Website last updated 2020-10-27 16:18:29 by Benjamin Meyer (bemeyer@alaska.edu)
This document will summarize and plot results from drift invertebrate samples collected in 2019 by South Fork Research.
# import and prep for examination
drift_dat <- read.csv(paste0(user,"Dropbox/Chena_Data_2020/UAF_Data/2020_Analysis_And_Results/2019 Results from JN/Total Drift by Sample with Correlates.csv")) %>%
transform(DateTime = mdy_hm(DateTime)) %>%
mutate(day = yday(DateTime))
# define mainstem sites
ms_sites <- c("Nordale","First Bridge","Third Bridge")
# plot all sites
drift_dat %>%
ggplot(aes(day,PreyToDebrisRatio)) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("Prey to Debris Ratio 2019 - All Sites") +
xaxis
# plot 3 sites
drift_dat %>%
filter(Site %in% ms_sites) %>%
ggplot(aes(day,PreyToDebrisRatio)) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("Prey to Debris Ratio 2019 - Mainstem Sites") +
xaxis
# plot
drift_dat %>%
ggplot(aes(day,Concentration)) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("Concentrations by Site 2019 - All Sites") +
xaxis
# plot mainstem sites
drift_dat %>%
filter(Site %in% ms_sites) %>%
ggplot(aes(day,Concentration)) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("Concentrations by Site 2019 - Mainstem Sites") +
xaxis
# plot
drift_dat %>%
ggplot(aes(day,(Energy/FlowNormalized))) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("Energy Density vs Time by Site -- All Sites") +
xaxis
# plot
drift_dat %>%
filter(Site %in% ms_sites) %>%
ggplot(aes(day,(Energy/FlowNormalized))) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("Energy Density vs Time by Site -- Mainstem Sites") +
xaxis
# plot
drift_dat %>%
ggplot(aes(day,LogConcentration)) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("LogConcentration by Site 2019 -- All Sites") +
xaxis
# plot
drift_dat %>%
filter(Site %in% ms_sites) %>%
ggplot(aes(day,LogConcentration)) +
geom_point() +
facet_wrap(.~ Site) +
ggtitle("LogConcentration by Site 2019 -- Mainstem Sites") +
xaxis
# plot
drift_dat %>%
filter(Site %in% ms_sites) %>%
ggplot(aes(day,LogConcentration)) +
geom_point() +
geom_smooth(method = "lm") +
facet_wrap(.~ Site) +
formula_labels +
ggtitle("LogConcentration by Site 2019") +
xaxis +
xlab("")
# enviro correlates
drift_dat %>%
select("Temperature",
"Turbidity",
"Windspeed",
"MaxWindspeed",
"Rainfall",
"Light",
"BoatWakes",
"day") %>%
ggpairs() +
ggtitle("Environmental Correlates")
# drift density correlates
drift_dat %>%
select("Turbidity",
"Concentration",
"Energy",
"FlowNormalized",
"LogConcentration",
"PreyToDebrisRatio",
"day") %>%
ggpairs() +
ggtitle("Drift Density Correlates")