Libraries

library(kableExtra)
library(tidyverse)
library(ggplot2)
library(dplyr)
library(GGally)
library(fpp2)
library(seasonal)
library(grid)
library(gridExtra)
library(forecast)
library(urca)
library(lubridate)
library(imputeTS)
library(xts)

PART A: DataSet - ATM Cash Draw

atmdata <- readxl::read_excel("ATM624Data.xlsx", skip=0)

atmdata %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
## Warning: namespace 'highr' is not available and has been replaced
## by .GlobalEnv when processing object '<unknown>'
DATE ATM Cash
39934 ATM1 96.000000
39934 ATM2 107.000000
39935 ATM1 82.000000
39935 ATM2 89.000000
39936 ATM1 85.000000
39936 ATM2 90.000000
39937 ATM1 90.000000
39937 ATM2 55.000000
39938 ATM1 99.000000
39938 ATM2 79.000000
39939 ATM1 88.000000
39939 ATM2 19.000000
39940 ATM1 8.000000
39940 ATM2 2.000000
39941 ATM1 104.000000
39941 ATM2 103.000000
39942 ATM1 87.000000
39942 ATM2 107.000000
39943 ATM1 93.000000
39943 ATM2 118.000000
39944 ATM1 86.000000
39944 ATM2 75.000000
39945 ATM1 111.000000
39945 ATM2 111.000000
39946 ATM1 75.000000
39946 ATM2 25.000000
39947 ATM1 6.000000
39947 ATM2 16.000000
39948 ATM1 102.000000
39948 ATM2 137.000000
39949 ATM1 73.000000
39949 ATM2 95.000000
39950 ATM1 92.000000
39950 ATM2 103.000000
39951 ATM1 82.000000
39951 ATM2 80.000000
39952 ATM1 86.000000
39952 ATM2 118.000000
39953 ATM1 73.000000
39953 ATM2 30.000000
39954 ATM1 20.000000
39954 ATM2 7.000000
39955 ATM1 100.000000
39955 ATM2 118.000000
39956 ATM1 93.000000
39956 ATM2 104.000000
39957 ATM1 90.000000
39957 ATM2 59.000000
39958 ATM1 94.000000
39958 ATM2 40.000000
39959 ATM1 98.000000
39959 ATM2 106.000000
39960 ATM1 73.000000
39960 ATM2 18.000000
39961 ATM1 10.000000
39961 ATM2 9.000000
39962 ATM1 97.000000
39962 ATM2 136.000000
39963 ATM1 102.000000
39963 ATM2 118.000000
39964 ATM1 85.000000
39964 ATM2 64.000000
39965 ATM1 85.000000
39965 ATM2 77.000000
39966 ATM1 108.000000
39966 ATM2 133.000000
39967 ATM1 94.000000
39967 ATM2 45.000000
39968 ATM1 14.000000
39968 ATM2 14.000000
39969 ATM1 3.000000
39969 ATM2 20.000000
39970 ATM1 96.000000
39970 ATM2 147.000000
39971 ATM1 109.000000
39971 ATM2 105.000000
39972 ATM1 96.000000
39972 ATM2 132.000000
39973 ATM1 145.000000
39973 ATM2 93.000000
39974 ATM1 81.000000
39974 ATM2 26.000000
39975 ATM1 16.000000
39975 ATM2 7.000000
39976 ATM1 142.000000
39976 ATM2 112.000000
39977 ATM1 NA
39977 ATM2 91.000000
39978 ATM1 120.000000
39978 ATM2 72.000000
39979 ATM1 106.000000
39979 ATM2 66.000000
39980 ATM1 NA
39980 ATM2 82.000000
39981 ATM1 108.000000
39981 ATM2 24.000000
39982 ATM1 21.000000
39982 ATM2 NA
39983 ATM1 140.000000
39983 ATM2 134.000000
39984 ATM1 110.000000
39984 ATM2 95.000000
39985 ATM1 115.000000
39985 ATM2 82.000000
39986 ATM1 NA
39986 ATM2 90.000000
39987 ATM1 108.000000
39987 ATM2 99.000000
39988 ATM1 66.000000
39988 ATM2 NA
39989 ATM1 13.000000
39989 ATM2 3.000000
39990 ATM1 99.000000
39990 ATM2 117.000000
39991 ATM1 105.000000
39991 ATM2 53.000000
39992 ATM1 104.000000
39992 ATM2 44.000000
39993 ATM1 98.000000
39993 ATM2 56.000000
39994 ATM1 110.000000
39994 ATM2 110.000000
39995 ATM1 79.000000
39995 ATM2 36.000000
39996 ATM1 16.000000
39996 ATM2 12.000000
39997 ATM1 110.000000
39997 ATM2 128.000000
39998 ATM1 96.000000
39998 ATM2 72.000000
39999 ATM1 114.000000
39999 ATM2 122.000000
40000 ATM1 126.000000
40000 ATM2 100.000000
40001 ATM1 126.000000
40001 ATM2 108.000000
40002 ATM1 73.000000
40002 ATM2 25.000000
40003 ATM1 4.000000
40003 ATM2 6.000000
40004 ATM1 19.000000
40004 ATM2 22.000000
40005 ATM1 114.000000
40005 ATM2 135.000000
40006 ATM1 98.000000
40006 ATM2 69.000000
40007 ATM1 97.000000
40007 ATM2 52.000000
40008 ATM1 114.000000
40008 ATM2 81.000000
40009 ATM1 78.000000
40009 ATM2 27.000000
40010 ATM1 19.000000
40010 ATM2 4.000000
40011 ATM1 102.000000
40011 ATM2 147.000000
40012 ATM1 94.000000
40012 ATM2 102.000000
40013 ATM1 108.000000
40013 ATM2 83.000000
40014 ATM1 91.000000
40014 ATM2 55.000000
40015 ATM1 86.000000
40015 ATM2 74.000000
40016 ATM1 78.000000
40016 ATM2 22.000000
40017 ATM1 16.000000
40017 ATM2 4.000000
40018 ATM1 114.000000
40018 ATM2 104.000000
40019 ATM1 115.000000
40019 ATM2 81.000000
40020 ATM1 108.000000
40020 ATM2 61.000000
40021 ATM1 102.000000
40021 ATM2 70.000000
40022 ATM1 129.000000
40022 ATM2 126.000000
40023 ATM1 79.000000
40023 ATM2 33.000000
40024 ATM1 13.000000
40024 ATM2 7.000000
40025 ATM1 103.000000
40025 ATM2 126.000000
40026 ATM1 90.000000
40026 ATM2 92.000000
40027 ATM1 68.000000
40027 ATM2 81.000000
40028 ATM1 85.000000
40028 ATM2 49.000000
40029 ATM1 99.000000
40029 ATM2 146.000000
40030 ATM1 86.000000
40030 ATM2 79.000000
40031 ATM1 13.000000
40031 ATM2 37.000000
40032 ATM1 116.000000
40032 ATM2 136.000000
40033 ATM1 105.000000
40033 ATM2 111.000000
40034 ATM1 123.000000
40034 ATM2 78.000000
40035 ATM1 114.000000
40035 ATM2 57.000000
40036 ATM1 127.000000
40036 ATM2 106.000000
40037 ATM1 111.000000
40037 ATM2 38.000000
40038 ATM1 34.000000
40038 ATM2 15.000000
40039 ATM1 151.000000
40039 ATM2 119.000000
40040 ATM1 110.000000
40040 ATM2 110.000000
40041 ATM1 115.000000
40041 ATM2 68.000000
40042 ATM1 112.000000
40042 ATM2 60.000000
40043 ATM1 132.000000
40043 ATM2 92.000000
40044 ATM1 94.000000
40044 ATM2 22.000000
40045 ATM1 24.000000
40045 ATM2 11.000000
40046 ATM1 122.000000
40046 ATM2 121.000000
40047 ATM1 104.000000
40047 ATM2 89.000000
40048 ATM1 128.000000
40048 ATM2 62.000000
40049 ATM1 120.000000
40049 ATM2 79.000000
40050 ATM1 174.000000
40050 ATM2 83.000000
40051 ATM1 96.000000
40051 ATM2 31.000000
40052 ATM1 13.000000
40052 ATM2 4.000000
40053 ATM1 121.000000
40053 ATM2 96.000000
40054 ATM1 133.000000
40054 ATM2 50.000000
40055 ATM1 118.000000
40055 ATM2 52.000000
40056 ATM1 91.000000
40056 ATM2 56.000000
40057 ATM1 120.000000
40057 ATM2 104.000000
40058 ATM1 88.000000
40058 ATM2 27.000000
40059 ATM1 19.000000
40059 ATM2 13.000000
40060 ATM1 150.000000
40060 ATM2 107.000000
40061 ATM1 144.000000
40061 ATM2 125.000000
40062 ATM1 121.000000
40062 ATM2 103.000000
40063 ATM1 105.000000
40063 ATM2 42.000000
40064 ATM1 133.000000
40064 ATM2 90.000000
40065 ATM1 109.000000
40065 ATM2 29.000000
40066 ATM1 18.000000
40066 ATM2 8.000000
40067 ATM1 1.000000
40067 ATM2 2.000000
40068 ATM1 105.000000
40068 ATM2 84.000000
40069 ATM1 112.000000
40069 ATM2 62.000000
40070 ATM1 82.000000
40070 ATM2 77.000000
40071 ATM1 111.000000
40071 ATM2 78.000000
40072 ATM1 79.000000
40072 ATM2 25.000000
40073 ATM1 13.000000
40073 ATM2 8.000000
40074 ATM1 112.000000
40074 ATM2 113.000000
40075 ATM1 99.000000
40075 ATM2 71.000000
40076 ATM1 140.000000
40076 ATM2 94.000000
40077 ATM1 110.000000
40077 ATM2 59.000000
40078 ATM1 180.000000
40078 ATM2 89.000000
40079 ATM1 73.000000
40079 ATM2 18.000000
40080 ATM1 7.000000
40080 ATM2 6.000000
40081 ATM1 106.000000
40081 ATM2 115.000000
40082 ATM1 103.000000
40082 ATM2 81.000000
40083 ATM1 93.000000
40083 ATM2 61.000000
40084 ATM1 96.000000
40084 ATM2 71.000000
40085 ATM1 117.000000
40085 ATM2 69.000000
40086 ATM1 80.000000
40086 ATM2 36.000000
40087 ATM1 14.000000
40087 ATM2 14.000000
40088 ATM1 120.000000
40088 ATM2 104.000000
40089 ATM1 91.000000
40089 ATM2 73.000000
40090 ATM1 96.000000
40090 ATM2 86.000000
40091 ATM1 74.000000
40091 ATM2 85.000000
40092 ATM1 108.000000
40092 ATM2 126.000000
40093 ATM1 73.000000
40093 ATM2 31.000000
40094 ATM1 13.000000
40094 ATM2 9.000000
40095 ATM1 93.000000
40095 ATM2 114.000000
40096 ATM1 94.000000
40096 ATM2 78.000000
40097 ATM1 76.000000
40097 ATM2 45.000000
40098 ATM1 111.000000
40098 ATM2 60.000000
40099 ATM1 88.000000
40099 ATM2 91.000000
40100 ATM1 76.000000
40100 ATM2 22.000000
40101 ATM1 9.000000
40101 ATM2 7.000000
40102 ATM1 87.000000
40102 ATM2 75.000000
40103 ATM1 105.000000
40103 ATM2 66.000000
40104 ATM1 78.000000
40104 ATM2 64.000000
40105 ATM1 67.000000
40105 ATM2 51.000000
40106 ATM1 90.000000
40106 ATM2 94.000000
40107 ATM1 68.000000
40107 ATM2 23.000000
40108 ATM1 9.000000
40108 ATM2 4.000000
40109 ATM1 78.000000
40109 ATM2 127.000000
40110 ATM1 74.000000
40110 ATM2 61.000000
40111 ATM1 74.000000
40111 ATM2 0.000000
40112 ATM1 60.000000
40112 ATM2 95.000000
40113 ATM1 75.000000
40113 ATM2 79.000000
40114 ATM1 61.000000
40114 ATM2 38.000000
40115 ATM1 9.000000
40115 ATM2 8.000000
40116 ATM1 90.000000
40116 ATM2 119.000000
40117 ATM1 86.000000
40117 ATM2 57.000000
40118 ATM1 86.000000
40118 ATM2 58.000000
40119 ATM1 79.000000
40119 ATM2 80.000000
40120 ATM1 90.000000
40120 ATM2 82.000000
40121 ATM1 80.000000
40121 ATM2 49.000000
40122 ATM1 21.000000
40122 ATM2 16.000000
40123 ATM1 93.000000
40123 ATM2 116.000000
40124 ATM1 104.000000
40124 ATM2 61.000000
40125 ATM1 109.000000
40125 ATM2 59.000000
40126 ATM1 88.000000
40126 ATM2 80.000000
40127 ATM1 96.000000
40127 ATM2 86.000000
40128 ATM1 70.000000
40128 ATM2 23.000000
40129 ATM1 15.000000
40129 ATM2 7.000000
40130 ATM1 73.000000
40130 ATM2 91.000000
40131 ATM1 94.000000
40131 ATM2 57.000000
40132 ATM1 108.000000
40132 ATM2 58.000000
40133 ATM1 73.000000
40133 ATM2 61.000000
40134 ATM1 87.000000
40134 ATM2 77.000000
40135 ATM1 75.000000
40135 ATM2 20.000000
40136 ATM1 10.000000
40136 ATM2 5.000000
40137 ATM1 92.000000
40137 ATM2 132.000000
40138 ATM1 87.000000
40138 ATM2 49.000000
40139 ATM1 74.000000
40139 ATM2 57.000000
40140 ATM1 73.000000
40140 ATM2 68.000000
40141 ATM1 93.000000
40141 ATM2 80.000000
40142 ATM1 66.000000
40142 ATM2 31.000000
40143 ATM1 18.000000
40143 ATM2 3.000000
40144 ATM1 99.000000
40144 ATM2 85.000000
40145 ATM1 94.000000
40145 ATM2 53.000000
40146 ATM1 136.000000
40146 ATM2 46.000000
40147 ATM1 6.000000
40147 ATM2 2.000000
40148 ATM1 140.000000
40148 ATM2 113.000000
40149 ATM1 73.000000
40149 ATM2 22.000000
40150 ATM1 9.000000
40150 ATM2 5.000000
40151 ATM1 140.000000
40151 ATM2 112.000000
40152 ATM1 103.000000
40152 ATM2 59.000000
40153 ATM1 110.000000
40153 ATM2 72.000000
40154 ATM1 90.000000
40154 ATM2 77.000000
40155 ATM1 135.000000
40155 ATM2 85.000000
40156 ATM1 67.000000
40156 ATM2 27.000000
40157 ATM1 12.000000
40157 ATM2 1.000000
40158 ATM1 109.000000
40158 ATM2 91.000000
40159 ATM1 84.000000
40159 ATM2 36.000000
40160 ATM1 92.000000
40160 ATM2 46.000000
40161 ATM1 84.000000
40161 ATM2 100.000000
40162 ATM1 118.000000
40162 ATM2 73.000000
40163 ATM1 68.000000
40163 ATM2 22.000000
40164 ATM1 14.000000
40164 ATM2 9.000000
40165 ATM1 90.000000
40165 ATM2 117.000000
40166 ATM1 92.000000
40166 ATM2 44.000000
40167 ATM1 93.000000
40167 ATM2 44.000000
40168 ATM1 85.000000
40168 ATM2 78.000000
40169 ATM1 93.000000
40169 ATM2 89.000000
40170 ATM1 70.000000
40170 ATM2 33.000000
40171 ATM1 13.000000
40171 ATM2 5.000000
40172 ATM1 90.000000
40172 ATM2 102.000000
40173 ATM1 91.000000
40173 ATM2 68.000000
40174 ATM1 102.000000
40174 ATM2 64.000000
40175 ATM1 97.000000
40175 ATM2 81.000000
40176 ATM1 42.000000
40176 ATM2 9.000000
40177 ATM1 2.000000
40177 ATM2 2.000000
40178 ATM1 14.000000
40178 ATM2 2.000000
40179 ATM1 132.000000
40179 ATM2 117.000000
40180 ATM1 108.000000
40180 ATM2 56.000000
40181 ATM1 120.000000
40181 ATM2 55.000000
40182 ATM1 120.000000
40182 ATM2 112.000000
40183 ATM1 90.000000
40183 ATM2 100.000000
40184 ATM1 48.000000
40184 ATM2 17.000000
40185 ATM1 15.000000
40185 ATM2 7.000000
40186 ATM1 86.000000
40186 ATM2 49.000000
40187 ATM1 109.000000
40187 ATM2 96.000000
40188 ATM1 115.000000
40188 ATM2 47.000000
40189 ATM1 123.000000
40189 ATM2 107.000000
40190 ATM1 123.000000
40190 ATM2 93.000000
40191 ATM1 60.000000
40191 ATM2 27.000000
40192 ATM1 22.000000
40192 ATM2 9.000000
40193 ATM1 81.000000
40193 ATM2 78.000000
40194 ATM1 98.000000
40194 ATM2 47.000000
40195 ATM1 94.000000
40195 ATM2 31.000000
40196 ATM1 76.000000
40196 ATM2 91.000000
40197 ATM1 96.000000
40197 ATM2 77.000000
40198 ATM1 72.000000
40198 ATM2 22.000000
40199 ATM1 12.000000
40199 ATM2 1.000000
40200 ATM1 91.000000
40200 ATM2 125.000000
40201 ATM1 74.000000
40201 ATM2 53.000000
40202 ATM1 104.000000
40202 ATM2 37.000000
40203 ATM1 74.000000
40203 ATM2 69.000000
40204 ATM1 91.000000
40204 ATM2 69.000000
40205 ATM1 66.000000
40205 ATM2 16.000000
40206 ATM1 28.000000
40206 ATM2 2.000000
40207 ATM1 152.000000
40207 ATM2 95.000000
40208 ATM1 97.000000
40208 ATM2 45.000000
40209 ATM1 100.000000
40209 ATM2 61.000000
40210 ATM1 85.000000
40210 ATM2 71.000000
40211 ATM1 123.000000
40211 ATM2 91.000000
40212 ATM1 46.000000
40212 ATM2 28.000000
40213 ATM1 38.000000
40213 ATM2 9.000000
40214 ATM1 138.000000
40214 ATM2 97.000000
40215 ATM1 74.000000
40215 ATM2 60.000000
40216 ATM1 85.000000
40216 ATM2 27.000000
40217 ATM1 78.000000
40217 ATM2 74.000000
40218 ATM1 123.000000
40218 ATM2 45.000000
40219 ATM1 50.000000
40219 ATM2 26.000000
40220 ATM1 28.000000
40220 ATM2 2.000000
40221 ATM1 105.000000
40221 ATM2 73.000000
40222 ATM1 109.000000
40222 ATM2 48.000000
40223 ATM1 26.000000
40223 ATM2 9.000000
40224 ATM1 54.000000
40224 ATM2 25.000000
40225 ATM1 105.000000
40225 ATM2 58.000000
40226 ATM1 179.000000
40226 ATM2 110.000000
40227 ATM1 125.000000
40227 ATM2 94.000000
40228 ATM1 84.000000
40228 ATM2 25.000000
40229 ATM1 99.000000
40229 ATM2 101.000000
40230 ATM1 110.000000
40230 ATM2 77.000000
40231 ATM1 80.000000
40231 ATM2 6.000000
40232 ATM1 1.000000
40232 ATM2 3.000000
40233 ATM1 111.000000
40233 ATM2 99.000000
40234 ATM1 115.000000
40234 ATM2 86.000000
40235 ATM1 108.000000
40235 ATM2 20.000000
40236 ATM1 100.000000
40236 ATM2 72.000000
40237 ATM1 152.000000
40237 ATM2 81.000000
40238 ATM1 90.000000
40238 ATM2 16.000000
40239 ATM1 4.000000
40239 ATM2 2.000000
40240 ATM1 128.000000
40240 ATM2 110.000000
40241 ATM1 87.000000
40241 ATM2 75.000000
40242 ATM1 84.000000
40242 ATM2 35.000000
40243 ATM1 69.000000
40243 ATM2 102.000000
40244 ATM1 112.000000
40244 ATM2 100.000000
40245 ATM1 62.000000
40245 ATM2 9.000000
40246 ATM1 4.000000
40246 ATM2 2.000000
40247 ATM1 94.000000
40247 ATM2 100.000000
40248 ATM1 102.000000
40248 ATM2 85.000000
40249 ATM1 98.000000
40249 ATM2 33.000000
40250 ATM1 88.000000
40250 ATM2 24.000000
40251 ATM1 123.000000
40251 ATM2 111.000000
40252 ATM1 55.000000
40252 ATM2 5.000000
40253 ATM1 4.000000
40253 ATM2 1.000000
40254 ATM1 92.000000
40254 ATM2 106.000000
40255 ATM1 88.000000
40255 ATM2 102.000000
40256 ATM1 92.000000
40256 ATM2 25.000000
40257 ATM1 92.000000
40257 ATM2 64.000000
40258 ATM1 117.000000
40258 ATM2 78.000000
40259 ATM1 73.000000
40259 ATM2 5.000000
40260 ATM1 3.000000
40260 ATM2 1.000000
40261 ATM1 85.000000
40261 ATM2 83.000000
40262 ATM1 88.000000
40262 ATM2 78.000000
40263 ATM1 76.000000
40263 ATM2 66.000000
40264 ATM1 93.000000
40264 ATM2 15.000000
40265 ATM1 116.000000
40265 ATM2 64.000000
40266 ATM1 68.000000
40266 ATM2 3.000000
40267 ATM1 19.000000
40267 ATM2 0.000000
40268 ATM1 127.000000
40268 ATM2 102.000000
40269 ATM1 93.000000
40269 ATM2 99.000000
40270 ATM1 97.000000
40270 ATM2 41.000000
40271 ATM1 102.000000
40271 ATM2 79.000000
40272 ATM1 109.000000
40272 ATM2 71.000000
40273 ATM1 68.000000
40273 ATM2 9.000000
40274 ATM1 4.000000
40274 ATM2 2.000000
40275 ATM1 105.000000
40275 ATM2 103.000000
40276 ATM1 79.000000
40276 ATM2 67.000000
40277 ATM1 90.000000
40277 ATM2 85.000000
40278 ATM1 87.000000
40278 ATM2 78.000000
40279 ATM1 92.000000
40279 ATM2 67.000000
40280 ATM1 63.000000
40280 ATM2 12.000000
40281 ATM1 3.000000
40281 ATM2 1.000000
40282 ATM1 103.000000
40282 ATM2 97.000000
40283 ATM1 80.000000
40283 ATM2 106.000000
40284 ATM1 80.000000
40284 ATM2 74.000000
40285 ATM1 84.000000
40285 ATM2 86.000000
40286 ATM1 81.000000
40286 ATM2 55.000000
40287 ATM1 88.000000
40287 ATM2 13.000000
40288 ATM1 3.000000
40288 ATM2 1.000000
40289 ATM1 100.000000
40289 ATM2 100.000000
40290 ATM1 69.000000
40290 ATM2 103.000000
40291 ATM1 85.000000
40291 ATM2 44.000000
40292 ATM1 85.000000
40292 ATM2 61.000000
40293 ATM1 109.000000
40293 ATM2 89.000000
40294 ATM1 74.000000
40294 ATM2 11.000000
40295 ATM1 4.000000
40295 ATM2 2.000000
40296 ATM1 96.000000
40296 ATM2 107.000000
40297 ATM1 82.000000
40297 ATM2 89.000000
40298 ATM1 85.000000
40298 ATM2 90.000000
40299 NA NA
40300 NA NA
40301 NA NA
40302 NA NA
40303 NA NA
40304 NA NA
40305 NA NA
40306 NA NA
40307 NA NA
40308 NA NA
40309 NA NA
40310 NA NA
40311 NA NA
40312 NA NA
39934 ATM3 0.000000
39935 ATM3 0.000000
39936 ATM3 0.000000
39937 ATM3 0.000000
39938 ATM3 0.000000
39939 ATM3 0.000000
39940 ATM3 0.000000
39941 ATM3 0.000000
39942 ATM3 0.000000
39943 ATM3 0.000000
39944 ATM3 0.000000
39945 ATM3 0.000000
39946 ATM3 0.000000
39947 ATM3 0.000000
39948 ATM3 0.000000
39949 ATM3 0.000000
39950 ATM3 0.000000
39951 ATM3 0.000000
39952 ATM3 0.000000
39953 ATM3 0.000000
39954 ATM3 0.000000
39955 ATM3 0.000000
39956 ATM3 0.000000
39957 ATM3 0.000000
39958 ATM3 0.000000
39959 ATM3 0.000000
39960 ATM3 0.000000
39961 ATM3 0.000000
39962 ATM3 0.000000
39963 ATM3 0.000000
39964 ATM3 0.000000
39965 ATM3 0.000000
39966 ATM3 0.000000
39967 ATM3 0.000000
39968 ATM3 0.000000
39969 ATM3 0.000000
39970 ATM3 0.000000
39971 ATM3 0.000000
39972 ATM3 0.000000
39973 ATM3 0.000000
39974 ATM3 0.000000
39975 ATM3 0.000000
39976 ATM3 0.000000
39977 ATM3 0.000000
39978 ATM3 0.000000
39979 ATM3 0.000000
39980 ATM3 0.000000
39981 ATM3 0.000000
39982 ATM3 0.000000
39983 ATM3 0.000000
39984 ATM3 0.000000
39985 ATM3 0.000000
39986 ATM3 0.000000
39987 ATM3 0.000000
39988 ATM3 0.000000
39989 ATM3 0.000000
39990 ATM3 0.000000
39991 ATM3 0.000000
39992 ATM3 0.000000
39993 ATM3 0.000000
39994 ATM3 0.000000
39995 ATM3 0.000000
39996 ATM3 0.000000
39997 ATM3 0.000000
39998 ATM3 0.000000
39999 ATM3 0.000000
40000 ATM3 0.000000
40001 ATM3 0.000000
40002 ATM3 0.000000
40003 ATM3 0.000000
40004 ATM3 0.000000
40005 ATM3 0.000000
40006 ATM3 0.000000
40007 ATM3 0.000000
40008 ATM3 0.000000
40009 ATM3 0.000000
40010 ATM3 0.000000
40011 ATM3 0.000000
40012 ATM3 0.000000
40013 ATM3 0.000000
40014 ATM3 0.000000
40015 ATM3 0.000000
40016 ATM3 0.000000
40017 ATM3 0.000000
40018 ATM3 0.000000
40019 ATM3 0.000000
40020 ATM3 0.000000
40021 ATM3 0.000000
40022 ATM3 0.000000
40023 ATM3 0.000000
40024 ATM3 0.000000
40025 ATM3 0.000000
40026 ATM3 0.000000
40027 ATM3 0.000000
40028 ATM3 0.000000
40029 ATM3 0.000000
40030 ATM3 0.000000
40031 ATM3 0.000000
40032 ATM3 0.000000
40033 ATM3 0.000000
40034 ATM3 0.000000
40035 ATM3 0.000000
40036 ATM3 0.000000
40037 ATM3 0.000000
40038 ATM3 0.000000
40039 ATM3 0.000000
40040 ATM3 0.000000
40041 ATM3 0.000000
40042 ATM3 0.000000
40043 ATM3 0.000000
40044 ATM3 0.000000
40045 ATM3 0.000000
40046 ATM3 0.000000
40047 ATM3 0.000000
40048 ATM3 0.000000
40049 ATM3 0.000000
40050 ATM3 0.000000
40051 ATM3 0.000000
40052 ATM3 0.000000
40053 ATM3 0.000000
40054 ATM3 0.000000
40055 ATM3 0.000000
40056 ATM3 0.000000
40057 ATM3 0.000000
40058 ATM3 0.000000
40059 ATM3 0.000000
40060 ATM3 0.000000
40061 ATM3 0.000000
40062 ATM3 0.000000
40063 ATM3 0.000000
40064 ATM3 0.000000
40065 ATM3 0.000000
40066 ATM3 0.000000
40067 ATM3 0.000000
40068 ATM3 0.000000
40069 ATM3 0.000000
40070 ATM3 0.000000
40071 ATM3 0.000000
40072 ATM3 0.000000
40073 ATM3 0.000000
40074 ATM3 0.000000
40075 ATM3 0.000000
40076 ATM3 0.000000
40077 ATM3 0.000000
40078 ATM3 0.000000
40079 ATM3 0.000000
40080 ATM3 0.000000
40081 ATM3 0.000000
40082 ATM3 0.000000
40083 ATM3 0.000000
40084 ATM3 0.000000
40085 ATM3 0.000000
40086 ATM3 0.000000
40087 ATM3 0.000000
40088 ATM3 0.000000
40089 ATM3 0.000000
40090 ATM3 0.000000
40091 ATM3 0.000000
40092 ATM3 0.000000
40093 ATM3 0.000000
40094 ATM3 0.000000
40095 ATM3 0.000000
40096 ATM3 0.000000
40097 ATM3 0.000000
40098 ATM3 0.000000
40099 ATM3 0.000000
40100 ATM3 0.000000
40101 ATM3 0.000000
40102 ATM3 0.000000
40103 ATM3 0.000000
40104 ATM3 0.000000
40105 ATM3 0.000000
40106 ATM3 0.000000
40107 ATM3 0.000000
40108 ATM3 0.000000
40109 ATM3 0.000000
40110 ATM3 0.000000
40111 ATM3 0.000000
40112 ATM3 0.000000
40113 ATM3 0.000000
40114 ATM3 0.000000
40115 ATM3 0.000000
40116 ATM3 0.000000
40117 ATM3 0.000000
40118 ATM3 0.000000
40119 ATM3 0.000000
40120 ATM3 0.000000
40121 ATM3 0.000000
40122 ATM3 0.000000
40123 ATM3 0.000000
40124 ATM3 0.000000
40125 ATM3 0.000000
40126 ATM3 0.000000
40127 ATM3 0.000000
40128 ATM3 0.000000
40129 ATM3 0.000000
40130 ATM3 0.000000
40131 ATM3 0.000000
40132 ATM3 0.000000
40133 ATM3 0.000000
40134 ATM3 0.000000
40135 ATM3 0.000000
40136 ATM3 0.000000
40137 ATM3 0.000000
40138 ATM3 0.000000
40139 ATM3 0.000000
40140 ATM3 0.000000
40141 ATM3 0.000000
40142 ATM3 0.000000
40143 ATM3 0.000000
40144 ATM3 0.000000
40145 ATM3 0.000000
40146 ATM3 0.000000
40147 ATM3 0.000000
40148 ATM3 0.000000
40149 ATM3 0.000000
40150 ATM3 0.000000
40151 ATM3 0.000000
40152 ATM3 0.000000
40153 ATM3 0.000000
40154 ATM3 0.000000
40155 ATM3 0.000000
40156 ATM3 0.000000
40157 ATM3 0.000000
40158 ATM3 0.000000
40159 ATM3 0.000000
40160 ATM3 0.000000
40161 ATM3 0.000000
40162 ATM3 0.000000
40163 ATM3 0.000000
40164 ATM3 0.000000
40165 ATM3 0.000000
40166 ATM3 0.000000
40167 ATM3 0.000000
40168 ATM3 0.000000
40169 ATM3 0.000000
40170 ATM3 0.000000
40171 ATM3 0.000000
40172 ATM3 0.000000
40173 ATM3 0.000000
40174 ATM3 0.000000
40175 ATM3 0.000000
40176 ATM3 0.000000
40177 ATM3 0.000000
40178 ATM3 0.000000
40179 ATM3 0.000000
40180 ATM3 0.000000
40181 ATM3 0.000000
40182 ATM3 0.000000
40183 ATM3 0.000000
40184 ATM3 0.000000
40185 ATM3 0.000000
40186 ATM3 0.000000
40187 ATM3 0.000000
40188 ATM3 0.000000
40189 ATM3 0.000000
40190 ATM3 0.000000
40191 ATM3 0.000000
40192 ATM3 0.000000
40193 ATM3 0.000000
40194 ATM3 0.000000
40195 ATM3 0.000000
40196 ATM3 0.000000
40197 ATM3 0.000000
40198 ATM3 0.000000
40199 ATM3 0.000000
40200 ATM3 0.000000
40201 ATM3 0.000000
40202 ATM3 0.000000
40203 ATM3 0.000000
40204 ATM3 0.000000
40205 ATM3 0.000000
40206 ATM3 0.000000
40207 ATM3 0.000000
40208 ATM3 0.000000
40209 ATM3 0.000000
40210 ATM3 0.000000
40211 ATM3 0.000000
40212 ATM3 0.000000
40213 ATM3 0.000000
40214 ATM3 0.000000
40215 ATM3 0.000000
40216 ATM3 0.000000
40217 ATM3 0.000000
40218 ATM3 0.000000
40219 ATM3 0.000000
40220 ATM3 0.000000
40221 ATM3 0.000000
40222 ATM3 0.000000
40223 ATM3 0.000000
40224 ATM3 0.000000
40225 ATM3 0.000000
40226 ATM3 0.000000
40227 ATM3 0.000000
40228 ATM3 0.000000
40229 ATM3 0.000000
40230 ATM3 0.000000
40231 ATM3 0.000000
40232 ATM3 0.000000
40233 ATM3 0.000000
40234 ATM3 0.000000
40235 ATM3 0.000000
40236 ATM3 0.000000
40237 ATM3 0.000000
40238 ATM3 0.000000
40239 ATM3 0.000000
40240 ATM3 0.000000
40241 ATM3 0.000000
40242 ATM3 0.000000
40243 ATM3 0.000000
40244 ATM3 0.000000
40245 ATM3 0.000000
40246 ATM3 0.000000
40247 ATM3 0.000000
40248 ATM3 0.000000
40249 ATM3 0.000000
40250 ATM3 0.000000
40251 ATM3 0.000000
40252 ATM3 0.000000
40253 ATM3 0.000000
40254 ATM3 0.000000
40255 ATM3 0.000000
40256 ATM3 0.000000
40257 ATM3 0.000000
40258 ATM3 0.000000
40259 ATM3 0.000000
40260 ATM3 0.000000
40261 ATM3 0.000000
40262 ATM3 0.000000
40263 ATM3 0.000000
40264 ATM3 0.000000
40265 ATM3 0.000000
40266 ATM3 0.000000
40267 ATM3 0.000000
40268 ATM3 0.000000
40269 ATM3 0.000000
40270 ATM3 0.000000
40271 ATM3 0.000000
40272 ATM3 0.000000
40273 ATM3 0.000000
40274 ATM3 0.000000
40275 ATM3 0.000000
40276 ATM3 0.000000
40277 ATM3 0.000000
40278 ATM3 0.000000
40279 ATM3 0.000000
40280 ATM3 0.000000
40281 ATM3 0.000000
40282 ATM3 0.000000
40283 ATM3 0.000000
40284 ATM3 0.000000
40285 ATM3 0.000000
40286 ATM3 0.000000
40287 ATM3 0.000000
40288 ATM3 0.000000
40289 ATM3 0.000000
40290 ATM3 0.000000
40291 ATM3 0.000000
40292 ATM3 0.000000
40293 ATM3 0.000000
40294 ATM3 0.000000
40295 ATM3 0.000000
40296 ATM3 96.000000
40297 ATM3 82.000000
40298 ATM3 85.000000
39934 ATM4 776.993423
39935 ATM4 524.417959
39936 ATM4 792.811362
39937 ATM4 908.238457
39938 ATM4 52.832103
39939 ATM4 52.208454
39940 ATM4 55.473609
39941 ATM4 558.503251
39942 ATM4 904.341359
39943 ATM4 879.493588
39944 ATM4 274.022340
39945 ATM4 396.108347
39946 ATM4 274.547188
39947 ATM4 16.321159
39948 ATM4 852.307037
39949 ATM4 379.561703
39950 ATM4 31.284953
39951 ATM4 491.850577
39952 ATM4 83.705480
39953 ATM4 128.653781
39954 ATM4 14.357590
39955 ATM4 815.358321
39956 ATM4 758.218587
39957 ATM4 601.421108
39958 ATM4 906.796873
39959 ATM4 502.907894
39960 ATM4 88.273138
39961 ATM4 35.438336
39962 ATM4 338.459425
39963 ATM4 4.547996
39964 ATM4 122.667745
39965 ATM4 150.234945
39966 ATM4 721.155281
39967 ATM4 443.012568
39968 ATM4 17.151720
39969 ATM4 14.887695
39970 ATM4 740.543155
39971 ATM4 1058.083384
39972 ATM4 576.183701
39973 ATM4 1484.126887
39974 ATM4 193.787327
39975 ATM4 27.054779
39976 ATM4 1190.898921
39977 ATM4 746.495617
39978 ATM4 1220.767882
39979 ATM4 1021.503529
39980 ATM4 372.623610
39981 ATM4 321.272935
39982 ATM4 92.476655
39983 ATM4 116.644133
39984 ATM4 202.413503
39985 ATM4 524.434514
39986 ATM4 80.644354
39987 ATM4 64.273589
39988 ATM4 90.636571
39989 ATM4 48.046061
39990 ATM4 1026.032172
39991 ATM4 423.770971
39992 ATM4 60.626453
39993 ATM4 540.281404
39994 ATM4 173.705568
39995 ATM4 393.239982
39996 ATM4 41.948621
39997 ATM4 310.006527
39998 ATM4 110.051915
39999 ATM4 682.182367
40000 ATM4 54.667904
40001 ATM4 213.989896
40002 ATM4 738.126360
40003 ATM4 16.206081
40004 ATM4 16.223205
40005 ATM4 1050.206528
40006 ATM4 438.477361
40007 ATM4 546.691592
40008 ATM4 858.236420
40009 ATM4 446.733514
40010 ATM4 94.672035
40011 ATM4 644.390623
40012 ATM4 568.815899
40013 ATM4 704.507042
40014 ATM4 571.645285
40015 ATM4 479.875501
40016 ATM4 418.864062
40017 ATM4 27.569130
40018 ATM4 834.834363
40019 ATM4 910.834075
40020 ATM4 468.106927
40021 ATM4 768.121660
40022 ATM4 1089.167762
40023 ATM4 266.898417
40024 ATM4 7.110665
40025 ATM4 704.192012
40026 ATM4 495.350606
40027 ATM4 142.638951
40028 ATM4 428.560174
40029 ATM4 894.969364
40030 ATM4 610.290623
40031 ATM4 70.613731
40032 ATM4 593.570261
40033 ATM4 341.601807
40034 ATM4 735.035708
40035 ATM4 462.773028
40036 ATM4 1156.496108
40037 ATM4 454.091939
40038 ATM4 283.337265
40039 ATM4 571.508226
40040 ATM4 772.179652
40041 ATM4 260.125517
40042 ATM4 357.515267
40043 ATM4 16.157597
40044 ATM4 334.312503
40045 ATM4 25.696404
40046 ATM4 254.887098
40047 ATM4 357.003129
40048 ATM4 1245.594280
40049 ATM4 917.371157
40050 ATM4 592.180082
40051 ATM4 412.474975
40052 ATM4 82.911171
40053 ATM4 996.010226
40054 ATM4 103.910375
40055 ATM4 1116.915044
40056 ATM4 816.847015
40057 ATM4 914.493389
40058 ATM4 648.209198
40059 ATM4 140.515569
40060 ATM4 1495.154775
40061 ATM4 1301.396344
40062 ATM4 779.717193
40063 ATM4 744.262278
40064 ATM4 200.391803
40065 ATM4 854.179084
40066 ATM4 50.719369
40067 ATM4 7.404799
40068 ATM4 1061.192780
40069 ATM4 715.021459
40070 ATM4 35.444668
40071 ATM4 491.884510
40072 ATM4 343.496923
40073 ATM4 20.714186
40074 ATM4 505.717125
40075 ATM4 97.325113
40076 ATM4 473.570486
40077 ATM4 899.773474
40078 ATM4 1712.074986
40079 ATM4 281.388412
40080 ATM4 26.337969
40081 ATM4 328.644988
40082 ATM4 761.371143
40083 ATM4 629.319901
40084 ATM4 235.753411
40085 ATM4 1195.223181
40086 ATM4 782.407474
40087 ATM4 108.331743
40088 ATM4 846.556566
40089 ATM4 576.169344
40090 ATM4 441.883927
40091 ATM4 319.404846
40092 ATM4 154.163484
40093 ATM4 543.239375
40094 ATM4 124.334415
40095 ATM4 449.074910
40096 ATM4 614.654064
40097 ATM4 219.237855
40098 ATM4 945.736417
40099 ATM4 9.691243
40100 ATM4 696.245755
40101 ATM4 8.084283
40102 ATM4 845.463546
40103 ATM4 212.902683
40104 ATM4 9.155135
40105 ATM4 46.831421
40106 ATM4 30.372376
40107 ATM4 400.484974
40108 ATM4 61.338241
40109 ATM4 428.046952
40110 ATM4 1.563260
40111 ATM4 9.018826
40112 ATM4 50.304215
40113 ATM4 313.414359
40114 ATM4 626.687136
40115 ATM4 5.882076
40116 ATM4 77.803024
40117 ATM4 337.894871
40118 ATM4 211.812232
40119 ATM4 690.122884
40120 ATM4 596.381877
40121 ATM4 65.278483
40122 ATM4 77.444454
40123 ATM4 43.721410
40124 ATM4 964.175255
40125 ATM4 834.959599
40126 ATM4 636.962626
40127 ATM4 927.078614
40128 ATM4 75.873055
40129 ATM4 43.690550
40130 ATM4 621.292501
40131 ATM4 312.582041
40132 ATM4 825.635396
40133 ATM4 413.620440
40134 ATM4 194.047355
40135 ATM4 345.695900
40136 ATM4 32.428111
40137 ATM4 655.315200
40138 ATM4 638.136824
40139 ATM4 15.306757
40140 ATM4 299.663010
40141 ATM4 626.662127
40142 ATM4 601.141158
40143 ATM4 64.131249
40144 ATM4 562.763323
40145 ATM4 317.253589
40146 ATM4 1167.264437
40147 ATM4 47.365125
40148 ATM4 993.777470
40149 ATM4 687.196935
40150 ATM4 71.147567
40151 ATM4 1046.971281
40152 ATM4 1009.050230
40153 ATM4 288.649516
40154 ATM4 591.508331
40155 ATM4 230.605915
40156 ATM4 578.431798
40157 ATM4 70.210639
40158 ATM4 580.796406
40159 ATM4 149.150820
40160 ATM4 403.861263
40161 ATM4 124.958721
40162 ATM4 230.148897
40163 ATM4 19.008453
40164 ATM4 128.638640
40165 ATM4 327.965321
40166 ATM4 532.245673
40167 ATM4 877.397771
40168 ATM4 662.112869
40169 ATM4 300.629002
40170 ATM4 667.628261
40171 ATM4 14.573322
40172 ATM4 660.355296
40173 ATM4 510.988823
40174 ATM4 164.462091
40175 ATM4 748.172762
40176 ATM4 174.241405
40177 ATM4 20.192725
40178 ATM4 100.686543
40179 ATM4 985.956884
40180 ATM4 597.058060
40181 ATM4 468.457250
40182 ATM4 856.581158
40183 ATM4 684.774261
40184 ATM4 381.562058
40185 ATM4 152.092362
40186 ATM4 271.934402
40187 ATM4 135.499645
40188 ATM4 1105.018595
40189 ATM4 291.765790
40190 ATM4 1141.426655
40191 ATM4 140.502720
40192 ATM4 8.781528
40193 ATM4 85.260115
40194 ATM4 66.655933
40195 ATM4 709.938568
40196 ATM4 567.549590
40197 ATM4 486.824572
40198 ATM4 17.481238
40199 ATM4 49.208112
40200 ATM4 357.233561
40201 ATM4 179.888632
40202 ATM4 728.992926
40203 ATM4 261.121740
40204 ATM4 628.863047
40205 ATM4 277.044815
40206 ATM4 41.475487
40207 ATM4 1574.779330
40208 ATM4 669.707653
40209 ATM4 979.675944
40210 ATM4 426.406008
40211 ATM4 153.242692
40212 ATM4 274.949921
40213 ATM4 136.276358
40214 ATM4 454.416950
40215 ATM4 458.304270
40216 ATM4 112.030628
40217 ATM4 417.912276
40218 ATM4 10919.761638
40219 ATM4 42.438078
40220 ATM4 280.043427
40221 ATM4 412.318881
40222 ATM4 852.837416
40223 ATM4 179.702084
40224 ATM4 226.047368
40225 ATM4 989.195610
40226 ATM4 824.916781
40227 ATM4 966.610561
40228 ATM4 734.220167
40229 ATM4 121.332622
40230 ATM4 287.931829
40231 ATM4 502.748346
40232 ATM4 9.752776
40233 ATM4 258.138869
40234 ATM4 1170.288228
40235 ATM4 193.079004
40236 ATM4 402.770395
40237 ATM4 1275.968167
40238 ATM4 819.881512
40239 ATM4 26.392615
40240 ATM4 893.884507
40241 ATM4 360.641557
40242 ATM4 859.899389
40243 ATM4 381.473089
40244 ATM4 9.711205
40245 ATM4 601.016953
40246 ATM4 32.454958
40247 ATM4 553.395793
40248 ATM4 572.374702
40249 ATM4 218.831558
40250 ATM4 828.326828
40251 ATM4 630.762176
40252 ATM4 339.418304
40253 ATM4 31.502210
40254 ATM4 486.679944
40255 ATM4 335.363138
40256 ATM4 340.008595
40257 ATM4 291.282267
40258 ATM4 46.029410
40259 ATM4 201.403616
40260 ATM4 9.558300
40261 ATM4 877.966103
40262 ATM4 778.110791
40263 ATM4 707.613494
40264 ATM4 351.457835
40265 ATM4 711.049107
40266 ATM4 502.518192
40267 ATM4 23.337569
40268 ATM4 492.909936
40269 ATM4 405.312584
40270 ATM4 818.394331
40271 ATM4 152.270800
40272 ATM4 281.113528
40273 ATM4 470.425772
40274 ATM4 2.507317
40275 ATM4 414.741223
40276 ATM4 719.426783
40277 ATM4 811.716825
40278 ATM4 889.584209
40279 ATM4 616.127547
40280 ATM4 61.144354
40281 ATM4 27.325671
40282 ATM4 767.778153
40283 ATM4 326.084093
40284 ATM4 825.197816
40285 ATM4 383.815025
40286 ATM4 195.483454
40287 ATM4 711.164653
40288 ATM4 29.869011
40289 ATM4 556.792330
40290 ATM4 386.175335
40291 ATM4 165.294181
40292 ATM4 5.451815
40293 ATM4 542.280602
40294 ATM4 403.839336
40295 ATM4 13.697331
40296 ATM4 348.201061
40297 ATM4 44.245345
40298 ATM4 482.287107
#summary(atmdata)

Missing Value Analysis

## Counts of missing data per feature
train_na_df <- data.frame(apply(atmdata, 2, function(x) length(which(is.na(x)))))
train_na_df1 <- data.frame(apply(atmdata, 2,function(x) {sum(is.na(x)) / length(x) * 100}))

train_na_df <- cbind(Feature = rownames(train_na_df), train_na_df, train_na_df1)
colnames(train_na_df) <- c('Feature Name','No. of NA Recocrds','Percentage of NA Records')
rownames(train_na_df) <- NULL


train_na_df%>% filter(`No. of NA Recocrds` != 0) %>% arrange(desc(`No. of NA Recocrds`)) %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="150px")
Feature Name No. of NA Recocrds Percentage of NA Records
Cash 19 1.2890095
ATM 14 0.9497965

Data Pre-Processing

Firstly, removing records with missing ‘ATM’ values -

atmdata <- atmdata %>% dplyr::filter(ATM != '')

Converting the ‘DATE’ column from Excel numeric format to proper date format -

atmdata$DATE_Formatted <- as.Date(atmdata$DATE, origin = "1899-12-30")
atmdataDF <- atmdata %>% select(DATE_Formatted,ATM,Cash) 
colnames(atmdataDF) <- c("DATE","ATM","Cash")

Pivoting the dataframe by ATM:

