Levels

Department (Level 2) → Student (Level 1)

(department_idstudent)


Glimpse of how the data is structured:

## # A tibble: 20,239 x 6
##    department_id stdid       grade reservation z_seg_g1 z_seg_g2
##    <chr>         <chr>       <dbl>       <int>    <dbl>    <dbl>
##  1 IR001CS       IR001CS1001     2           0  -0.602    -1.28 
##  2 IR001CS       IR001CS1002     2           0   1.81      0.843
##  3 IR001CS       IR001CS1003     2           1  -0.0310   -0.779
##  4 IR001CS       IR001CS1004     2           1   0.158    -0.473
##  5 IR001CS       IR001CS1005     2           0  -0.392     2.35 
##  6 IR001CS       IR001CS1006     2           0  -0.392    -0.145
##  7 IR001CS       IR001CS1007     2           0  -0.392    NA    
##  8 IR001CS       IR001CS1008     2           1  -0.0310   -0.330
##  9 IR001CS       IR001CS1009     2           0  -0.852    -1.15 
## 10 IR001CS       IR001CS1010     2           1  NA        NA    
## # ... with 20,229 more rows

Null model

Model summary

lm1.1 <-
  lmer(z_seg_g2 ~ 1 + (1 |
                         department_id),
       data = df %>% filter(reservation == 1))
lm1.2 <-
  lmer(z_seg_g2 ~ 1 + (1 |
                         department_id),
       data = df %>% filter(reservation == 0))
lm1.3 <-
  lmer(z_seg_g4 ~ 1 + (1 |
                         department_id),
       data = df %>% filter(reservation == 1))
lm1.4 <-
  lmer(z_seg_g4 ~ 1 + (1 |
                         department_id),
       data = df %>% filter(reservation == 0))

knitreg(
  list(lm1.1, lm1.2, lm1.3, lm1.4),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  )
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) -0.20*** 0.17*** -0.15*** 0.17***
  (0.03) (0.04) (0.03) (0.04)
AIC 12118.50 10441.20 11528.03 10997.02
BIC 12137.63 10459.97 11547.08 11015.86
Log Likelihood -6056.25 -5217.60 -5761.01 -5495.51
Num. obs. 4348 3853 4234 3935
Num. groups: department_id 98 98 97 96
Var: department_id (Intercept) 0.08 0.10 0.05 0.15
Var: Residual 0.92 0.84 0.87 0.91
p < 0.01; p < 0.05; p < 0.1

Model ICC

bind_rows(
  icc(lm1.1, by_group = T),
  icc(lm1.2, by_group = T),
  icc(lm1.3, by_group = T),
  icc(lm1.4, by_group = T),
  .id = "model"
) %>%
  pivot_wider(names_from = model, values_from = ICC) %>%
  select(
    level = Group,
    "Cohort 1 Res" = "1",
    "Cohort 1 Non-res" = "2",
    "Cohort 2 Res" = "3",
    "Cohort 2 Non-res" =  "4"
  ) %>%
  kable()
level Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
department_id 0.0783756 0.1058881 0.0572255 0.1371008

Adding student level predictors

Model summary

lm2.1 <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + (1 |
                                                                                                                                                 department_id),
    data = df %>% filter(reservation == 1)
  )

lm2.2 <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + (1 |
                                                                                                                                                 department_id),
    data = df %>% filter(reservation == 0)
  )

lm2.3 <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + (1 |
                                                                                                                                                 department_id),
    data = df %>% filter(reservation == 1)
  )

lm2.4 <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + (1 |
                                                                                                                                                 department_id),
    data = df %>% filter(reservation == 0)
  )

knitreg(
  list(lm2.1, lm2.2, lm2.3, lm2.4),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  )
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) -0.06 -0.00 0.03 -0.11
  (0.09) (0.10) (0.08) (0.10)
z_seg_g1 0.25*** 0.23***    
  (0.02) (0.02)    
female 0.02 -0.01 -0.04 0.05
  (0.04) (0.04) (0.03) (0.04)
age 0.01 -0.01 0.02 0.01
  (0.03) (0.03) (0.02) (0.03)
ses -0.05* 0.06** 0.01 0.05*
  (0.03) (0.03) (0.02) (0.03)
b_score -0.18** -0.06 -0.16** 0.09
  (0.08) (0.08) (0.07) (0.08)
mother_ed_ind -0.00 -0.01 -0.01 0.01
  (0.01) (0.01) (0.01) (0.01)
father_ed_ind 0.00 0.01 0.00 -0.00
  (0.01) (0.01) (0.01) (0.01)
b_i_area 0.03 0.05 0.01 0.03
  (0.04) (0.04) (0.03) (0.04)
b_eb1_hstype 0.01 -0.01 0.00 -0.00
  (0.02) (0.02) (0.02) (0.02)
b_i_school_years_english -0.00 -0.00 -0.01** -0.00
  (0.00) (0.00) (0.00) (0.00)
z_seg_g3     0.28*** 0.30***
      (0.02) (0.02)
AIC 7335.15 6629.24 8163.92 7527.46
BIC 7411.97 6705.03 8242.48 7604.58
Log Likelihood -3654.58 -3301.62 -4068.96 -3750.73
Num. obs. 2722 2514 3113 2786
Num. groups: department_id 98 98 97 95
Var: department_id (Intercept) 0.06 0.06 0.04 0.08
Var: Residual 0.81 0.76 0.76 0.81
p < 0.01; p < 0.05; p < 0.1

Model ICC

bind_rows(
  icc(lm2.1, by_group = T),
  icc(lm2.2, by_group = T),
  icc(lm2.3, by_group = T),
  icc(lm2.4, by_group = T),
  .id = "model"
) %>%
  pivot_wider(names_from = model, values_from = ICC) %>%
  select(
    level = Group,
    "Cohort 1 Res" = "1",
    "Cohort 1 Non-res" = "2",
    "Cohort 2 Res" = "3",
    "Cohort 2 Non-res" =  "4"
  ) %>%
  kable()
level Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
department_id 0.0634569 0.0698856 0.051064 0.0879738

Adding department level predictors

Student level predictors are still included (even though not shown in results below)

Model summary

lm3.1 <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + mentoring_programs + integration_courses + diversity_office + (1 |
                                                                                                                                                                                                                                                                     department_id),
    data = df %>% filter(reservation == 1)
  )

lm3.2 <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + mentoring_programs + integration_courses + diversity_office + (1 |
                                                                                                                                                                                                                                                                     department_id),
    data = df %>% filter(reservation == 0)
  )

lm3.3 <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + mentoring_programs + integration_courses + diversity_office + (1 |
                                                                                                                                                                                                                                                                     department_id),
    data = df %>% filter(reservation == 1)
  )

lm3.4 <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + mentoring_programs + integration_courses + diversity_office + (1 |
                                                                                                                                                                                                                                                                     department_id),
    data = df %>% filter(reservation == 0)
  )

knitreg(
  list(lm3.1, lm3.2, lm3.3, lm3.4),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  ),
  omit.coef = "(female)|(b_score)|(ther_ed)|(area)|(^ses)|(hstype)|(age)|(official)|(school)|(seg)"
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) -0.08 -0.04 0.06 0.12
  (0.11) (0.13) (0.10) (0.12)
diverse_dorms 0.12* -0.09 -0.04 -0.16*
  (0.07) (0.08) (0.06) (0.08)
mentoring_programs -0.15* 0.07 0.09 -0.10
  (0.08) (0.08) (0.07) (0.09)
integration_courses 0.03 0.06 -0.06 -0.03
  (0.07) (0.07) (0.06) (0.08)
diversity_office 0.04 0.04 -0.05 -0.05
  (0.07) (0.07) (0.06) (0.07)
AIC 7322.28 6637.32 8136.43 7517.03
BIC 7434.38 6748.00 8251.07 7629.64
Log Likelihood -3642.14 -3299.66 -4049.22 -3739.52
Num. obs. 2698 2503 3083 2770
Num. groups: department_id 97 97 96 94
Var: department_id (Intercept) 0.06 0.06 0.04 0.08
Var: Residual 0.82 0.77 0.77 0.82
p < 0.01; p < 0.05; p < 0.1

Model ICC

bind_rows(
  icc(lm3.1, by_group = T),
  icc(lm3.2, by_group = T),
  icc(lm3.3, by_group = T),
  icc(lm3.4, by_group = T),
  .id = "model"
) %>%
  pivot_wider(names_from = model, values_from = ICC) %>%
  select(
    level = Group,
    "Cohort 1 Res" = "1",
    "Cohort 1 Non-res" = "2",
    "Cohort 2 Res" = "3",
    "Cohort 2 Non-res" =  "4"
  ) %>%
  kable()
level Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
department_id 0.0643599 0.0725649 0.0533912 0.0846347

Adding random slope

Diverse Dorms

lm4.1a <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + (1 + diverse_dorms |
                                                                                                                                                                                                       department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.2a <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + (1 + diverse_dorms |
                                                                                                                                                                                                       department_id),
    data = df %>% filter(reservation == 0)
  )

lm4.3a <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + (1 + diverse_dorms |
                                                                                                                                                                                                       department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.4a <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diverse_dorms + (1 + diverse_dorms |
                                                                                                                                                                                                       department_id),
    data = df %>% filter(reservation == 0)
  )

knitreg(
  list(lm4.1a, lm4.2a, lm4.3a, lm4.4a),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  ),
  omit.coef = "(female)|(b_score)|(ther_ed)|(area)|(^ses)|(hstype)|(age)|(official)|(school)|(seg)"
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) -0.13 0.02 0.06 0.03
  (0.10) (0.12) (0.09) (0.12)
diverse_dorms 0.10 -0.04 -0.04 -0.19**
  (0.07) (0.08) (0.07) (0.08)
AIC 7355.69 6646.19 8182.67 7541.84
BIC 7462.06 6751.13 8291.45 7648.62
Log Likelihood -3659.85 -3305.10 -4073.33 -3752.92
Num. obs. 2722 2514 3113 2786
Num. groups: department_id 98 98 97 95
Var: department_id (Intercept) 0.08 0.10 0.08 0.11
Var: department_id diverse_dorms 0.07 0.02 0.02 0.07
Cov: department_id (Intercept) diverse_dorms -0.05 -0.04 -0.04 -0.06
Var: Residual 0.81 0.76 0.76 0.81
p < 0.01; p < 0.05; p < 0.1

Mentoring Programs

lm4.1b <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + mentoring_programs + (1 + mentoring_programs |
                                                                                                                                                                                                            department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.2b <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + mentoring_programs + (1 + mentoring_programs |
                                                                                                                                                                                                            department_id),
    data = df %>% filter(reservation == 0)
  )

lm4.3b <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + mentoring_programs + (1 + mentoring_programs |
                                                                                                                                                                                                            department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.4b <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + mentoring_programs + (1 + mentoring_programs |
                                                                                                                                                                                                            department_id),
    data = df %>% filter(reservation == 0)
  )

knitreg(
  list(lm4.1b, lm4.2b, lm4.3b, lm4.4b),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  ),
  omit.coef = "(female)|(b_score)|(ther_ed)|(area)|(^ses)|(hstype)|(age)|(official)|(school)|(seg)"
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) 0.02 -0.07 0.01 0.00
  (0.10) (0.12) (0.09) (0.12)
mentoring_programs -0.12 0.10 0.04 -0.17*
  (0.08) (0.08) (0.06) (0.10)
AIC 7354.89 6647.27 8187.17 7542.54
BIC 7461.26 6752.20 8295.95 7649.32
Log Likelihood -3659.45 -3305.63 -4075.59 -3753.27
Num. obs. 2722 2514 3113 2786
Num. groups: department_id 98 98 97 95
Var: department_id (Intercept) 0.08 0.09 0.04 0.16
Var: department_id mentoring_programs 0.21 0.08 0.12 0.03
Cov: department_id (Intercept) mentoring_programs -0.12 -0.06 -0.06 -0.06
Var: Residual 0.81 0.76 0.76 0.81
p < 0.01; p < 0.05; p < 0.1

Integration courses

lm4.1c <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + integration_courses + (1 + integration_courses |
                                                                                                                                                                                                             department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.2c <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + integration_courses + (1 + integration_courses |
                                                                                                                                                                                                             department_id),
    data = df %>% filter(reservation == 0)
  )

lm4.3c <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + integration_courses + (1 + integration_courses |
                                                                                                                                                                                                             department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.4c <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + integration_courses + (1 + integration_courses |
                                                                                                                                                                                                             department_id),
    data = df %>% filter(reservation == 0)
  )

knitreg(
  list(lm4.1c, lm4.2c, lm4.3c, lm4.4c),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  ),
  omit.coef = "(female)|(b_score)|(ther_ed)|(area)|(^ses)|(hstype)|(age)|(official)|(school)|(seg)"
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) -0.06 -0.05 0.06 -0.06
  (0.09) (0.11) (0.09) (0.11)
integration_courses -0.00 0.08 -0.07 -0.10
  (0.07) (0.07) (0.06) (0.07)
AIC 7357.53 6647.08 8170.43 7542.99
BIC 7463.90 6752.02 8279.21 7649.78
Log Likelihood -3660.77 -3305.54 -4067.22 -3753.50
Num. obs. 2722 2514 3113 2786
Num. groups: department_id 98 98 97 95
Var: department_id (Intercept) 0.08 0.08 0.09 0.13
Var: department_id integration_courses 0.03 0.09 0.14 0.31
Cov: department_id (Intercept) integration_courses -0.03 -0.06 -0.12 -0.20
Var: Residual 0.81 0.76 0.76 0.81
p < 0.01; p < 0.05; p < 0.1

Divresity Offices

lm4.1d <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diversity_office + (1 + diversity_office |
                                                                                                                                                                                                          department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.2d <-
  lmer(
    z_seg_g2 ~ z_seg_g1 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diversity_office + (1 + diversity_office |
                                                                                                                                                                                                          department_id),
    data = df %>% filter(reservation == 0)
  )

lm4.3d <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diversity_office + (1 + diversity_office |
                                                                                                                                                                                                          department_id),
    data = df %>% filter(reservation == 1)
  )

lm4.4d <-
  lmer(
    z_seg_g4 ~ z_seg_g3 + female + age + ses + b_score + mother_ed_ind + father_ed_ind + b_i_area + b_eb1_hstype + b_i_school_years_english + stu_res_official + fac_res_official + diversity_office + (1 + diversity_office |
                                                                                                                                                                                                          department_id),
    data = df %>% filter(reservation == 0)
  )

knitreg(
  list(lm4.1d, lm4.2d, lm4.3d, lm4.4d),
  custom.note = "%stars",
  stars = c(0.01, 0.05, 0.1),
  include.ci = FALSE,
  include.variance = TRUE,
  custom.model.names = c(
    "Cohort 1 Res",
    "Cohort 1 Non-res",
    "Cohort 2 Res",
    "Cohort 2 Non-res"
  ),
  omit.coef = "(female)|(b_score)|(ther_ed)|(area)|(^ses)|(hstype)|(age)|(official)|(school)|(seg)"
)
Statistical models
  Cohort 1 Res Cohort 1 Non-res Cohort 2 Res Cohort 2 Non-res
(Intercept) -0.06 -0.02 0.07 -0.07
  (0.09) (0.11) (0.09) (0.10)
diversity_office 0.02 0.04 -0.05 -0.06
  (0.06) (0.07) (0.05) (0.08)
AIC 7314.77 6627.51 8117.43 7512.69
BIC 7420.98 6732.37 8226.04 7619.37
Log Likelihood -3639.39 -3295.76 -4040.72 -3738.35
Num. obs. 2698 2503 3083 2770
Num. groups: department_id 97 97 96 94
Var: department_id (Intercept) 0.07 0.05 0.07 0.08
Var: department_id diversity_office 0.01 0.00 0.04 0.02
Cov: department_id (Intercept) diversity_office -0.02 0.01 -0.05 -0.01
Var: Residual 0.82 0.77 0.77 0.82
p < 0.01; p < 0.05; p < 0.1

Model comparison

Cohort 1 reservation

compare_performance(lm1.1, lm2.1, lm3.1, lm4.1a, lm4.1b, lm4.1c, lm4.1d)
## # Comparison of Model Performance Indices
## 
## Model  |    Type |      AIC |      BIC | R2_conditional | R2_marginal |  ICC | RMSE | Sigma
## -------------------------------------------------------------------------------------------
## lm1.1  | lmerMod | 12118.50 | 12137.63 |           0.08 |        0.00 | 0.08 | 0.95 |  0.96
## lm2.1  | lmerMod |  7335.15 |  7411.97 |           0.13 |        0.07 | 0.06 | 0.89 |  0.90
## lm3.1  | lmerMod |  7322.28 |  7434.38 |           0.14 |        0.08 | 0.06 | 0.89 |  0.90
## lm4.1a | lmerMod |  7355.69 |  7462.06 |           0.13 |        0.07 | 0.07 | 0.89 |  0.90
## lm4.1b | lmerMod |  7354.90 |  7461.26 |           0.14 |        0.07 | 0.07 | 0.89 |  0.90
## lm4.1c | lmerMod |  7357.53 |  7463.90 |           0.13 |        0.07 | 0.07 | 0.89 |  0.90
## lm4.1d | lmerMod |  7314.77 |  7420.98 |           0.13 |        0.07 | 0.06 | 0.89 |  0.91

Cohort 1 non-reservation

compare_performance(lm1.2, lm2.2, lm3.2, lm4.2a, lm4.2b, lm4.2c, lm4.2d)
## # Comparison of Model Performance Indices
## 
## Model  |    Type |      AIC |      BIC | R2_conditional | R2_marginal |  ICC | RMSE | Sigma
## -------------------------------------------------------------------------------------------
## lm1.2  | lmerMod | 10441.20 | 10459.97 |           0.11 |        0.00 | 0.11 | 0.91 |  0.92
## lm2.2  | lmerMod |  6629.24 |  6705.03 |           0.13 |        0.06 | 0.07 | 0.86 |  0.87
## lm3.2  | lmerMod |  6637.32 |  6748.00 |           0.13 |        0.07 | 0.07 | 0.86 |  0.88
## lm4.2a | lmerMod |  6646.19 |  6751.13 |           0.13 |        0.07 | 0.07 | 0.86 |  0.87
## lm4.2b | lmerMod |  6647.27 |  6752.20 |           0.13 |        0.07 | 0.07 | 0.86 |  0.87
## lm4.2c | lmerMod |  6647.08 |  6752.02 |           0.13 |        0.06 | 0.07 | 0.86 |  0.87
## lm4.2d | lmerMod |  6627.51 |  6732.37 |           0.13 |        0.07 | 0.07 | 0.86 |  0.88

Cohort 2 reservation

compare_performance(lm1.3, lm2.3, lm3.3, lm4.3a, lm4.3b, lm4.3c, lm4.3d)
## # Comparison of Model Performance Indices
## 
## Model  |    Type |      AIC |      BIC | R2_conditional | R2_marginal |  ICC | RMSE | Sigma
## -------------------------------------------------------------------------------------------
## lm1.3  | lmerMod | 11528.03 | 11547.08 |           0.06 |        0.00 | 0.06 | 0.92 |  0.93
## lm2.3  | lmerMod |  8163.92 |  8242.48 |           0.14 |        0.09 | 0.05 | 0.86 |  0.87
## lm3.3  | lmerMod |  8136.44 |  8251.07 |           0.14 |        0.09 | 0.05 | 0.87 |  0.88
## lm4.3a | lmerMod |  8182.67 |  8291.45 |           0.14 |        0.09 | 0.05 | 0.86 |  0.87
## lm4.3b | lmerMod |  8187.17 |  8295.95 |           0.14 |        0.09 | 0.06 | 0.86 |  0.87
## lm4.3c | lmerMod |  8170.44 |  8279.22 |           0.15 |        0.09 | 0.06 | 0.86 |  0.87
## lm4.3d | lmerMod |  8117.43 |  8226.04 |           0.14 |        0.09 | 0.06 | 0.87 |  0.88

Cohort 2 non-reservation

compare_performance(lm1.4, lm2.4, lm3.4, lm4.4a, lm4.4b, lm4.4c, lm4.4d)
## # Comparison of Model Performance Indices
## 
## Model  |    Type |      AIC |      BIC | R2_conditional | R2_marginal |  ICC | RMSE | Sigma
## -------------------------------------------------------------------------------------------
## lm1.4  | lmerMod | 10997.02 | 11015.85 |           0.14 |        0.00 | 0.14 | 0.95 |  0.96
## lm2.4  | lmerMod |  7527.46 |  7604.58 |           0.17 |        0.09 | 0.09 | 0.89 |  0.90
## lm3.4  | lmerMod |  7517.03 |  7629.64 |           0.18 |        0.11 | 0.08 | 0.89 |  0.90
## lm4.4a | lmerMod |  7541.84 |  7648.62 |           0.18 |        0.11 | 0.08 | 0.89 |  0.90
## lm4.4b | lmerMod |  7542.54 |  7649.32 |           0.19 |        0.10 | 0.09 | 0.89 |  0.90
## lm4.4c | lmerMod |  7542.99 |  7649.78 |           0.19 |        0.10 | 0.10 | 0.89 |  0.90
## lm4.4d | lmerMod |  7512.69 |  7619.37 |           0.18 |        0.10 | 0.09 | 0.89 |  0.90