TIMEPOINTS_PATH <- here("data/frank_tablet_2016/processed_data/aoi_timepoints.csv")
aoi_timepoints <- read_csv(TIMEPOINTS_PATH)
TRIALS_PATH <- here("data/frank_tablet_2016/processed_data/trials.csv")
trials <- read_csv(TRIALS_PATH)
ADMINS_PATH <-here("data/frank_tablet_2016/processed_data/administrations.csv")
admins <- read_csv(ADMINS_PATH) %>%
select(administration_id, age)
STIMULI_PATH <-here("data/frank_tablet_2016/processed_data/stimuli.csv")
stimuli <- read_csv(STIMULI_PATH) %>%
select(stimulus_id, stimulus_novelty)
df <- aoi_timepoints %>%
left_join(trials) %>%
left_join(admins) %>%
left_join(stimuli, by = c("target_id" = "stimulus_id"))
prop_correct_by_trial <- df %>%
filter(age > 12, age <= 60) %>%
mutate(age_binned = cut(age, seq(0,60,12))) %>%
filter(aoi %in% c("distractor", "target")) %>%
group_by(t_norm, age_binned, stimulus_novelty) %>%
summarize(p = sum(aoi == "target", na.rm = TRUE),
prop_correct = p/n())
ggplot(prop_correct_by_trial, aes(x = t_norm, y = prop_correct, color = age_binned)) +
geom_line() +
facet_wrap(stimulus_novelty ~ .) +
geom_hline(yintercept = .5, lty = 2) +
geom_vline(xintercept = 0, lty = 2) +
ylab("Proportion Target Looking") +
xlab("Time (msec)") +
theme_classic()