atmdataDF <- atmdataDF %>% pivot_wider(names_from = ATM, values_from = Cash)
atmdataDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DATE ATM1 ATM2 ATM3 ATM4
2009-05-01 96 107 0 776.993423
2009-05-02 82 89 0 524.417959
2009-05-03 85 90 0 792.811362
2009-05-04 90 55 0 908.238457
2009-05-05 99 79 0 52.832103
2009-05-06 88 19 0 52.208454
2009-05-07 8 2 0 55.473609
2009-05-08 104 103 0 558.503251
2009-05-09 87 107 0 904.341359
2009-05-10 93 118 0 879.493588
2009-05-11 86 75 0 274.022340
2009-05-12 111 111 0 396.108347
2009-05-13 75 25 0 274.547188
2009-05-14 6 16 0 16.321159
2009-05-15 102 137 0 852.307037
2009-05-16 73 95 0 379.561703
2009-05-17 92 103 0 31.284953
2009-05-18 82 80 0 491.850577
2009-05-19 86 118 0 83.705480
2009-05-20 73 30 0 128.653781
2009-05-21 20 7 0 14.357590
2009-05-22 100 118 0 815.358321
2009-05-23 93 104 0 758.218587
2009-05-24 90 59 0 601.421108
2009-05-25 94 40 0 906.796873
2009-05-26 98 106 0 502.907894
2009-05-27 73 18 0 88.273138
2009-05-28 10 9 0 35.438336
2009-05-29 97 136 0 338.459425
2009-05-30 102 118 0 4.547996
2009-05-31 85 64 0 122.667745
2009-06-01 85 77 0 150.234945
2009-06-02 108 133 0 721.155281
2009-06-03 94 45 0 443.012568
2009-06-04 14 14 0 17.151720
2009-06-05 3 20 0 14.887695
2009-06-06 96 147 0 740.543155
2009-06-07 109 105 0 1058.083384
2009-06-08 96 132 0 576.183701
2009-06-09 145 93 0 1484.126887
2009-06-10 81 26 0 193.787327
2009-06-11 16 7 0 27.054779
2009-06-12 142 112 0 1190.898921
2009-06-13 NA 91 0 746.495617
2009-06-14 120 72 0 1220.767882
2009-06-15 106 66 0 1021.503529
2009-06-16 NA 82 0 372.623610
2009-06-17 108 24 0 321.272935
2009-06-18 21 NA 0 92.476655
2009-06-19 140 134 0 116.644133
2009-06-20 110 95 0 202.413503
2009-06-21 115 82 0 524.434514
2009-06-22 NA 90 0 80.644354
2009-06-23 108 99 0 64.273589
2009-06-24 66 NA 0 90.636571
2009-06-25 13 3 0 48.046061
2009-06-26 99 117 0 1026.032172
2009-06-27 105 53 0 423.770971
2009-06-28 104 44 0 60.626453
2009-06-29 98 56 0 540.281404
2009-06-30 110 110 0 173.705568
2009-07-01 79 36 0 393.239982
2009-07-02 16 12 0 41.948621
2009-07-03 110 128 0 310.006527
2009-07-04 96 72 0 110.051915
2009-07-05 114 122 0 682.182367
2009-07-06 126 100 0 54.667904
2009-07-07 126 108 0 213.989896
2009-07-08 73 25 0 738.126360
2009-07-09 4 6 0 16.206081
2009-07-10 19 22 0 16.223205
2009-07-11 114 135 0 1050.206528
2009-07-12 98 69 0 438.477361
2009-07-13 97 52 0 546.691592
2009-07-14 114 81 0 858.236420
2009-07-15 78 27 0 446.733514
2009-07-16 19 4 0 94.672035
2009-07-17 102 147 0 644.390623
2009-07-18 94 102 0 568.815899
2009-07-19 108 83 0 704.507042
2009-07-20 91 55 0 571.645285
2009-07-21 86 74 0 479.875501
2009-07-22 78 22 0 418.864062
2009-07-23 16 4 0 27.569130
2009-07-24 114 104 0 834.834363
2009-07-25 115 81 0 910.834075
2009-07-26 108 61 0 468.106927
2009-07-27 102 70 0 768.121660
2009-07-28 129 126 0 1089.167762
2009-07-29 79 33 0 266.898417
2009-07-30 13 7 0 7.110665
2009-07-31 103 126 0 704.192012
2009-08-01 90 92 0 495.350606
2009-08-02 68 81 0 142.638951
2009-08-03 85 49 0 428.560174
2009-08-04 99 146 0 894.969364
2009-08-05 86 79 0 610.290623
2009-08-06 13 37 0 70.613731
2009-08-07 116 136 0 593.570261
2009-08-08 105 111 0 341.601807
2009-08-09 123 78 0 735.035708
2009-08-10 114 57 0 462.773028
2009-08-11 127 106 0 1156.496108
2009-08-12 111 38 0 454.091939
2009-08-13 34 15 0 283.337265
2009-08-14 151 119 0 571.508226
2009-08-15 110 110 0 772.179652
2009-08-16 115 68 0 260.125517
2009-08-17 112 60 0 357.515267
2009-08-18 132 92 0 16.157597
2009-08-19 94 22 0 334.312503
2009-08-20 24 11 0 25.696404
2009-08-21 122 121 0 254.887098
2009-08-22 104 89 0 357.003129
2009-08-23 128 62 0 1245.594280
2009-08-24 120 79 0 917.371157
2009-08-25 174 83 0 592.180082
2009-08-26 96 31 0 412.474975
2009-08-27 13 4 0 82.911171
2009-08-28 121 96 0 996.010226
2009-08-29 133 50 0 103.910375
2009-08-30 118 52 0 1116.915044
2009-08-31 91 56 0 816.847015
2009-09-01 120 104 0 914.493389
2009-09-02 88 27 0 648.209198
2009-09-03 19 13 0 140.515569
2009-09-04 150 107 0 1495.154775
2009-09-05 144 125 0 1301.396344
2009-09-06 121 103 0 779.717193
2009-09-07 105 42 0 744.262278
2009-09-08 133 90 0 200.391803
2009-09-09 109 29 0 854.179084
2009-09-10 18 8 0 50.719369
2009-09-11 1 2 0 7.404799
2009-09-12 105 84 0 1061.192780
2009-09-13 112 62 0 715.021459
2009-09-14 82 77 0 35.444668
2009-09-15 111 78 0 491.884510
2009-09-16 79 25 0 343.496923
2009-09-17 13 8 0 20.714186
2009-09-18 112 113 0 505.717125
2009-09-19 99 71 0 97.325113
2009-09-20 140 94 0 473.570486
2009-09-21 110 59 0 899.773474
2009-09-22 180 89 0 1712.074986
2009-09-23 73 18 0 281.388412
2009-09-24 7 6 0 26.337969
2009-09-25 106 115 0 328.644988
2009-09-26 103 81 0 761.371143
2009-09-27 93 61 0 629.319901
2009-09-28 96 71 0 235.753411
2009-09-29 117 69 0 1195.223181
2009-09-30 80 36 0 782.407474
2009-10-01 14 14 0 108.331743
2009-10-02 120 104 0 846.556566
2009-10-03 91 73 0 576.169344
2009-10-04 96 86 0 441.883927
2009-10-05 74 85 0 319.404846
2009-10-06 108 126 0 154.163484
2009-10-07 73 31 0 543.239375
2009-10-08 13 9 0 124.334415
2009-10-09 93 114 0 449.074910
2009-10-10 94 78 0 614.654064
2009-10-11 76 45 0 219.237855
2009-10-12 111 60 0 945.736417
2009-10-13 88 91 0 9.691243
2009-10-14 76 22 0 696.245755
2009-10-15 9 7 0 8.084283
2009-10-16 87 75 0 845.463546
2009-10-17 105 66 0 212.902683
2009-10-18 78 64 0 9.155135
2009-10-19 67 51 0 46.831421
2009-10-20 90 94 0 30.372376
2009-10-21 68 23 0 400.484974
2009-10-22 9 4 0 61.338241
2009-10-23 78 127 0 428.046952
2009-10-24 74 61 0 1.563260
2009-10-25 74 0 0 9.018826
2009-10-26 60 95 0 50.304215
2009-10-27 75 79 0 313.414359
2009-10-28 61 38 0 626.687136
2009-10-29 9 8 0 5.882076
2009-10-30 90 119 0 77.803024
2009-10-31 86 57 0 337.894871
2009-11-01 86 58 0 211.812232
2009-11-02 79 80 0 690.122884
2009-11-03 90 82 0 596.381877
2009-11-04 80 49 0 65.278483
2009-11-05 21 16 0 77.444454
2009-11-06 93 116 0 43.721410
2009-11-07 104 61 0 964.175255
2009-11-08 109 59 0 834.959599
2009-11-09 88 80 0 636.962626
2009-11-10 96 86 0 927.078614
2009-11-11 70 23 0 75.873055
2009-11-12 15 7 0 43.690550
2009-11-13 73 91 0 621.292501
2009-11-14 94 57 0 312.582041
2009-11-15 108 58 0 825.635396
2009-11-16 73 61 0 413.620440
2009-11-17 87 77 0 194.047355
2009-11-18 75 20 0 345.695900
2009-11-19 10 5 0 32.428111
2009-11-20 92 132 0 655.315200
2009-11-21 87 49 0 638.136824
2009-11-22 74 57 0 15.306757
2009-11-23 73 68 0 299.663010
2009-11-24 93 80 0 626.662127
2009-11-25 66 31 0 601.141158
2009-11-26 18 3 0 64.131249
2009-11-27 99 85 0 562.763323
2009-11-28 94 53 0 317.253589
2009-11-29 136 46 0 1167.264437
2009-11-30 6 2 0 47.365125
2009-12-01 140 113 0 993.777470
2009-12-02 73 22 0 687.196935
2009-12-03 9 5 0 71.147567
2009-12-04 140 112 0 1046.971281
2009-12-05 103 59 0 1009.050230
2009-12-06 110 72 0 288.649516
2009-12-07 90 77 0 591.508331
2009-12-08 135 85 0 230.605915
2009-12-09 67 27 0 578.431798
2009-12-10 12 1 0 70.210639
2009-12-11 109 91 0 580.796406
2009-12-12 84 36 0 149.150820
2009-12-13 92 46 0 403.861263
2009-12-14 84 100 0 124.958721
2009-12-15 118 73 0 230.148897
2009-12-16 68 22 0 19.008453
2009-12-17 14 9 0 128.638640
2009-12-18 90 117 0 327.965321
2009-12-19 92 44 0 532.245673
2009-12-20 93 44 0 877.397771
2009-12-21 85 78 0 662.112869
2009-12-22 93 89 0 300.629002
2009-12-23 70 33 0 667.628261
2009-12-24 13 5 0 14.573322
2009-12-25 90 102 0 660.355296
2009-12-26 91 68 0 510.988823
2009-12-27 102 64 0 164.462091
2009-12-28 97 81 0 748.172762
2009-12-29 42 9 0 174.241405
2009-12-30 2 2 0 20.192725
2009-12-31 14 2 0 100.686543
2010-01-01 132 117 0 985.956884
2010-01-02 108 56 0 597.058060
2010-01-03 120 55 0 468.457250
2010-01-04 120 112 0 856.581158
2010-01-05 90 100 0 684.774261
2010-01-06 48 17 0 381.562058
2010-01-07 15 7 0 152.092362
2010-01-08 86 49 0 271.934402
2010-01-09 109 96 0 135.499645
2010-01-10 115 47 0 1105.018595
2010-01-11 123 107 0 291.765790
2010-01-12 123 93 0 1141.426655
2010-01-13 60 27 0 140.502720
2010-01-14 22 9 0 8.781528
2010-01-15 81 78 0 85.260115
2010-01-16 98 47 0 66.655933
2010-01-17 94 31 0 709.938568
2010-01-18 76 91 0 567.549590
2010-01-19 96 77 0 486.824572
2010-01-20 72 22 0 17.481238
2010-01-21 12 1 0 49.208112
2010-01-22 91 125 0 357.233561
2010-01-23 74 53 0 179.888632
2010-01-24 104 37 0 728.992926
2010-01-25 74 69 0 261.121740
2010-01-26 91 69 0 628.863047
2010-01-27 66 16 0 277.044815
2010-01-28 28 2 0 41.475487
2010-01-29 152 95 0 1574.779330
2010-01-30 97 45 0 669.707653
2010-01-31 100 61 0 979.675944
2010-02-01 85 71 0 426.406008
2010-02-02 123 91 0 153.242692
2010-02-03 46 28 0 274.949921
2010-02-04 38 9 0 136.276358
2010-02-05 138 97 0 454.416950
2010-02-06 74 60 0 458.304270
2010-02-07 85 27 0 112.030628
2010-02-08 78 74 0 417.912276
2010-02-09 123 45 0 10919.761638
2010-02-10 50 26 0 42.438078
2010-02-11 28 2 0 280.043427
2010-02-12 105 73 0 412.318881
2010-02-13 109 48 0 852.837416
2010-02-14 26 9 0 179.702084
2010-02-15 54 25 0 226.047368
2010-02-16 105 58 0 989.195610
2010-02-17 179 110 0 824.916781
2010-02-18 125 94 0 966.610561
2010-02-19 84 25 0 734.220167
2010-02-20 99 101 0 121.332622
2010-02-21 110 77 0 287.931829
2010-02-22 80 6 0 502.748346
2010-02-23 1 3 0 9.752776
2010-02-24 111 99 0 258.138869
2010-02-25 115 86 0 1170.288228
2010-02-26 108 20 0 193.079004
2010-02-27 100 72 0 402.770395
2010-02-28 152 81 0 1275.968167
2010-03-01 90 16 0 819.881512
2010-03-02 4 2 0 26.392615
2010-03-03 128 110 0 893.884507
2010-03-04 87 75 0 360.641557
2010-03-05 84 35 0 859.899389
2010-03-06 69 102 0 381.473089
2010-03-07 112 100 0 9.711205
2010-03-08 62 9 0 601.016953
2010-03-09 4 2 0 32.454958
2010-03-10 94 100 0 553.395793
2010-03-11 102 85 0 572.374702
2010-03-12 98 33 0 218.831558
2010-03-13 88 24 0 828.326828
2010-03-14 123 111 0 630.762176
2010-03-15 55 5 0 339.418304
2010-03-16 4 1 0 31.502210
2010-03-17 92 106 0 486.679944
2010-03-18 88 102 0 335.363138
2010-03-19 92 25 0 340.008595
2010-03-20 92 64 0 291.282267
2010-03-21 117 78 0 46.029410
2010-03-22 73 5 0 201.403616
2010-03-23 3 1 0 9.558300
2010-03-24 85 83 0 877.966103
2010-03-25 88 78 0 778.110791
2010-03-26 76 66 0 707.613494
2010-03-27 93 15 0 351.457835
2010-03-28 116 64 0 711.049107
2010-03-29 68 3 0 502.518192
2010-03-30 19 0 0 23.337569
2010-03-31 127 102 0 492.909936
2010-04-01 93 99 0 405.312584
2010-04-02 97 41 0 818.394331
2010-04-03 102 79 0 152.270800
2010-04-04 109 71 0 281.113528
2010-04-05 68 9 0 470.425772
2010-04-06 4 2 0 2.507317
2010-04-07 105 103 0 414.741223
2010-04-08 79 67 0 719.426783
2010-04-09 90 85 0 811.716825
2010-04-10 87 78 0 889.584209
2010-04-11 92 67 0 616.127547
2010-04-12 63 12 0 61.144354
2010-04-13 3 1 0 27.325671
2010-04-14 103 97 0 767.778153
2010-04-15 80 106 0 326.084093
2010-04-16 80 74 0 825.197816
2010-04-17 84 86 0 383.815025
2010-04-18 81 55 0 195.483454
2010-04-19 88 13 0 711.164653
2010-04-20 3 1 0 29.869011
2010-04-21 100 100 0 556.792330
2010-04-22 69 103 0 386.175335
2010-04-23 85 44 0 165.294181
2010-04-24 85 61 0 5.451815
2010-04-25 109 89 0 542.280602
2010-04-26 74 11 0 403.839336
2010-04-27 4 2 0 13.697331
2010-04-28 96 107 96 348.201061
2010-04-29 82 89 82 44.245345
2010-04-30 85 90 85 482.287107
summary(atmdataDF)
##       DATE                 ATM1             ATM2             ATM3        
##  Min.   :2009-05-01   Min.   :  1.00   Min.   :  0.00   Min.   : 0.0000  
##  1st Qu.:2009-07-31   1st Qu.: 73.00   1st Qu.: 25.50   1st Qu.: 0.0000  
##  Median :2009-10-30   Median : 91.00   Median : 67.00   Median : 0.0000  
##  Mean   :2009-10-30   Mean   : 83.89   Mean   : 62.58   Mean   : 0.7206  
##  3rd Qu.:2010-01-29   3rd Qu.:108.00   3rd Qu.: 93.00   3rd Qu.: 0.0000  
##  Max.   :2010-04-30   Max.   :180.00   Max.   :147.00   Max.   :96.0000  
##                       NA's   :3        NA's   :2                         
##       ATM4          
##  Min.   :    1.563  
##  1st Qu.:  124.334  
##  Median :  403.839  
##  Mean   :  474.043  
##  3rd Qu.:  704.507  
##  Max.   :10919.762  
## 

It can be observed for ATM1 and ATM2, there are some missing ‘NA’ values present which need to be imputed. For ATM3, we have data from only 3 days which could be due to the fact that ATM might have a delayed operational start date compared to other two ATMs. ATM4 clearly has an outlier.

Outlier handling:

atmdataDF <- atmdataDF %>% mutate(ATM4= ifelse(ATM4== max(ATM4),median(ATM4, na.rm = TRUE),ATM4))

Converting into a Timeseries object:

atm_ts <- atmdataDF %>% select(-DATE) %>% ts(start= c(2009,as.numeric(format(as.Date("2009-05-01"), "%j"))), frequency=365)

#atmxts <- xts(atmdataDF %>% select(-DATE), order.by = atmdataDF$DATE)

Time Plot:

autoplot(atm_ts, facets = TRUE) +
  ggtitle("ATM Cash Withdrawal") +
  xlab("Days") + 
  ylab("Thousands of Dollars")

From the plots above, it is evident that- - ATM1 and ATM2 have some weekly or monthly seasonality present in teh data - ATM3 has very little data available - only 3 days - ATM4 looks more or less stationary apart from one observation which could be an outlier

ATM1:

Data Imputation:

I have used imputeTS package to impute missing data for ATM1.

ggplot_na_distribution(atm_ts[,"ATM1"])

atm1_ts <- na_kalman(atm_ts[,"ATM1"], model = "auto.arima")
ggplot_na_imputations(atm_ts[,"ATM1"], atm1_ts)

Before running any models I will check the ACF and PACF plots, and the ndiffs, nsdiffs, and BoxCox.lambda functions to see what they recommend for differencing and what type of model they suggest might be most appropriate.

# Time plot
atm1_ts %>% ggtsdisplay(main = "Cash Drawn from ATM1"
                         ,xlab = "Days"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

Observations:

  • From ACF, it seems like there is weekly seasonality in the data is evident with large spikes on lags 7, 14, 21 etc.
  • Also, PACF shows a high spike at lag=7
  • There is no clear trend present in data

Hence, due to the presence of strong weekly trend I chaged the frequency of time series to 7.

atm1_weekly_ts <- ts(atm1_ts, frequency=7)

Before running any models I will check the ACF and PACF plots, and the ndiffs, nsdiffs, and BoxCox.lambda functions to see what they recommend for differencing and what type of model they suggest might be most appropriate.

atm1_weekly_ts %>% ggtsdisplay(main = "Cash Drawn from ATM1"
                         ,xlab = "Weeks"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

ndiffs(atm1_weekly_ts)
## [1] 0
nsdiffs(atm1_weekly_ts)
## [1] 1
atm1_lambda <- BoxCox.lambda(atm1_weekly_ts)

cat("Box Cox Transformation factor lambda=",atm1_lambda)
## Box Cox Transformation factor lambda= 0.3240927

For ATM1 no first order differencing is recommended, only a first order seasonal difference and a box-cox transformation with lambda = 0.3240927. Let’s plot the data again after these transformations are performed to see what impact they have.

atm1_weekly_ts %>% BoxCox(atm1_lambda) %>% diff(lag=7) %>% ggtsdisplay(main = "Cash Drawn from ATM1 - w/ Box Cox Transform + Seasonal Differencing"
                         ,xlab = "Weeks"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

The plot above shows stationary timeseries data with most of the seasonality eliminated, although there are still spikes in the ACF plot at lag 7 and in the PACF plot at lags 7, 14, and 21. So I am going to add a first order differencing to eliminate any remaining seasonality -

atm1_weekly_ts %>% BoxCox(atm1_lambda) %>% diff(lag=7) %>% diff() %>% ggtsdisplay(main = "Cash Drawn from ATM1 - w/ Box Cox Transform + Seasonal + 1st Order Differencing"
                         ,xlab = "Weeks"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

#### Model1: Holt-Winters w/ Box Cox

atm1_model_fit1 <- atm1_weekly_ts %>% hw(h=31, seasonal="additive", 
                           damped=TRUE, lambda = atm1_lambda)
autoplot(atm1_model_fit1) + theme(panel.background = element_blank()) +
  ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model1 Accuracy
accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(atm1_model_fit1), row.names = NULL)

accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 2.587001 26.31578 17.17477 -96.05645 115.8894 0.9095107 0.066713
Model1 Residual
checkresiduals(atm1_model_fit1)

## 
##  Ljung-Box test
## 
## data:  Residuals from Damped Holt-Winters' additive method
## Q* = 24.592, df = 3, p-value = 1.879e-05
## 
## Model df: 12.   Total lags used: 15

The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.

Model2: ETS

atm1_model_fit2 <- atm1_weekly_ts %>% ets(model="ZZZ", lambda = atm1_lambda)

autoplot(atm1_model_fit2) + theme(panel.background = element_blank())

autoplot(forecast(atm1_model_fit2, h=31)) + theme(panel.background = element_blank()) +
  ggtitle("ETS method w/ Box Cox Transofrm") +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model2 Accuracy
accuracyDF <- rbind(accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(atm1_model_fit2), row.names = NULL))

accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 2.587001 26.31578 17.17477 -96.05645 115.8894 0.9095107 0.0667130
ETS Method with Box-Cox Transform 2.611202 26.31169 17.15176 -95.24957 115.2117 0.9082923 0.0664474
Model2 Residual
checkresiduals(atm1_model_fit2)

## 
##  Ljung-Box test
## 
## data:  Residuals from ETS(A,N,A)
## Q* = 24.585, df = 5, p-value = 0.0001675
## 
## Model df: 9.   Total lags used: 14

The ETS model produced almost exactly the same results as Holt Winter’s model with only slightly better RMSE and Ljung-Box results.

Model3: ARIMA

atm1_model_fit3 <- auto.arima(atm1_weekly_ts,stepwise=FALSE, approximation=FALSE)

autoplot(forecast(atm1_model_fit3, h=31)) + theme(panel.background = element_blank()) +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model3 Accuracy
accuracyDF <- rbind(accuracyDF,data.frame(Model = "ARIMA(0,0,1)(1,1,1)[7]", accuracy(atm1_model_fit3), row.names = NULL))

accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 2.5870006 26.31578 17.17477 -96.05645 115.8894 0.9095107 0.0667130
ETS Method with Box-Cox Transform 2.6112023 26.31169 17.15176 -95.24957 115.2117 0.9082923 0.0664474
ARIMA(0,0,1)(1,1,1)[7] -0.0651367 24.94054 15.68764 -107.44696 123.0573 0.8307584 -0.0057811
Model3 Residual
checkresiduals(atm1_model_fit3)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,0,1)(1,1,1)[7]
## Q* = 18.903, df = 11, p-value = 0.06286
## 
## Model df: 3.   Total lags used: 14

The ARIMA model resulted in the best fit with the best RMSE and a Ljung-Box p-value that means we cannot reject the null hypothesis that the series is consistent with white noise. The plot of the forecast also looks like a more reasonable estimate of what we can expect based on the historical data.

Results:

atm1_forecast <- forecast(atm1_model_fit3, h=31)

ATM2:

Following the exact same procedure for ATM2 -

ggplot_na_distribution(atm_ts[,"ATM2"])

atm2_ts <- na_kalman(atm_ts[,"ATM2"], model = "auto.arima")
ggplot_na_imputations(atm_ts[,"ATM2"], atm2_ts)

atm2_weekly_ts <- ts(atm2_ts, frequency=7)

# Time plot
atm2_weekly_ts %>% ggtsdisplay(main = "Cash Drawn from ATM2"
                         ,xlab = "Days"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

Observations:

  • From ACF, it seems like there is weekly seasonality in the data is evident with large spikes on lags 7, 14, 21 etc.
  • Also, PACF shows a high spike at lag=7
  • There is no clear trend present in data
ndiffs(atm2_weekly_ts)
## [1] 1
nsdiffs(atm2_weekly_ts)
## [1] 1
atm2_lambda <- BoxCox.lambda(atm2_weekly_ts)

cat("Box Cox Transformation factor lambda=",atm2_lambda)
## Box Cox Transformation factor lambda= 0.7286677

For ATM2 a first order differencing is recommended along with a first order seasonal difference and a box-cox transformation with lambda = 0.7286677. Let’s plot the data again after these transformations are performed to see what impact they have.

atm2_weekly_ts %>% BoxCox(atm2_lambda) %>% diff(lag=7) %>% ggtsdisplay(main = "Cash Drawn from ATM2 - w/ Box Cox Transform + Seasonal Differencing"
                         ,xlab = "Weeks"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

The plot above shows stationary timeseries data with most of the seasonality eliminated, although there are still spikes in the ACF plot at lag 7 and in the PACF plot at lags 1 and 7

Model1: Holt-Winters w/ Box Cox

atm2_model_fit1 <- atm2_weekly_ts %>% hw(h=31, seasonal="additive", 
                           damped=TRUE, lambda = atm2_lambda)
autoplot(atm2_model_fit1) + theme(panel.background = element_blank()) +
  ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model1 Accuracy
atm2_accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(atm2_model_fit1), row.names = NULL)

atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 0.6437591 25.43064 17.93037 -Inf Inf 0.8611268 0.0193814
Model1 Residual
checkresiduals(atm2_model_fit1)

## 
##  Ljung-Box test
## 
## data:  Residuals from Damped Holt-Winters' additive method
## Q* = 34.089, df = 3, p-value = 1.898e-07
## 
## Model df: 12.   Total lags used: 15

The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.

Model2: ETS

atm2_model_fit2 <- atm2_weekly_ts %>% ets(model="ZZZ", lambda = atm2_lambda)

autoplot(atm2_model_fit2) + theme(panel.background = element_blank())

autoplot(forecast(atm2_model_fit2, h=31)) + theme(panel.background = element_blank()) +
  ggtitle("ETS method w/ Box Cox Transofrm") +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model2 Accuracy
atm2_accuracyDF <- rbind(atm2_accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(atm2_model_fit2), row.names = NULL))

atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 0.6437591 25.43064 17.93037 -Inf Inf 0.8611268 0.0193814
ETS Method with Box-Cox Transform 0.5087362 25.33260 17.79530 -Inf Inf 0.8546398 0.0195558
Model2 Residual
checkresiduals(atm2_model_fit2)

## 
##  Ljung-Box test
## 
## data:  Residuals from ETS(A,N,A)
## Q* = 33.668, df = 5, p-value = 2.773e-06
## 
## Model df: 9.   Total lags used: 14

The ETS model produced almost exactly the same results as Holt Winter’s model.

Model3: ARIMA

atm2_model_fit3 <- auto.arima(atm2_weekly_ts,stepwise=FALSE, approximation=FALSE)

autoplot(forecast(atm2_model_fit3, h=31)) + theme(panel.background = element_blank()) +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model3 Accuracy
atm2_accuracyDF <- rbind(atm2_accuracyDF,data.frame(Model = "ARIMA (2,0,2)(0,1,1)[7]", accuracy(atm2_model_fit3), row.names = NULL))

atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 0.6437591 25.43064 17.93037 -Inf Inf 0.8611268 0.0193814
ETS Method with Box-Cox Transform 0.5087362 25.33260 17.79530 -Inf Inf 0.8546398 0.0195558
ARIMA (2,0,2)(0,1,1)[7] -0.8859274 24.13986 17.04571 -Inf Inf 0.8186400 -0.0051208
Model3 Residual
checkresiduals(atm2_model_fit3)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(2,0,2)(0,1,1)[7]
## Q* = 10.279, df = 9, p-value = 0.3284
## 
## Model df: 5.   Total lags used: 14

Model4: ARIMA with 1st Order Differencing

Since the ndiffs() function recommended first order differencing but the auto.arima() function did not use differencing in the model, I want to manually adding it to see if we can improve the model.

atm2_model_fit4 <- Arima(diff(atm2_weekly_ts), order=c(2,1,2),seasonal=c(0,1,1), lambda = atm2_lambda)

autoplot(forecast(atm2_model_fit4, h=31)) + theme(panel.background = element_blank()) +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

##### Model4 Accuracy

atm2_accuracyDF <- rbind(atm2_accuracyDF,data.frame(Model = "ARIMA (2,1,2)(0,1,1)[7]", accuracy(atm2_model_fit4), row.names = NULL))

atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 0.6437591 25.43064 17.93037 -Inf Inf 0.8611268 0.0193814
ETS Method with Box-Cox Transform 0.5087362 25.33260 17.79530 -Inf Inf 0.8546398 0.0195558
ARIMA (2,0,2)(0,1,1)[7] -0.8859274 24.13986 17.04571 -Inf Inf 0.8186400 -0.0051208
ARIMA (2,1,2)(0,1,1)[7] 2.3306931 28.98641 20.53656 NaN Inf 0.7139819 -0.0411685
Model4 Residual
checkresiduals(atm2_model_fit4)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(2,1,2)(0,1,1)[7]
## Q* = 31.365, df = 9, p-value = 0.0002563
## 
## Model df: 5.   Total lags used: 14

The auto.arima() function gave us the best results so that model will be used for predictions.

Results:

atm2_forecast <- forecast(atm2_model_fit3, h=31)

ATM3:

Sicne there is not enough data for ATM3, I am going to use simple mean value to forecast for month of May -

atm3_ts <- atm_ts[(nrow(atm_ts) - 2):nrow(atm_ts), "ATM3"]
atm3_ts <- ts(atm3_ts, start = 363)
atm_ts[,"ATM3"] -> atm3_ts
atm3_ts[which(atm3_ts == 0)] <- NA


# Time plot
atm3_ts %>% ggtsdisplay(main = "Cash Drawn from ATM3"
                         ,xlab = "Weeks"
                         ,ylab = "Cash in hundreds of dollars")
## Warning: Removed 362 rows containing missing values (geom_point).

#### Mean Forecast Model:

atm3_forecast <- meanf(atm3_ts, 31)

ATM4:

For ATM4, I have followed the exact same procedure as ATM1 and ATM2.

atm4_weekly_ts <- ts(atm_ts[,"ATM4"],frequency = 7)

# Time plot
atm4_weekly_ts %>% ggtsdisplay(main = "Cash Drawn from ATM4"
                         ,xlab = "Days"
                         ,ylab = "Cash in hundreds of dollars")

ndiffs(atm4_weekly_ts)
## [1] 0
nsdiffs(atm4_weekly_ts)
## [1] 0
atm4_lambda <- BoxCox.lambda(atm4_weekly_ts)

cat("Box Cox Transformation factor lambda=",atm4_lambda)
## Box Cox Transformation factor lambda= 0.4525697

Observations:

  • Weekly seasonal pattern is clearly visible with spikes at lag = 7,14,21 etc..
  • Here no differencing or seasonal differencing was recommended but a box-cox transformation with lambda = 0.4525697 was.
  • Looking at the plots however, it’s not clear that the box-cox transformation improved the stationarity of the data. Seasonal spikes are still apparent.
atm4_weekly_ts %>% BoxCox(atm4_lambda) %>% diff(lag=7) %>% ggtsdisplay(main = "Cash Drawn from ATM4 - w/ Box Cox Transform + Seasonal Differencing"
                         ,xlab = "Weeks"
                         ,ylab = "Cash Withdrawn (in hundreds of dollars)")

The plot above shows stationary timeseries data with most of the seasonality eliminated, although there are still spikes in the ACF plot at lag 7 and in the PACF plot at lags 7

Model1: Holt-Winters w/ Box Cox

atm4_model_fit1 <- atm4_weekly_ts %>% hw(h=31, seasonal="additive", 
                           damped=TRUE, lambda = atm1_lambda)
autoplot(atm4_model_fit1) + theme(panel.background = element_blank()) +
  ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model1 Accuracy
atm4_accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(atm4_model_fit1), row.names = NULL)

atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 91.46219 345.9815 264.085 -344.7372 392.3998 0.7623343 0.0982354
Model1 Residual
checkresiduals(atm4_model_fit1)

## 
##  Ljung-Box test
## 
## data:  Residuals from Damped Holt-Winters' additive method
## Q* = 22.128, df = 3, p-value = 6.136e-05
## 
## Model df: 12.   Total lags used: 15

The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.

Model2: ETS

atm4_model_fit2 <- atm4_weekly_ts %>% ets(model="ZZZ", lambda = atm4_lambda)

autoplot(atm4_model_fit2) + theme(panel.background = element_blank())

autoplot(forecast(atm4_model_fit2, h=31)) + theme(panel.background = element_blank()) +
  ggtitle("ETS method w/ Box Cox Transofrm") +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model2 Accuracy
atm4_accuracyDF <- rbind(atm4_accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(atm4_model_fit2), row.names = NULL))

atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 91.46219 345.9815 264.0850 -344.7372 392.3998 0.7623343 0.0982354
ETS Method with Box-Cox Transform 67.23932 338.2241 259.7873 -376.9491 420.7907 0.7499281 0.0973636
Model2 Residual
checkresiduals(atm4_model_fit2)

## 
##  Ljung-Box test
## 
## data:  Residuals from ETS(A,N,A)
## Q* = 19.488, df = 5, p-value = 0.001559
## 
## Model df: 9.   Total lags used: 14

The ETS model produced a slightly better RMSE than Holt Winter’s model.

Model3: ARIMA

atm4_model_fit3 <- auto.arima(atm4_weekly_ts,stepwise=FALSE, approximation=FALSE)

autoplot(forecast(atm4_model_fit3, h=31)) + theme(panel.background = element_blank()) +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model3 Accuracy
atm4_accuracyDF <- rbind(atm4_accuracyDF,data.frame(Model = "ARIMA (1,0,0)(2,0,0)[7]", accuracy(atm4_model_fit3), row.names = NULL))

atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 91.4621871 345.9815 264.0850 -344.7372 392.3998 0.7623343 0.0982354
ETS Method with Box-Cox Transform 67.2393208 338.2241 259.7873 -376.9491 420.7907 0.7499281 0.0973636
ARIMA (1,0,0)(2,0,0)[7] -0.1991644 342.2617 282.1983 -525.0011 557.1753 0.8146221 -0.0005572
Model3 Residual
checkresiduals(atm4_model_fit3)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,0,0)(2,0,0)[7] with non-zero mean
## Q* = 14.942, df = 10, p-value = 0.1342
## 
## Model df: 4.   Total lags used: 14

For ATM4, the ARIMA model performs poorly as compared to ETS model and slightly better RMSE than the Holt-Winter’s. But since the auto.arima() function did not choose to use any seasonal differencing and some seasonality seems apparent in the plots, a different arima model was tested using first order seasonal differencing until the best performance was attained using the model below.

Model4: ARIMA with Seasonal Differencing

atm4_model_fit4 <- Arima(diff(atm4_weekly_ts), order=c(0,0,1),seasonal=c(14,1,0), lambda = atm4_lambda)

autoplot(forecast(atm4_model_fit4, h=31)) + theme(panel.background = element_blank()) +
  xlab ("Weeks") +
  ylab ("Cash Withdrawn (in hundreds of dollars)")

Model4 Accuracy
atm4_accuracyDF <- rbind(atm4_accuracyDF,data.frame(Model = "ARIMA (0,0,1)(14,1,0)[7]", accuracy(atm4_model_fit4), row.names = NULL))

atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 91.4621871 345.9815 264.0850 -344.7372 392.3998 0.7623343 0.0982354
ETS Method with Box-Cox Transform 67.2393208 338.2241 259.7873 -376.9491 420.7907 0.7499281 0.0973636
ARIMA (1,0,0)(2,0,0)[7] -0.1991644 342.2617 282.1983 -525.0011 557.1753 0.8146221 -0.0005572
ARIMA (0,0,1)(14,1,0)[7] 10.5447481 396.8201 312.0851 -3078.8560 3429.0398 0.6216631 -0.1830855
Model4 Residual
checkresiduals(atm4_model_fit4)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,0,1)(14,1,0)[7]
## Q* = 14.029, df = 3, p-value = 0.002866
## 
## Model df: 15.   Total lags used: 18

The ETS method gave us the best results so that model will be used for predictions.

Results:

dates <- seq(as.Date("2010-05-01"), length=31, by="days")

atm4_forecast <- forecast(atm4_model_fit2, h=31)

tibble(DATE = rep(max(atmdataDF$DATE) + 1:31, 4),
           ATM = rep(names(atmdataDF)[-1], each = 31),
           Cash = c(atm1_forecast$mean, atm2_forecast$mean,
                   atm3_forecast$mean, atm4_forecast$mean)) %>% 
write_csv("ATM_Forecast.csv")

ATM Forecast File Path:

PART B: DataSet - Residential Power Forecast

powerdata <- readxl::read_excel("ResidentialCustomerForecastLoad-624.xlsx", skip=0)

powerdata %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
CaseSequence YYYY-MMM KWH
733 1998-Jan 6862583
734 1998-Feb 5838198
735 1998-Mar 5420658
736 1998-Apr 5010364
737 1998-May 4665377
738 1998-Jun 6467147
739 1998-Jul 8914755
740 1998-Aug 8607428
741 1998-Sep 6989888
742 1998-Oct 6345620
743 1998-Nov 4640410
744 1998-Dec 4693479
745 1999-Jan 7183759
746 1999-Feb 5759262
747 1999-Mar 4847656
748 1999-Apr 5306592
749 1999-May 4426794
750 1999-Jun 5500901
751 1999-Jul 7444416
752 1999-Aug 7564391
753 1999-Sep 7899368
754 1999-Oct 5358314
755 1999-Nov 4436269
756 1999-Dec 4419229
757 2000-Jan 7068296
758 2000-Feb 5876083
759 2000-Mar 4807961
760 2000-Apr 4873080
761 2000-May 5050891
762 2000-Jun 7092865
763 2000-Jul 6862662
764 2000-Aug 7517830
765 2000-Sep 8912169
766 2000-Oct 5844352
767 2000-Nov 5041769
768 2000-Dec 6220334
769 2001-Jan 7538529
770 2001-Feb 6602448
771 2001-Mar 5779180
772 2001-Apr 4835210
773 2001-May 4787904
774 2001-Jun 6283324
775 2001-Jul 7855129
776 2001-Aug 8450717
777 2001-Sep 7112069
778 2001-Oct 5242535
779 2001-Nov 4461979
780 2001-Dec 5240995
781 2002-Jan 7099063
782 2002-Feb 6413429
783 2002-Mar 5839514
784 2002-Apr 5371604
785 2002-May 5439166
786 2002-Jun 5850383
787 2002-Jul 7039702
788 2002-Aug 8058748
789 2002-Sep 8245227
790 2002-Oct 5865014
791 2002-Nov 4908979
792 2002-Dec 5779958
793 2003-Jan 7256079
794 2003-Feb 6190517
795 2003-Mar 6120626
796 2003-Apr 4885643
797 2003-May 5296096
798 2003-Jun 6051571
799 2003-Jul 6900676
800 2003-Aug 8476499
801 2003-Sep 7791791
802 2003-Oct 5344613
803 2003-Nov 4913707
804 2003-Dec 5756193
805 2004-Jan 7584596
806 2004-Feb 6560742
807 2004-Mar 6526586
808 2004-Apr 4831688
809 2004-May 4878262
810 2004-Jun 6421614
811 2004-Jul 7307931
812 2004-Aug 7309774
813 2004-Sep 6690366
814 2004-Oct 5444948
815 2004-Nov 4824940
816 2004-Dec 5791208
817 2005-Jan 8225477
818 2005-Feb 6564338
819 2005-Mar 5581725
820 2005-Apr 5563071
821 2005-May 4453983
822 2005-Jun 5900212
823 2005-Jul 8337998
824 2005-Aug 7786659
825 2005-Sep 7057213
826 2005-Oct 6694523
827 2005-Nov 4313019
828 2005-Dec 6181548
829 2006-Jan 7793358
830 2006-Feb 5914945
831 2006-Mar 5819734
832 2006-Apr 5255988
833 2006-May 4740588
834 2006-Jun 7052275
835 2006-Jul 7945564
836 2006-Aug 8241110
837 2006-Sep 7296355
838 2006-Oct 5104799
839 2006-Nov 4458429
840 2006-Dec 6226214
841 2007-Jan 8031295
842 2007-Feb 7928337
843 2007-Mar 6443170
844 2007-Apr 4841979
845 2007-May 4862847
846 2007-Jun 5022647
847 2007-Jul 6426220
848 2007-Aug 7447146
849 2007-Sep 7666970
850 2007-Oct 5785964
851 2007-Nov 4907057
852 2007-Dec 6047292
853 2008-Jan 7964293
854 2008-Feb 7597060
855 2008-Mar 6085644
856 2008-Apr 5352359
857 2008-May 4608528
858 2008-Jun 6548439
859 2008-Jul 7643987
860 2008-Aug 8037137
861 2008-Sep NA
862 2008-Oct 5101803
863 2008-Nov 4555602
864 2008-Dec 6442746
865 2009-Jan 8072330
866 2009-Feb 6976800
867 2009-Mar 5691452
868 2009-Apr 5531616
869 2009-May 5264439
870 2009-Jun 5804433
871 2009-Jul 7713260
872 2009-Aug 8350517
873 2009-Sep 7583146
874 2009-Oct 5566075
875 2009-Nov 5339890
876 2009-Dec 7089880
877 2010-Jan 9397357
878 2010-Feb 8390677
879 2010-Mar 7347915
880 2010-Apr 5776131
881 2010-May 4919289
882 2010-Jun 6696292
883 2010-Jul 770523
884 2010-Aug 7922701
885 2010-Sep 7819472
886 2010-Oct 5875917
887 2010-Nov 4800733
888 2010-Dec 6152583
889 2011-Jan 8394747
890 2011-Feb 8898062
891 2011-Mar 6356903
892 2011-Apr 5685227
893 2011-May 5506308
894 2011-Jun 8037779
895 2011-Jul 10093343
896 2011-Aug 10308076
897 2011-Sep 8943599
898 2011-Oct 5603920
899 2011-Nov 6154138
900 2011-Dec 8273142
901 2012-Jan 8991267
902 2012-Feb 7952204
903 2012-Mar 6356961
904 2012-Apr 5569828
905 2012-May 5783598
906 2012-Jun 7926956
907 2012-Jul 8886851
908 2012-Aug 9612423
909 2012-Sep 7559148
910 2012-Oct 5576852
911 2012-Nov 5731899
912 2012-Dec 6609694
913 2013-Jan 10655730
914 2013-Feb 7681798
915 2013-Mar 6517514
916 2013-Apr 6105359
917 2013-May 5940475
918 2013-Jun 7920627
919 2013-Jul 8415321
920 2013-Aug 9080226
921 2013-Sep 7968220
922 2013-Oct 5759367
923 2013-Nov 5769083
924 2013-Dec 9606304
summary(powerdata)
##   CaseSequence     YYYY-MMM              KWH          
##  Min.   :733.0   Length:192         Min.   :  770523  
##  1st Qu.:780.8   Class :character   1st Qu.: 5429912  
##  Median :828.5   Mode  :character   Median : 6283324  
##  Mean   :828.5                      Mean   : 6502475  
##  3rd Qu.:876.2                      3rd Qu.: 7620524  
##  Max.   :924.0                      Max.   :10655730  
##                                     NA's   :1
# Format DATE column
powerdata$`YYYY-MMM` <- paste0(powerdata$`YYYY-MMM`,"-01")
powerdata$DATE <- lubridate::ymd(powerdata$`YYYY-MMM`)

# Plot data
ggplot(powerdata, aes(DATE, KWH)) + geom_line() + 
  labs(title="Residential Power Usage", y="KWH", x="") +
  theme(panel.background = element_blank())

We can clearly see an outlier that is most likely a data error so we will impute the data point with the mean of the other data for the same month.

powerdata$MONTH <- month(powerdata$DATE)

# Remove NA in Sept 2008
powerdata[is.na(powerdata$KWH),]
CaseSequence YYYY-MMM KWH DATE MONTH
861 2008-Sep-01 NA 2008-09-01 9
powerdata$KWH[is.na(powerdata$KWH)] <- mean(powerdata$KWH[powerdata$MONTH==9], na.rm = TRUE)

# Outlier is in July 2010
powerdata[powerdata$KWH==min(powerdata$KWH),]
CaseSequence YYYY-MMM KWH DATE MONTH
883 2010-Jul-01 770523 2010-07-01 7
powerdata$KWH[powerdata$KWH==min(powerdata$KWH)] <- mean(powerdata$KWH[powerdata$MONTH==7], na.rm = TRUE)

Convert to a Time Series:

power_ts <- ts(powerdata$KWH, start = c(1998,1), frequency = 12)

# Plot data
autoplot(power_ts) + theme(panel.background = element_blank()) +
  ggtitle("Residential Power Usage") +
  xlab("Time") + 
  ylab("Power Usage (in KWH)")

# Time plot
power_ts %>% ggtsdisplay(main = "Residential Power Usage"
                         ,xlab = "Time"
                         ,ylab = "Power Usage (in KWH)")

ndiffs(power_ts)
## [1] 1
ndiffs(power_ts)
## [1] 1
power_lambda <- BoxCox.lambda(power_ts)

cat("Box Cox Transformation factor lambda=",power_lambda)
## Box Cox Transformation factor lambda= -0.2018638

We can see annual seasonality in the data -

power_ts %>% BoxCox(power_lambda) %>% diff(lag=12) %>% ggtsdisplay(main = "Residential Power Usage - w/ Box Cox Transform + Seasonal Differencing"
                         ,xlab = "Time"
                         ,ylab = "Power Usage (in KWH)")

The series is stationary, so no non-seasonal differencing is needed. The decaying seasonal spikes in the PACF suggests a seasonal AR(1) component, while the very quickly-decaying seasonal spikes in the ACF suggest the possibility of a seasonal MA(1) component. Spikes in the PACF and ACF at k=1 and k=4 suggest non-seasonal AR(1) or AR(4) components, and non-seasonal MA(1) or MA(4) components.

Model1: Holt-Winters w/ Box Cox

power_model_fit1 <- power_ts %>% hw(h=12, seasonal="additive", 
                           damped=TRUE, lambda = power_lambda)
autoplot(power_model_fit1) + theme(panel.background = element_blank()) +
  ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
  xlab ("Time") +
  ylab ("Power Usage (in KWH)")

Model1 Accuracy
power_accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(power_model_fit1), row.names = NULL)

power_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 78844.59 620901.7 455088.7 0.477213 6.802764 0.7435267 0.2858823
Model1 Residual
checkresiduals(power_model_fit1)

## 
##  Ljung-Box test
## 
## data:  Residuals from Damped Holt-Winters' additive method
## Q* = 44.62, df = 7, p-value = 1.621e-07
## 
## Model df: 17.   Total lags used: 24

The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.

Model2: ETS

power_model_fit2 <- power_ts %>% ets(model="ZZZ", lambda = power_lambda)

autoplot(power_model_fit2) + theme(panel.background = element_blank())

autoplot(forecast(power_model_fit2, h=12)) + theme(panel.background = element_blank()) +
  ggtitle("ETS method w/ Box Cox Transofrm") +
  xlab ("Time") +
  ylab ("Power Usage (in KWH)")

Model2 Accuracy
power_accuracyDF <- rbind(power_accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(power_model_fit2), row.names = NULL))

power_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 78844.59 620901.7 455088.7 0.4772130 6.802764 0.7435267 0.2858823
ETS Method with Box-Cox Transform 32423.43 613027.6 453744.7 -0.2772083 6.836306 0.7413308 0.2817121
Model2 Residual
checkresiduals(power_model_fit2)

## 
##  Ljung-Box test
## 
## data:  Residuals from ETS(A,A,A)
## Q* = 45.157, df = 8, p-value = 3.436e-07
## 
## Model df: 16.   Total lags used: 24

The ETS model produced a slightly better RMSE than Holt Winter’s model.

Model3: ARIMA

power_model_fit3 <- auto.arima(power_ts,stepwise=FALSE, approximation=FALSE)

autoplot(forecast(power_model_fit3, h=12)) + theme(panel.background = element_blank()) +
  xlab ("Weeks") +
  ylab ("Power Usage (in KWH)")

Model3 Accuracy
power_accuracyDF <- rbind(power_accuracyDF,data.frame(Model = "ARIMA (0,0,3)(2,1,0)[12]", accuracy(power_model_fit3), row.names = NULL))

power_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
Holt-Winter’s Additive Method with Box-Cox Transform 78844.586 620901.7 455088.7 0.4772130 6.802764 0.7435267 0.2858823
ETS Method with Box-Cox Transform 32423.431 613027.6 453744.7 -0.2772083 6.836306 0.7413308 0.2817121
ARIMA (0,0,3)(2,1,0)[12] -8220.325 586905.7 423740.1 -0.7944092 6.468297 0.6923092 -0.0111059
Model3 Residual
checkresiduals(power_model_fit3)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,0,3)(2,1,0)[12] with drift
## Q* = 15.178, df = 18, p-value = 0.6497
## 
## Model df: 6.   Total lags used: 24

auto.arima() function produced better RMSE than the other two methods. So we will use this model fit to forecast.

Results:

power_forecast <- forecast(power_model_fit3, h=12)

tibble(`YYYY-MMM` = paste0(2014, "-", month.abb),
       KWH = power_forecast$mean) %>% 
write_csv("Power_Forecast.csv")

Power Consumption Forecast File Path:

PART C: BONUS - Water Pipeline Datasets

Part C consists of two data sets. These are simple 2 columns sets, however they have different time stamps. Optional assignment is to time-base sequence the data and aggregate based on hour (example of what this looks like, follows). Note for multiple recordings within an hour, take the mean. Then to determine if the data is stationary and can it be forecast. If so, provide a week forward forecast and present results via Rpubs and .rmd and the forecast in an Excel readable file.

# Dataset1
waterdata1 <- readxl::read_excel("Waterflow_Pipe1.xlsx", skip=0)
colnames(waterdata1) <- c("DateTimeNbr","WaterFlow")

waterdata1 %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DateTimeNbr WaterFlow
42300.02 23.369599
42300.03 28.002881
42300.04 23.065895
42300.04 29.972809
42300.06 5.997953
42300.06 15.935223
42300.08 26.617330
42300.08 33.282900
42300.08 12.426692
42300.12 21.833494
42300.12 8.483647
42300.14 29.336901
42300.14 19.809146
42300.14 31.019744
42300.16 18.339962
42300.17 16.888527
42300.17 13.664312
42300.20 17.300074
42300.21 23.260984
42300.22 8.152496
42300.22 19.875628
42300.22 32.886499
42300.22 22.260364
42300.23 5.778369
42300.24 32.545557
42300.24 30.687744
42300.24 29.080907
42300.25 30.047784
42300.26 5.752456
42300.27 30.414162
42300.27 26.175716
42300.28 27.155307
42300.28 13.605943
42300.29 11.184568
42300.29 20.383057
42300.32 13.405331
42300.33 14.461091
42300.33 27.234671
42300.34 9.089498
42300.35 29.162384
42300.37 24.123214
42300.38 6.207443
42300.38 27.666923
42300.40 29.781898
42300.42 19.035463
42300.42 14.539055
42300.44 16.304829
42300.46 9.089600
42300.46 24.160478
42300.49 33.013436
42300.50 14.924758
42300.52 20.688466
42300.54 25.396306
42300.56 21.661800
42300.57 23.214093
42300.57 3.811189
42300.59 37.300056
42300.59 26.468501
42300.59 30.532230
42300.60 10.910886
42300.61 31.534557
42300.62 13.552525
42300.64 27.485792
42300.65 19.136787
42300.65 26.371215
42300.66 17.623757
42300.67 26.704584
42300.68 36.172465
42300.69 24.153054
42300.69 27.510917
42300.70 34.642728
42300.70 16.144607
42300.72 18.210857
42300.73 7.485977
42300.73 14.821554
42300.76 15.446337
42300.76 21.084892
42300.76 32.985346
42300.79 13.270245
42300.81 15.531714
42300.83 22.678874
42300.83 19.404605
42300.84 23.996745
42300.85 18.409485
42300.85 21.749392
42300.85 25.759675
42300.86 20.225869
42300.86 16.523979
42300.87 9.328124
42300.87 30.186021
42300.91 15.092513
42300.93 16.576799
42300.93 20.801956
42300.96 33.220434
42300.97 3.468986
42300.98 24.980254
42301.00 14.899085
42301.01 18.882710
42301.01 14.917666
42301.03 14.611356
42301.03 8.291781
42301.04 32.224859
42301.04 12.116040
42301.05 3.540229
42301.05 29.955002
42301.05 10.685479
42301.06 4.333859
42301.07 31.906732
42301.07 19.858555
42301.09 27.823642
42301.11 30.243204
42301.12 27.224879
42301.14 17.359630
42301.14 23.114636
42301.15 17.968616
42301.15 18.797541
42301.16 15.543472
42301.17 21.289698
42301.17 14.368194
42301.17 37.529108
42301.17 22.403861
42301.17 29.825719
42301.18 28.857015
42301.19 31.655559
42301.23 20.618727
42301.24 19.895307
42301.27 17.667198
42301.28 19.604548
42301.29 13.292335
42301.31 32.916568
42301.32 30.530947
42301.32 15.630320
42301.33 36.094851
42301.33 14.727994
42301.34 35.615230
42301.34 3.374230
42301.35 28.994393
42301.35 8.709073
42301.36 12.166129
42301.37 25.880772
42301.37 15.914648
42301.38 35.387907
42301.39 32.588662
42301.39 9.715206
42301.40 19.990902
42301.41 35.738928
42301.42 12.302267
42301.42 17.440709
42301.43 8.191574
42301.44 5.744446
42301.45 5.611853
42301.49 13.573641
42301.51 8.347535
42301.51 5.136542
42301.52 20.709564
42301.53 7.565246
42301.54 29.624084
42301.54 29.713121
42301.55 18.456777
42301.56 11.264648
42301.58 12.524692
42301.58 13.847150
42301.62 11.844761
42301.65 13.688625
42301.67 14.014548
42301.67 19.487640
42301.69 13.493671
42301.69 30.573025
42301.70 30.070133
42301.70 23.001359
42301.70 15.640681
42301.70 15.541255
42301.72 13.010382
42301.72 21.034331
42301.73 10.533891
42301.73 16.163425
42301.73 9.205656
42301.74 21.880140
42301.75 21.099017
42301.76 23.838431
42301.76 13.840718
42301.78 13.500420
42301.79 9.027780
42301.79 25.106092
42301.80 26.202501
42301.81 26.414528
42301.82 13.367800
42301.84 19.210336
42301.84 9.513509
42301.84 19.588526
42301.84 25.182741
42301.85 25.706475
42301.87 13.241693
42301.88 15.249657
42301.88 18.650854
42301.90 11.663895
42301.91 15.967304
42301.93 26.243780
42301.93 22.197560
42301.95 11.207257
42301.95 21.145070
42301.95 19.284440
42301.96 14.163063
42301.97 9.450620
42301.97 18.434140
42302.00 24.417248
42302.01 22.328697
42302.01 27.569425
42302.02 18.778384
42302.03 29.695369
42302.04 28.224715
42302.04 20.568090
42302.04 12.528874
42302.05 23.416298
42302.06 35.774203
42302.06 35.017588
42302.07 15.854556
42302.08 24.583600
42302.08 16.582313
42302.08 36.785131
42302.09 11.396241
42302.12 21.786939
42302.13 19.484790
42302.16 17.895142
42302.18 29.726704
42302.19 6.365252
42302.20 23.272001
42302.22 11.154273
42302.23 29.477854
42302.24 19.357380
42302.25 35.990674
42302.25 3.876221
42302.26 23.610348
42302.26 15.837558
42302.27 17.831027
42302.27 23.212585
42302.29 12.492665
42302.30 17.194266
42302.33 11.122795
42302.33 19.542182
42302.34 16.203565
42302.34 22.444751
42302.35 38.912543
42302.38 25.512180
42302.42 9.937115
42302.45 11.085878
42302.45 20.629891
42302.46 21.641392
42302.46 25.927652
42302.47 13.840443
42302.48 20.866951
42302.48 10.924171
42302.52 11.209960
42302.54 14.215079
42302.54 27.214242
42302.54 32.051209
42302.55 38.153452
42302.55 24.800756
42302.56 16.682505
42302.56 12.963376
42302.57 11.772861
42302.59 18.646844
42302.59 22.657938
42302.60 15.825160
42302.60 19.602839
42302.60 23.143213
42302.61 12.989419
42302.61 27.762283
42302.62 29.339674
42302.62 14.262038
42302.63 16.895755
42302.63 22.536438
42302.64 27.873838
42302.66 5.766525
42302.66 27.436980
42302.67 4.951878
42302.71 21.602308
42302.71 29.974356
42302.76 36.040846
42302.76 13.590471
42302.77 24.405622
42302.79 21.543160
42302.82 7.034301
42302.82 16.018952
42302.82 6.464795
42302.83 20.015932
42302.83 23.872172
42302.85 6.801017
42302.86 17.639643
42302.88 14.146407
42302.89 29.207344
42302.90 23.086044
42302.90 18.685165
42302.91 11.519158
42302.92 16.778935
42302.92 22.861365
42302.93 4.477698
42302.95 30.364928
42302.99 18.097103
42302.99 21.407191
42303.01 21.830050
42303.01 35.111999
42303.02 16.474314
42303.04 28.948058
42303.04 17.410201
42303.05 5.650083
42303.05 27.119217
42303.06 34.377131
42303.06 31.513826
42303.06 10.150090
42303.07 23.257435
42303.07 21.373494
42303.08 22.293125
42303.08 17.961744
42303.09 10.535267
42303.09 27.968007
42303.10 7.909216
42303.11 23.589371
42303.11 32.882866
42303.13 16.127026
42303.13 2.424413
42303.13 13.965955
42303.13 11.293508
42303.13 20.318204
42303.15 9.687025
42303.15 12.313706
42303.16 26.627911
42303.16 6.605821
42303.17 22.553012
42303.19 6.362539
42303.19 1.880352
42303.19 7.806599
42303.19 28.388833
42303.20 24.337457
42303.23 20.702873
42303.25 8.760748
42303.25 20.353981
42303.26 7.440057
42303.26 24.305299
42303.27 20.199217
42303.27 26.890775
42303.27 13.720630
42303.28 22.516922
42303.28 26.236660
42303.29 6.164736
42303.30 29.225423
42303.30 2.541620
42303.31 19.748843
42303.31 18.629947
42303.31 21.492807
42303.34 30.676615
42303.34 27.743591
42303.35 11.155979
42303.37 35.673641
42303.38 24.083618
42303.39 29.339891
42303.39 9.010886
42303.39 12.934983
42303.41 17.531019
42303.41 31.822392
42303.42 19.068476
42303.42 6.142128
42303.42 15.914329
42303.43 19.733454
42303.43 7.167233
42303.45 17.041633
42303.45 37.307322
42303.48 9.971110
42303.50 23.996322
42303.50 28.636649
42303.54 14.543358
42303.54 26.006360
42303.55 11.983168
42303.55 11.317868
42303.56 18.358191
42303.58 18.575016
42303.58 13.293359
42303.59 15.597069
42303.59 11.560628
42303.59 21.923801
42303.60 30.104583
42303.63 19.982949
42303.63 5.951358
42303.64 18.428602
42303.65 31.812915
42303.65 24.244282
42303.68 20.472107
42303.69 28.827925
42303.70 19.628814
42303.74 19.779596
42303.76 29.545589
42303.76 10.458315
42303.76 25.871714
42303.77 7.309851
42303.77 22.871136
42303.78 23.016887
42303.79 31.888125
42303.79 15.872456
42303.79 21.736855
42303.79 35.640611
42303.80 20.434095
42303.80 38.364251
42303.81 19.916968
42303.81 19.909526
42303.83 19.737001
42303.83 25.499218
42303.87 12.099414
42303.90 21.347209
42303.91 15.697209
42303.92 22.118142
42303.92 37.681461
42303.93 18.017428
42303.94 20.814277
42303.95 20.334498
42303.96 12.338779
42303.97 30.826175
42304.00 34.624445
42304.00 10.143766
42304.01 20.921089
42304.02 4.161076
42304.02 22.095022
42304.03 28.210173
42304.05 17.573078
42304.05 24.898260
42304.08 29.096392
42304.09 24.664065
42304.10 18.229647
42304.12 27.045116
42304.13 22.711105
42304.14 21.892313
42304.14 1.834943
42304.15 11.672494
42304.15 22.457280
42304.15 15.334399
42304.16 30.453794
42304.17 18.515347
42304.17 27.862217
42304.18 22.075402
42304.18 16.577465
42304.20 33.917748
42304.21 26.771479
42304.22 16.975983
42304.23 5.896884
42304.23 9.704311
42304.24 19.888716
42304.24 12.176629
42304.24 17.789691
42304.26 20.182560
42304.26 7.297558
42304.29 19.073031
42304.29 23.098007
42304.29 18.416993
42304.29 11.417748
42304.30 25.302040
42304.30 10.355350
42304.30 16.875640
42304.31 28.261230
42304.31 26.794716
42304.32 1.840051
42304.32 22.780229
42304.32 22.913370
42304.33 23.502077
42304.34 20.597856
42304.35 15.742843
42304.36 4.300935
42304.36 14.751233
42304.37 13.106007
42304.41 13.329034
42304.43 16.583423
42304.44 16.827504
42304.45 12.249572
42304.50 23.706073
42304.53 25.660001
42304.53 35.462551
42304.54 12.644275
42304.54 14.066707
42304.54 25.789953
42304.55 19.518356
42304.55 12.342679
42304.55 26.810005
42304.56 12.999374
42304.57 21.557762
42304.57 22.698339
42304.59 22.291995
42304.60 20.133424
42304.64 24.908145
42304.65 31.190743
42304.65 22.448257
42304.66 16.165643
42304.69 17.544574
42304.69 24.487887
42304.69 35.758575
42304.75 22.130042
42304.77 3.823961
42304.77 21.366360
42304.77 28.956420
42304.82 30.530129
42304.82 9.887806
42304.83 34.600655
42304.83 20.517520
42304.84 28.409780
42304.85 22.410120
42304.85 18.890813
42304.86 16.661537
42304.86 17.734415
42304.86 32.645647
42304.87 7.219724
42304.87 12.918680
42304.88 25.439756
42304.89 15.551786
42304.90 19.765020
42304.91 16.457690
42304.96 10.293176
42304.97 1.781904
42304.98 19.880796
42304.99 13.011420
42305.00 19.132300
42305.05 15.046151
42305.06 37.352759
42305.06 13.062743
42305.06 34.842589
42305.08 20.422971
42305.10 31.749759
42305.10 33.801223
42305.12 19.938320
42305.12 13.603916
42305.14 11.825927
42305.16 13.562697
42305.16 20.342015
42305.17 28.632022
42305.17 34.699990
42305.19 35.015636
42305.19 25.312763
42305.20 27.380108
42305.21 8.946983
42305.21 23.729636
42305.22 20.390630
42305.22 16.259039
42305.23 13.635565
42305.24 29.241959
42305.25 14.467571
42305.25 14.124179
42305.25 22.979674
42305.26 13.443790
42305.26 27.598373
42305.28 20.445029
42305.28 15.755541
42305.28 9.550570
42305.29 15.505543
42305.31 13.627235
42305.32 9.594463
42305.33 24.911034
42305.33 20.907402
42305.34 13.716141
42305.35 17.905301
42305.35 20.654838
42305.36 7.000298
42305.39 10.060531
42305.42 29.130492
42305.42 18.134867
42305.43 31.447032
42305.43 6.563567
42305.44 26.086201
42305.46 24.154133
42305.48 24.041464
42305.49 21.026494
42305.50 4.561947
42305.51 9.129867
42305.51 18.894904
42305.53 13.386346
42305.54 23.991109
42305.54 10.017909
42305.55 11.151724
42305.56 13.999829
42305.57 16.601620
42305.57 32.986999
42305.57 21.432970
42305.58 31.913805
42305.58 10.665391
42305.59 22.652867
42305.60 13.863613
42305.60 27.361023
42305.62 22.984681
42305.62 10.894598
42305.64 33.211245
42305.66 22.432778
42305.67 24.169848
42305.68 31.478411
42305.69 7.055754
42305.70 22.505285
42305.71 11.695966
42305.71 25.050275
42305.73 16.620632
42305.73 27.097737
42305.75 28.453893
42305.75 24.909666
42305.75 19.052430
42305.77 17.453295
42305.78 10.787874
42305.78 26.564290
42305.79 17.332550
42305.80 6.906457
42305.81 28.445885
42305.82 18.751925
42305.82 25.112732
42305.83 5.455784
42305.86 26.858954
42305.89 20.756232
42305.91 27.514802
42305.91 8.121486
42305.92 32.430137
42305.93 7.281897
42305.93 35.140642
42305.94 9.679448
42305.95 26.069281
42305.96 22.208754
42305.98 14.436499
42305.98 14.407442
42305.99 32.351417
42305.99 25.337102
42305.99 34.405532
42306.01 5.629219
42306.01 8.838351
42306.01 36.416772
42306.02 31.404891
42306.04 10.104051
42306.05 26.652639
42306.06 31.607533
42306.07 14.057883
42306.08 14.669973
42306.10 10.860818
42306.13 19.707401
42306.13 12.767893
42306.14 11.406741
42306.16 6.829391
42306.18 18.626982
42306.19 25.249255
42306.19 20.066181
42306.21 32.633243
42306.21 19.815994
42306.23 7.393302
42306.23 30.079256
42306.25 11.413076
42306.27 11.697902
42306.28 31.190372
42306.30 20.639450
42306.32 18.345175
42306.32 13.468384
42306.33 23.132393
42306.33 25.347282
42306.34 9.159853
42306.34 20.831257
42306.37 20.813047
42306.37 11.684935
42306.37 16.810542
42306.38 20.083183
42306.38 9.500212
42306.39 22.865692
42306.39 11.315027
42306.39 10.933767
42306.41 12.687895
42306.42 12.946125
42306.43 8.493317
42306.44 14.026298
42306.44 17.014097
42306.47 36.140930
42306.47 26.717343
42306.49 13.078063
42306.49 19.879271
42306.49 22.017664
42306.49 15.966344
42306.52 26.322878
42306.53 10.881309
42306.54 36.767167
42306.54 18.178581
42306.54 22.243434
42306.56 27.443501
42306.57 7.416418
42306.59 35.314750
42306.59 26.102493
42306.60 26.995712
42306.61 26.171102
42306.62 26.393210
42306.63 6.113279
42306.63 33.321112
42306.64 3.437277
42306.65 15.568660
42306.68 12.626890
42306.68 23.726236
42306.68 8.220824
42306.69 33.722738
42306.73 17.737118
42306.74 27.586605
42306.75 28.581947
42306.76 33.395729
42306.76 15.354501
42306.76 23.929336
42306.76 5.771780
42306.78 4.210084
42306.79 34.201755
42306.79 18.118718
42306.81 11.838202
42306.81 28.055038
42306.82 38.824234
42306.85 20.183617
42306.86 20.252920
42306.87 24.079136
42306.88 20.675881
42306.90 18.581834
42306.90 3.005562
42306.91 17.446180
42306.92 17.692749
42306.92 20.881251
42306.95 21.112933
42306.97 22.773156
42306.99 10.671286
42307.00 27.385016
42307.00 21.039398
42307.01 29.351822
42307.02 26.714346
42307.04 33.461080
42307.06 15.763921
42307.07 22.893475
42307.10 14.913339
42307.10 16.881445
42307.10 21.306120
42307.10 11.068579
42307.11 23.510960
42307.12 12.426567
42307.12 9.803671
42307.12 13.601980
42307.13 15.308122
42307.14 12.293308
42307.15 25.187776
42307.16 25.200361
42307.17 26.050907
42307.17 16.041492
42307.18 9.716074
42307.18 22.032446
42307.19 32.175466
42307.20 8.824220
42307.21 16.416996
42307.23 26.741802
42307.27 28.653171
42307.30 17.616891
42307.30 32.165879
42307.30 15.814351
42307.31 13.982874
42307.31 13.229002
42307.35 25.821707
42307.35 20.103947
42307.36 19.840905
42307.36 15.154233
42307.36 15.319994
42307.37 12.452035
42307.38 21.674978
42307.38 16.542822
42307.39 15.016618
42307.39 21.003799
42307.39 27.280290
42307.40 15.816813
42307.40 14.185396
42307.41 20.210829
42307.41 18.266201
42307.41 7.572945
42307.42 24.242163
42307.43 30.221902
42307.43 1.067303
42307.44 24.181480
42307.44 12.343618
42307.44 21.241147
42307.45 23.494210
42307.46 17.914192
42307.46 9.712991
42307.47 36.835152
42307.47 5.656043
42307.48 7.624941
42307.48 22.043926
42307.48 34.058479
42307.49 21.477600
42307.50 37.726762
42307.51 25.376942
42307.52 31.833041
42307.52 8.491811
42307.52 27.584047
42307.53 7.759069
42307.58 30.206207
42307.59 29.868823
42307.59 28.068979
42307.60 15.586651
42307.61 19.258297
42307.62 27.053775
42307.62 17.235405
42307.63 31.068870
42307.67 38.387732
42307.68 16.287305
42307.68 33.737380
42307.69 12.794018
42307.71 21.554267
42307.71 31.123454
42307.71 22.472866
42307.74 19.109189
42307.75 8.965514
42307.76 14.538760
42307.76 6.618785
42307.78 19.410505
42307.78 24.581237
42307.80 19.913452
42307.81 14.319365
42307.82 21.950001
42307.82 29.379711
42307.83 9.750124
42307.83 19.004112
42307.85 37.591036
42307.86 28.464328
42307.87 15.015707
42307.87 22.333341
42307.88 27.741250
42307.88 11.640426
42307.89 15.135784
42307.89 22.123494
42307.89 17.915621
42307.91 23.954026
42307.93 4.021746
42307.93 9.613415
42307.96 13.133139
42307.96 4.952637
42307.97 26.474205
42308.01 4.421879
42308.01 18.253691
42308.03 14.486119
42308.04 31.484788
42308.05 12.772337
42308.07 16.364104
42308.07 35.450027
42308.08 38.479671
42308.08 27.325173
42308.08 12.840285
42308.08 20.807145
42308.12 16.369698
42308.12 28.855674
42308.14 27.944654
42308.15 27.446450
42308.18 21.081974
42308.19 24.238055
42308.21 14.049404
42308.25 26.559184
42308.25 25.242968
42308.25 34.891026
42308.26 30.599200
42308.27 17.366746
42308.28 23.821349
42308.29 11.251934
42308.30 25.670211
42308.31 33.436930
42308.33 36.082648
42308.35 10.927193
42308.36 8.277269
42308.37 15.415538
42308.39 32.181583
42308.41 2.719154
42308.41 21.170975
42308.42 19.835044
42308.44 35.782245
42308.45 20.585977
42308.46 18.806353
42308.47 24.836634
42308.47 19.806278
42308.49 30.785157
42308.49 8.282494
42308.52 19.724971
42308.54 20.268650
42308.54 22.278925
42308.54 12.367646
42308.55 24.372004
42308.58 20.621253
42308.58 14.751192
42308.58 10.408624
42308.60 31.945120
42308.63 8.037941
42308.63 26.541515
42308.65 13.908973
42308.66 14.737002
42308.66 28.771564
42308.68 24.554983
42308.69 15.011016
42308.70 24.000616
42308.73 27.589842
42308.73 35.713119
42308.73 19.495046
42308.74 21.303044
42308.75 21.031095
42308.78 12.594886
42308.78 15.807672
42308.79 9.259209
42308.79 16.782744
42308.79 14.815882
42308.79 11.636250
42308.80 24.213435
42308.81 14.486916
42308.81 32.728819
42308.81 15.302234
42308.81 7.959237
42308.82 31.369263
42308.84 7.349745
42308.85 15.010710
42308.85 27.262566
42308.85 20.517552
42308.86 20.452720
42308.88 27.389651
42308.92 11.400498
42308.93 12.396629
42308.93 11.774302
42308.96 27.606285
42308.97 28.467733
42308.98 31.244255
42308.99 14.237196
42308.99 11.719533
42309.00 15.847017
42309.00 7.076831
42309.02 23.650243
42309.03 30.891522
42309.03 23.070343
42309.05 16.925815
42309.06 26.975276
42309.06 10.376045
42309.07 25.214665
42309.09 14.022721
42309.11 29.029274
42309.14 12.817853
42309.15 27.137068
42309.16 13.715517
42309.17 11.133035
42309.21 22.610985
42309.25 24.388115
42309.26 21.684017
42309.26 4.294392
42309.30 29.918730
42309.32 19.281998
42309.33 19.495424
42309.34 1.335991
42309.34 10.920037
42309.34 19.664501
42309.37 28.550303
42309.43 18.399540
42309.45 12.924725
42309.46 17.521240
42309.46 26.317390
42309.48 26.056817
42309.48 29.616021
42309.53 17.746786
42309.53 7.546854
42309.53 26.363689
42309.54 14.737645
42309.54 29.287755
42309.54 31.996311
42309.54 26.981273
42309.55 16.575896
42309.56 16.491862
42309.57 15.705421
42309.60 17.704946
42309.60 26.155266
42309.60 29.694279
42309.60 24.455547
42309.62 22.425873
42309.63 33.004309
42309.63 4.385275
42309.63 16.915401
42309.64 17.247719
42309.66 25.548663
42309.67 19.692654
42309.69 22.548459
42309.69 18.674775
42309.69 16.977700
42309.70 18.870444
42309.71 24.984427
42309.71 26.191839
42309.76 10.336158
42309.77 28.240343
42309.78 21.630708
42309.80 13.690378
42309.81 21.142271
42309.82 20.366756
42309.82 20.311729
42309.83 19.103980
42309.84 5.537197
42309.84 15.865447
42309.84 10.568377
42309.87 21.558668
42309.87 18.989392
42309.88 10.241452
42309.91 28.110783
42309.92 13.848839
42309.92 21.507690
42309.92 15.281430
42309.92 26.336684
42309.93 29.064266
42309.96 22.844104
42309.98 16.218705
42309.98 21.211707
# Dataset2
waterdata2 <- readxl::read_excel("Waterflow_Pipe2.xlsx", skip=0)
colnames(waterdata2) <- c("DateTimeNbr","WaterFlow")

