This code loads the “readxl” library and imports the “companies.xlsx” data file.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

library(readxl)
companies <- read_excel("companies.xlsx")
View(companies)

The following code will:
1. create a new variable “logAssets” which is the log of “assets” 2. summarize: “salesMillions”, “profitsMillions”, “numEmploy”

companies$logAssets <- log(companies$assets)
cat("Sales in Millions\n"); summary(companies$salesMillions)
Sales in Millions
   Min. 1st Qu.  Median    Mean 
  709.3  1173.0  2934.2  5433.9 
3rd Qu.    Max. 
 5566.1 63438.0 
cat("Profit in Millions\n"); summary(companies$profitsMillions)
Profit in Millions
   Min. 1st Qu.  Median    Mean 
-680.40   46.12  201.70  409.32 
3rd Qu.    Max. 
 697.58 3758.00 
cat("Number of employees\n"); summary(companies$numEmploy)
Number of employees
   Min. 1st Qu.  Median    Mean 
   2900    8565   19050   38235 
3rd Qu.    Max. 
  41222  383220 

Next, create a box-whisker plot of profit per employee conditional on the size of the company

boxplot(profitPerEmp ~ sizeCo, data = companies)

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tCnRpdGxlOiAiUi1MYWIgMyIKQXV0aG9yOiBMaWJieSBMYW5nCm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgaHRtbF9ub3RlYm9vazogZGVmYXVsdAogIHdvcmRfZG9jdW1lbnQ6IGRlZmF1bHQKICBwZGZfZG9jdW1lbnQ6IGRlZmF1bHQKLS0tCgpUaGlzIGNvZGUgbG9hZHMgdGhlICJyZWFkeGwiIGxpYnJhcnkgYW5kIGltcG9ydHMgdGhlICJjb21wYW5pZXMueGxzeCIgZGF0YSBmaWxlLiAKClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gCgpgYGB7cn0KbGlicmFyeShyZWFkeGwpCmNvbXBhbmllcyA8LSByZWFkX2V4Y2VsKCJjb21wYW5pZXMueGxzeCIpClZpZXcoY29tcGFuaWVzKQpgYGAKClRoZSBmb2xsb3dpbmcgY29kZSB3aWxsOiAgIAoxLiBjcmVhdGUgYSBuZXcgdmFyaWFibGUgImxvZ0Fzc2V0cyIgd2hpY2ggaXMgdGhlIGxvZyBvZiAiYXNzZXRzIgoyLiBzdW1tYXJpemU6ICJzYWxlc01pbGxpb25zIiwgInByb2ZpdHNNaWxsaW9ucyIsICJudW1FbXBsb3kiCmBgYHtyfQpjb21wYW5pZXMkbG9nQXNzZXRzIDwtIGxvZyhjb21wYW5pZXMkYXNzZXRzKQpjYXQoIlNhbGVzIGluIE1pbGxpb25zXG4iKTsgc3VtbWFyeShjb21wYW5pZXMkc2FsZXNNaWxsaW9ucykKY2F0KCJQcm9maXQgaW4gTWlsbGlvbnNcbiIpOyBzdW1tYXJ5KGNvbXBhbmllcyRwcm9maXRzTWlsbGlvbnMpCmNhdCgiTnVtYmVyIG9mIGVtcGxveWVlc1xuIik7IHN1bW1hcnkoY29tcGFuaWVzJG51bUVtcGxveSkKYGBgCk5leHQsIGNyZWF0ZSBhIGJveC13aGlza2VyIHBsb3Qgb2YgcHJvZml0IHBlciBlbXBsb3llZSBjb25kaXRpb25hbCBvbiB0aGUgc2l6ZSBvZiB0aGUgY29tcGFueQpgYGB7cn0KYm94cGxvdChwcm9maXRQZXJFbXAgfiBzaXplQ28sIGRhdGEgPSBjb21wYW5pZXMpCmBgYAoKV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuCgpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuCg==