receive national awards. PO
P3. The BHA budget remains static or grows but does not shrink. PO
P4. 100% of vacant positions are filled. PO
P5. Alumni will serve as preceptors and speakers for the program as well as board members. PO
P6. In-building student computer facilities increase (binary). PO