Distribuciones de probabilidad
Distribuciones de frecuencia
Conociendo los datos
Los datos son tomados de la base de datos de movilidad de google para el estado de sonora desde el día 15 de Febrero hasta el día 13 de Octubre, en este primer apartado se procedera a importarlos, declaran una variable llamada “EnCasa” que es porcentaje de desfase con respecto a la linea base, de la gente en sus casas / residencias.
library(pacman)
p_load("readr","DT","prettydoc","fdth","modeest")
sonora3 <- read_csv("sonora3.csv")## Parsed with column specification:
## cols(
## country_region_code = col_character(),
## country_region = col_character(),
## sub_region_1 = col_character(),
## sub_region_2 = col_logical(),
## metro_area = col_logical(),
## iso_3166_2_code = col_character(),
## census_fips_code = col_logical(),
## date = col_character(),
## retail_and_recreation_percent_change_from_baseline = col_double(),
## grocery_and_pharmacy_percent_change_from_baseline = col_double(),
## parks_percent_change_from_baseline = col_double(),
## transit_stations_percent_change_from_baseline = col_double(),
## workplaces_percent_change_from_baseline = col_double(),
## residential_percent_change_from_baseline = col_double()
## )
## [1] "country_region_code"
## [2] "country_region"
## [3] "sub_region_1"
## [4] "sub_region_2"
## [5] "metro_area"
## [6] "iso_3166_2_code"
## [7] "census_fips_code"
## [8] "date"
## [9] "retail_and_recreation_percent_change_from_baseline"
## [10] "grocery_and_pharmacy_percent_change_from_baseline"
## [11] "parks_percent_change_from_baseline"
## [12] "transit_stations_percent_change_from_baseline"
## [13] "workplaces_percent_change_from_baseline"
## [14] "residential_percent_change_from_baseline"
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -64.00 -40.75 -34.00 -31.49 -26.00 12.00
## [1] -38
## [1] 268.4832
## [1] 16.38546
Análisis de tabla distribución de frecuencia
## Class limits f rf rf(%) cf cf(%)
## [-64.64,-56.111) 8 0.03 3.31 8 3.31
## [-56.111,-47.582) 25 0.10 10.33 33 13.64
## [-47.582,-39.053) 38 0.16 15.70 71 29.34
## [-39.053,-30.524) 76 0.31 31.40 147 60.74
## [-30.524,-21.996) 52 0.21 21.49 199 82.23
## [-21.996,-13.467) 12 0.05 4.96 211 87.19
## [-13.467,-4.9378) 3 0.01 1.24 214 88.43
## [-4.9378,3.5911) 11 0.05 4.55 225 92.98
## [3.5911,12.12) 17 0.07 7.02 242 100.00
¿Cómo utilizamos este enfoque de distribuciones a probabilidad?
Primeramente analizamos esto desde un punto de vista de probabilidad clásica
## parques
## -64 -63 -60 -59 -57 -56 -55 -54 -53 -52 -51 -50 -49 -48 -47 -46 -45 -44 -43 -42
## 1 2 1 2 2 2 1 2 5 2 4 3 4 2 4 3 5 3 1 6
## -41 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22
## 6 10 8 15 13 9 4 8 4 8 7 4 6 6 8 12 7 4 4 1
## -21 -20 -18 -17 -14 -13 -9 -5 -4 -3 -2 -1 0 2 3 4 5 6 8 10
## 8 1 1 1 1 1 1 1 1 1 1 1 1 2 4 2 4 6 2 1
## 11 12
## 1 1
## [1] -38
Si esto fuera probabilidad clásica y quisieramos saber cual es la probabilidad de que se presente el número -38 (moda), se tendría que dividir este evento favorable (1) entre el total de eventos (62), P(A) = 1/62
- Funciones de distribuciones de probabilidad
\[ \begin{array}{l|l|l|c} \text{Función} & \text{Significado} & \text{Uso}& \text{Observación}\\ \hline p & \text{probability} & \text{Calcula probabilidades acumuladas (cdf)} & \text{---}\\ q & \text{quantile} & \text{Calcula cuantiles (percentiles)} & \text{---}\\ d & \text{density} & \text{Calcula probabilidades puntuales} & \text{Sólo uso gráfico en el caso continuo}\\ r & \text{random} & \text{Genera datos aleatorios según una distribución específica} & \text{---}\\ \hline \end{array} \]
- ¿De qué manera sirve esto para entender la probabilidad de que se presente un valor de movilidad de personas en los parques?
Conclusión
La probabilidad de que las personas se mantenga en el porcentaje de -30% es de 53% que es muy buena ya que esto nos indica una estabilidad en los datos. Sin embargo, la gente esta empezando a ir a los parques cada vez más. Pero aun sin llegar a un porcentaje positivo.