waterdata2 %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DateTimeNbr WaterFlow
42300.04 18.810791
42300.08 43.087025
42300.12 37.987705
42300.17 36.120379
42300.21 31.851259
42300.25 28.238090
42300.29 9.863582
42300.33 26.679610
42300.38 55.773785
42300.42 54.156889
42300.46 68.374904
42300.50 55.710359
42300.54 56.968260
42300.58 17.206276
42300.62 35.093275
42300.67 44.424928
42300.71 57.322408
42300.75 37.344924
42300.79 11.483011
42300.83 32.117940
42300.88 49.081861
42300.92 49.133546
42300.96 42.064648
42301.00 58.380027
42301.04 53.408031
42301.08 42.332775
42301.12 45.922190
42301.17 32.741215
42301.21 47.879252
42301.25 47.460516
42301.29 52.264966
42301.33 35.389582
42301.38 14.435578
42301.42 45.038179
42301.46 38.896592
42301.50 39.991833
42301.54 56.883595
42301.58 62.728660
42301.62 67.382484
42301.67 29.645108
42301.71 51.586668
42301.75 61.987103
42301.79 46.394571
42301.83 32.838673
42301.88 53.416554
42301.92 70.723677
42301.96 21.570847
42302.00 66.762107
42302.04 36.322123
42302.08 45.114342
42302.12 53.473562
42302.17 27.209341
42302.21 44.193703
42302.25 59.296910
42302.29 42.253496
42302.33 44.747970
42302.38 50.182502
42302.42 32.303380
42302.46 44.413697
42302.50 42.844556
42302.54 56.282628
42302.58 54.936958
42302.62 20.406510
42302.67 60.954459
42302.71 55.811767
42302.75 68.008012
42302.79 20.964754
42302.83 50.112292
42302.88 24.172808
42302.92 17.131600
42302.96 41.938311
42303.00 70.376636
42303.04 34.387617
42303.08 30.377663
42303.12 41.567192
42303.17 72.172881
42303.21 45.745729
42303.25 42.294146
42303.29 28.883164
42303.33 55.506566
42303.38 19.228599
42303.42 39.454913
42303.46 28.521848
42303.50 22.614615
42303.54 8.513215
42303.58 38.228365
42303.62 23.388172
42303.67 59.546335
42303.71 20.342739
42303.75 40.198573
42303.79 42.636429
42303.83 40.250584
42303.88 33.603564
42303.92 33.921165
42303.96 6.574838
42304.00 68.451384
42304.04 14.722223
42304.08 40.885201
42304.12 37.432232
42304.17 22.449903
42304.21 49.813460
42304.25 38.930568
42304.29 22.183581
42304.33 17.156385
42304.38 55.683814
42304.42 4.681630
42304.46 30.998919
42304.50 11.136842
42304.54 30.650987
42304.58 56.688098
42304.62 32.445492
42304.67 41.242405
42304.71 44.380749
42304.75 55.343373
42304.79 14.175375
42304.83 51.636056
42304.88 49.038738
42304.92 33.515478
42304.96 35.479944
42305.00 54.753657
42305.04 42.308140
42305.08 30.650448
42305.12 38.951353
42305.17 23.330517
42305.21 26.130716
42305.25 68.184102
42305.29 17.891049
42305.33 7.689945
42305.38 34.479795
42305.42 5.768535
42305.46 55.996156
42305.50 52.156262
42305.54 48.276526
42305.58 29.068677
42305.62 51.055828
42305.67 50.142903
42305.71 35.699715
42305.75 41.009140
42305.79 70.126446
42305.83 22.225432
42305.88 54.659647
42305.92 50.467770
42305.96 35.307784
42306.00 44.072312
42306.04 36.433573
42306.08 65.174990
42306.12 39.027232
42306.17 21.882484
42306.21 16.475724
42306.25 29.737078
42306.29 44.677987
42306.33 9.726528
42306.38 32.252834
42306.42 36.463706
42306.46 18.570584
42306.50 47.179197
42306.54 16.814399
42306.58 21.411535
42306.62 78.303208
42306.67 37.809087
42306.71 46.143853
42306.75 58.575561
42306.79 10.668517
42306.83 40.423676
42306.88 42.632654
42306.92 17.024037
42306.96 38.288825
42307.00 61.935956
42307.04 16.267685
42307.08 50.454336
42307.12 64.303302
42307.17 36.859830
42307.21 19.045695
42307.25 51.206781
42307.29 43.157475
42307.33 66.533505
42307.38 46.407488
42307.42 31.593622
42307.46 32.880155
42307.50 32.330595
42307.54 44.101568
42307.58 30.998232
42307.62 69.575830
42307.67 28.656834
42307.71 40.347359
42307.75 73.769908
42307.79 30.711824
42307.83 39.900346
42307.88 41.396253
42307.92 14.918891
42307.96 48.476683
42308.00 54.804861
42308.04 74.841654
42308.08 31.581531
42308.12 60.288192
42308.17 22.568788
42308.21 42.800695
42308.25 41.309206
42308.29 14.657249
42308.33 35.299757
42308.38 23.238057
42308.42 36.344364
42308.46 34.088694
42308.50 41.491756
42308.54 42.307821
42308.58 46.513619
42308.62 59.169215
42308.67 49.514779
42308.71 9.835715
42308.75 30.380895
42308.79 40.075967
42308.83 53.075152
42308.88 26.581510
42308.92 37.963427
42308.96 67.098804
42309.00 9.541255
42309.04 50.560327
42309.08 48.675529
42309.12 50.790777
42309.17 39.647840
42309.21 71.594723
42309.25 45.642905
42309.29 22.403748
42309.33 42.583314
42309.38 48.973803
42309.42 36.391814
42309.46 39.451300
42309.50 48.231945
42309.54 23.238733
42309.58 29.103701
42309.62 24.890495
42309.67 39.501753
42309.71 3.553891
42309.75 41.188599
42309.79 41.303353
42309.83 17.858629
42309.88 28.382995
42309.92 51.696846
42309.96 60.225725
42310.00 18.710074
42310.04 69.677403
42310.08 70.643756
42310.12 32.130700
42310.17 43.286488
42310.21 46.519110
42310.25 49.418788
42310.29 22.603133
42310.33 17.204039
42310.38 36.098841
42310.42 37.426039
42310.46 68.958258
42310.50 56.355300
42310.54 27.421826
42310.58 21.977013
42310.62 31.650012
42310.67 19.103725
42310.71 40.573976
42310.75 34.139365
42310.79 31.604146
42310.83 53.455162
42310.88 50.932862
42310.92 21.382117
42310.96 28.707991
42311.00 28.266119
42311.04 56.643025
42311.08 65.491297
42311.12 45.264900
42311.17 32.083226
42311.21 20.034940
42311.25 59.361131
42311.29 63.062853
42311.33 36.311024
42311.38 28.786016
42311.42 41.529467
42311.46 15.911946
42311.50 50.859685
42311.54 43.005399
42311.58 34.650963
42311.62 53.490976
42311.67 30.670295
42311.71 11.915951
42311.75 24.722517
42311.79 38.936218
42311.83 35.450478
42311.88 45.970258
42311.92 56.407256
42311.96 49.554872
42312.00 48.358182
42312.04 16.816164
42312.08 19.084841
42312.12 49.944728
42312.17 21.617885
42312.21 26.981540
42312.25 51.754010
42312.29 35.729160
42312.33 71.273732
42312.38 28.418581
42312.42 16.964691
42312.46 47.892948
42312.50 50.257181
42312.54 48.595430
42312.58 49.996359
42312.62 48.920110
42312.67 68.161543
42312.71 30.529780
42312.75 55.694453
42312.79 47.145238
42312.83 50.778857
42312.88 47.658571
42312.92 26.331098
42312.96 67.761091
42313.00 51.085154
42313.04 41.117956
42313.08 9.068800
42313.12 61.260012
42313.17 20.384767
42313.21 23.371558
42313.25 54.130721
42313.29 47.173422
42313.33 17.330480
42313.38 27.900997
42313.42 60.693928
42313.46 55.750439
42313.50 31.980729
42313.54 46.026815
42313.58 51.486720
42313.62 35.083882
42313.67 29.222731
42313.71 38.054577
42313.75 32.803461
42313.79 34.590651
42313.83 7.041455
42313.88 43.879486
42313.92 54.260075
42313.96 49.607998
42314.00 51.166843
42314.04 60.332261
42314.08 54.000615
42314.12 48.402953
42314.17 71.293996
42314.21 25.864377
42314.25 43.534985
42314.29 10.294754
42314.33 27.211552
42314.38 68.771180
42314.42 40.635575
42314.46 48.547279
42314.50 51.211695
42314.54 62.323132
42314.58 36.042205
42314.62 65.867425
42314.67 43.091257
42314.71 49.999283
42314.75 42.753244
42314.79 43.280302
42314.83 12.215143
42314.88 30.790950
42314.92 43.146264
42314.96 24.862962
42315.00 60.419541
42315.04 2.829191
42315.08 41.358591
42315.12 32.518025
42315.17 32.936246
42315.21 53.903692
42315.25 54.349240
42315.29 48.667338
42315.33 43.697246
42315.38 64.391019
42315.42 54.642566
42315.46 31.579795
42315.50 10.697792
42315.54 69.408304
42315.58 57.739228
42315.62 54.043036
42315.67 21.378107
42315.71 68.557246
42315.75 49.990255
42315.79 60.870852
42315.83 15.231194
42315.88 35.271872
42315.92 47.834724
42315.96 39.042589
42316.00 31.282543
42316.04 34.318646
42316.08 45.695737
42316.12 34.761724
42316.17 41.324282
42316.21 22.815585
42316.25 63.250742
42316.29 13.839852
42316.33 46.006283
42316.38 44.493733
42316.42 63.378401
42316.46 42.817629
42316.50 45.072082
42316.54 46.040137
42316.58 11.573340
42316.62 39.922730
42316.67 40.153338
42316.71 63.037254
42316.75 48.776710
42316.79 53.306946
42316.83 41.484211
42316.88 45.348702
42316.92 54.969466
42316.96 47.595072
42317.00 40.591619
42317.04 43.363619
42317.08 65.789153
42317.12 29.012179
42317.17 38.944844
42317.21 26.349575
42317.25 33.638500
42317.29 8.524681
42317.33 7.047517
42317.38 71.864778
42317.42 33.775195
42317.46 34.524480
42317.50 13.277970
42317.54 20.951475
42317.58 42.715256
42317.62 51.101163
42317.67 8.718182
42317.71 23.884311
42317.75 44.208632
42317.79 47.094925
42317.83 25.140574
42317.88 33.723718
42317.92 23.366525
42317.96 41.851025
42318.00 28.565955
42318.04 49.010418
42318.08 76.953288
42318.12 33.641144
42318.17 61.127699
42318.21 61.822340
42318.25 22.690029
42318.29 52.496753
42318.33 26.962412
42318.38 55.912366
42318.42 38.827366
42318.46 51.170992
42318.50 38.982250
42318.54 36.403632
42318.58 45.511136
42318.62 35.450764
42318.67 12.781466
42318.71 34.596144
42318.75 19.863000
42318.79 61.422724
42318.83 37.871542
42318.88 44.714030
42318.92 52.438546
42318.96 21.870034
42319.00 42.775527
42319.04 37.075660
42319.08 55.922491
42319.12 21.725370
42319.17 27.383226
42319.21 26.474453
42319.25 24.992206
42319.29 29.420236
42319.33 18.593189
42319.38 19.401002
42319.42 30.797664
42319.46 53.005290
42319.50 29.785165
42319.54 48.478284
42319.58 41.000063
42319.62 55.985426
42319.67 23.593107
42319.71 16.929397
42319.75 26.105809
42319.79 27.278099
42319.83 35.966696
42319.88 62.321017
42319.92 22.551005
42319.96 32.326498
42320.00 36.768426
42320.04 16.655779
42320.08 50.903035
42320.12 32.744233
42320.17 43.446611
42320.21 12.872882
42320.25 43.626821
42320.29 17.932564
42320.33 46.430782
42320.38 47.555630
42320.42 23.164628
42320.46 36.320166
42320.50 41.829277
42320.54 65.063811
42320.58 53.996669
42320.62 53.065490
42320.67 36.048012
42320.71 23.164822
42320.75 38.652909
42320.79 48.085267
42320.83 39.547030
42320.88 36.281582
42320.92 22.304580
42320.96 39.054497
42321.00 62.456375
42321.04 21.058794
42321.08 24.986703
42321.12 47.340037
42321.17 42.103710
42321.21 46.277421
42321.25 41.346360
42321.29 8.198421
42321.33 49.820480
42321.38 52.630520
42321.42 14.320846
42321.46 29.429210
42321.50 46.610070
42321.54 27.718158
42321.58 43.646591
42321.62 58.249277
42321.67 37.955810
42321.71 53.167141
42321.75 17.003180
42321.79 36.987767
42321.83 69.421289
42321.88 42.282380
42321.92 60.299183
42321.96 77.388036
42322.00 38.187514
42322.04 73.920364
42322.08 23.427619
42322.12 74.049763
42322.17 71.025842
42322.21 36.310935
42322.25 69.727846
42322.29 47.318911
42322.33 54.552009
42322.38 22.047066
42322.42 33.286940
42322.46 44.805901
42322.50 30.968865
42322.54 32.250332
42322.58 60.449541
42322.62 17.006485
42322.67 42.845801
42322.71 47.528852
42322.75 39.715687
42322.79 23.905351
42322.83 60.468321
42322.88 16.016156
42322.92 24.913911
42322.96 52.127222
42323.00 31.771907
42323.04 33.992850
42323.08 12.282765
42323.12 50.596037
42323.17 31.542007
42323.21 20.514348
42323.25 27.990267
42323.29 70.663541
42323.33 44.674916
42323.38 22.821463
42323.42 28.171757
42323.46 38.060556
42323.50 28.251189
42323.54 20.650803
42323.58 42.038281
42323.62 33.657499
42323.67 24.628537
42323.71 62.740169
42323.75 37.227280
42323.79 66.834372
42323.83 54.885094
42323.88 38.741754
42323.92 52.565861
42323.96 42.011579
42324.00 1.884618
42324.04 33.697009
42324.08 35.136376
42324.12 52.342981
42324.17 56.699116
42324.21 55.563435
42324.25 45.758364
42324.29 50.659673
42324.33 40.169564
42324.38 24.979220
42324.42 47.796589
42324.46 35.726957
42324.50 54.028989
42324.54 45.341975
42324.58 48.476311
42324.62 33.640512
42324.67 30.864809
42324.71 20.844211
42324.75 19.803964
42324.79 36.264543
42324.83 31.291821
42324.88 10.358942
42324.92 31.271942
42324.96 39.143974
42325.00 40.599863
42325.04 4.404232
42325.08 60.532204
42325.12 42.654711
42325.17 11.865801
42325.21 22.798883
42325.25 32.524959
42325.29 65.957563
42325.33 26.382528
42325.38 33.062656
42325.42 18.365385
42325.46 59.433134
42325.50 38.719453
42325.54 70.619444
42325.58 51.069993
42325.62 29.489031
42325.67 15.808655
42325.71 39.223626
42325.75 47.080228
42325.79 41.980568
42325.83 61.214361
42325.88 23.836742
42325.92 35.213413
42325.96 66.174825
42326.00 11.472738
42326.04 40.944768
42326.08 73.297982
42326.12 21.705112
42326.17 13.445279
42326.21 33.855644
42326.25 38.425269
42326.29 7.564169
42326.33 20.792792
42326.38 47.126813
42326.42 38.557200
42326.46 30.619750
42326.50 27.548411
42326.54 34.697505
42326.58 36.676699
42326.62 30.025806
42326.67 44.290001
42326.71 31.476714
42326.75 16.554329
42326.79 28.467637
42326.83 60.756805
42326.88 53.156311
42326.92 43.736182
42326.96 44.678285
42327.00 32.500159
42327.04 53.096718
42327.08 50.450171
42327.12 20.671851
42327.17 48.500930
42327.21 55.872094
42327.25 16.955515
42327.29 47.782032
42327.33 64.182162
42327.38 19.123758
42327.42 26.630040
42327.46 24.693264
42327.50 14.882576
42327.54 54.702633
42327.58 28.045472
42327.62 44.237443
42327.67 53.989477
42327.71 44.208531
42327.75 44.145634
42327.79 40.174149
42327.83 75.699763
42327.88 33.688595
42327.92 60.315099
42327.96 37.811607
42328.00 62.216296
42328.04 21.923579
42328.08 50.856824
42328.12 9.506527
42328.17 39.037833
42328.21 47.392675
42328.25 39.774791
42328.29 48.835634
42328.33 46.283958
42328.38 48.833873
42328.42 41.321219
42328.46 49.126166
42328.50 26.070307
42328.54 37.334013
42328.58 44.013403
42328.62 63.076857
42328.67 44.009289
42328.71 53.765517
42328.75 6.907394
42328.79 51.625765
42328.83 64.845969
42328.88 23.791188
42328.92 41.551253
42328.96 45.032033
42329.00 30.722590
42329.04 37.643845
42329.08 33.978619
42329.12 59.975566
42329.17 24.821922
42329.21 24.426441
42329.25 58.768110
42329.29 47.487387
42329.33 41.046481
42329.38 32.077990
42329.42 61.332384
42329.46 33.779878
42329.50 68.860907
42329.54 28.228687
42329.58 41.392049
42329.62 55.493874
42329.67 41.741668
42329.71 54.743921
42329.75 51.711642
42329.79 21.725879
42329.83 45.572460
42329.88 29.984989
42329.92 31.946214
42329.96 74.120935
42330.00 39.799580
42330.04 28.923704
42330.08 34.125230
42330.12 47.261910
42330.17 31.905987
42330.21 53.219995
42330.25 26.944213
42330.29 54.151730
42330.33 31.557127
42330.38 47.108037
42330.42 16.939418
42330.46 56.867922
42330.50 56.924140
42330.54 7.143941
42330.58 49.925868
42330.62 58.971000
42330.67 34.281085
42330.71 42.682790
42330.75 36.855911
42330.79 22.575510
42330.83 43.106407
42330.88 57.423548
42330.92 60.982311
42330.96 19.184503
42331.00 27.031110
42331.04 24.985017
42331.08 41.859799
42331.12 7.230717
42331.17 24.225717
42331.21 46.453707
42331.25 51.230189
42331.29 44.442608
42331.33 49.115951
42331.38 32.865960
42331.42 23.082460
42331.46 34.718627
42331.50 66.163243
42331.54 68.177732
42331.58 42.731288
42331.62 65.160220
42331.67 18.855938
42331.71 28.938320
42331.75 4.388469
42331.79 44.976017
42331.83 35.722734
42331.88 45.347123
42331.92 22.781328
42331.96 43.114767
42332.00 24.184121
42332.04 43.356235
42332.08 35.089344
42332.12 42.129951
42332.17 65.064061
42332.21 31.054652
42332.25 43.142107
42332.29 33.909621
42332.33 25.199164
42332.38 26.900095
42332.42 54.820399
42332.46 36.714245
42332.50 58.612063
42332.54 48.918951
42332.58 55.173613
42332.62 34.770766
42332.67 4.595560
42332.71 17.717682
42332.75 63.682387
42332.79 16.459204
42332.83 39.174167
42332.88 5.544962
42332.92 51.408889
42332.96 71.206396
42333.00 20.604607
42333.04 45.903558
42333.08 47.996068
42333.12 51.515777
42333.17 27.643937
42333.21 19.950425
42333.25 42.934676
42333.29 33.758964
42333.33 60.198257
42333.38 64.822648
42333.42 26.160919
42333.46 44.729294
42333.50 28.503025
42333.54 75.771776
42333.58 27.112065
42333.62 49.403191
42333.67 38.397854
42333.71 38.091870
42333.75 43.485536
42333.79 13.170863
42333.83 52.137698
42333.88 43.204897
42333.92 37.660492
42333.96 31.197636
42334.00 34.074007
42334.04 64.403364
42334.08 61.575249
42334.12 32.426134
42334.17 30.168290
42334.21 37.227840
42334.25 18.700339
42334.29 27.573602
42334.33 48.217705
42334.38 45.173003
42334.42 18.890009
42334.46 27.141646
42334.50 14.635885
42334.54 30.364299
42334.58 8.753475
42334.62 18.768489
42334.67 39.735482
42334.71 13.730282
42334.75 44.824872
42334.79 39.809994
42334.83 28.565875
42334.88 43.661477
42334.92 55.906271
42334.96 31.129181
42335.00 19.962453
42335.04 42.683700
42335.08 59.089857
42335.12 23.640381
42335.17 26.785668
42335.21 40.640046
42335.25 35.918847
42335.29 48.929382
42335.33 25.118402
42335.38 34.981362
42335.42 8.636697
42335.46 59.959267
42335.50 18.643766
42335.54 17.155756
42335.58 5.500306
42335.62 14.505197
42335.67 24.883430
42335.71 54.744878
42335.75 55.735616
42335.79 32.256413
42335.83 38.956010
42335.88 60.020956
42335.92 69.425402
42335.96 8.688084
42336.00 42.970294
42336.04 27.727545
42336.08 38.962854
42336.12 13.365612
42336.17 31.819558
42336.21 33.103063
42336.25 30.924940
42336.29 26.308201
42336.33 9.565704
42336.38 13.830709
42336.42 48.527078
42336.46 29.341300
42336.50 56.402469
42336.54 24.985439
42336.58 36.644183
42336.62 26.098598
42336.67 24.020212
42336.71 50.831756
42336.75 56.770995
42336.79 47.023474
42336.83 59.280305
42336.88 37.453182
42336.92 72.102666
42336.96 30.348483
42337.00 53.805047
42337.04 22.456437
42337.08 60.534383
42337.12 16.088490
42337.17 36.382437
42337.21 59.246121
42337.25 45.077214
42337.29 45.120941
42337.33 38.232433
42337.38 19.465618
42337.42 38.230367
42337.46 18.690932
42337.50 20.769636
42337.54 61.135055
42337.58 27.915517
42337.62 30.520160
42337.67 28.824846
42337.71 69.571855
42337.75 37.361398
42337.79 38.282275
42337.83 46.356586
42337.88 24.056497
42337.92 53.198139
42337.96 35.252730
42338.00 43.607553
42338.04 60.174882
42338.08 17.935532
42338.12 68.517692
42338.17 29.962754
42338.21 61.862104
42338.25 20.989968
42338.29 60.410201
42338.33 59.574523
42338.38 56.018735
42338.42 24.071468
42338.46 49.377007
42338.50 38.429695
42338.54 26.261928
42338.58 66.245234
42338.62 32.917481
42338.67 25.103363
42338.71 27.791581
42338.75 46.185805
42338.79 33.197581
42338.83 45.298259
42338.88 15.820063
42338.92 19.494634
42338.96 39.350548
42339.00 39.319314
42339.04 2.474597
42339.08 41.595853
42339.12 15.030481
42339.17 71.055191
42339.21 52.047501
42339.25 72.879618
42339.29 37.068471
42339.33 34.298235
42339.38 41.579046
42339.42 40.660273
42339.46 61.635744
42339.50 43.405853
42339.54 18.588931
42339.58 47.898820
42339.62 33.526542
42339.67 53.297195
42339.71 29.570191
42339.75 18.813022
42339.79 32.032767
42339.83 43.580802
42339.88 29.927978
42339.92 65.725895
42339.96 14.997650
42340.00 21.467634
42340.04 35.542969
42340.08 67.452311
42340.12 57.589935
42340.17 35.194673
42340.21 46.114270
42340.25 35.049139
42340.29 34.855851
42340.33 31.369865
42340.38 43.440536
42340.42 5.292336
42340.46 15.588859
42340.50 45.724622
42340.54 46.292510
42340.58 38.483379
42340.62 51.287088
42340.67 35.419347
42340.71 38.717686
42340.75 53.184185
42340.79 66.245006
42340.83 40.550695
42340.88 57.073648
42340.92 49.285885
42340.96 22.874043
42341.00 46.236585
42341.04 77.101826
42341.08 49.775351
42341.12 71.134530
42341.17 58.448860
42341.21 58.534300
42341.25 28.555859
42341.29 39.062662
42341.33 16.662519
42341.38 27.000278
42341.42 44.246493
42341.46 72.966772
42341.50 31.483105
42341.54 66.816731
42341.58 42.936656
42341.62 33.401326
42341.67 66.681471

Data Pre-Processing:

In order to use the two datasets together, the readings for pipeline1 must be converted to - - Separate date & hour components of readings - Convert hour to hour-ending to match pipeline2 - Get average reading for each date & hour - Convert back to DateTime and drop separate date/hour columns

waterdata1$DateTime <-  as.POSIXct(waterdata1$DateTimeNbr*(60*60*24),origin="1899-12-30", tz="GMT")

waterdata1 <- waterdata1 %>% mutate(DATE = date(DateTime),HOUR = hour(DateTime) + 1) %>% 
  group_by(DATE, HOUR) %>% summarise(WaterFlow = mean(WaterFlow)) %>% 
  ungroup() %>% mutate(DateTime = ymd_h(paste(DATE, HOUR))) %>% 
  select(DateTime, WaterFlow)
## `summarise()` regrouping output by 'DATE' (override with `.groups` argument)
waterdata2 <- waterdata2 %>% mutate(DateTime = round(as.POSIXct(DateTimeNbr*(60*60*24),origin="1899-12-30", tz="GMT"),"hours"))  %>% select(DateTime, WaterFlow)

Now, I have joined the two datasets together and converted to a time series object -

  • Join based on common DateTime column
    • sum the WaterFlow to calculate total flow by hour
# create df with both observations for each hour
waterdata <- full_join(waterdata1, waterdata2, by = "DateTime", suffix = c("_1", "_2")) %>%
  mutate(WaterFlow_1 = ifelse(is.na(WaterFlow_1), 0, WaterFlow_1)) %>% 
  mutate(WaterFlow = WaterFlow_1 + WaterFlow_2) %>% 
  select(DateTime, WaterFlow)

waterdata %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DateTime WaterFlow
2015-10-23 01:00:00 44.913587
2015-10-23 02:00:00 61.939045
2015-10-23 03:00:00 53.146275
2015-10-23 04:00:00 59.199235
2015-10-23 05:00:00 47.333452
2015-10-23 06:00:00 50.963484
2015-10-23 07:00:00 30.453456
2015-10-23 08:00:00 45.046642
2015-10-23 09:00:00 76.565484
2015-10-23 10:00:00 75.375644
2015-10-23 11:00:00 85.001352
2015-10-23 12:00:00 77.798197
2015-10-23 13:00:00 77.304770
2015-10-23 14:00:00 33.435304
2015-10-23 15:00:00 60.143067
2015-10-23 16:00:00 67.079317
2015-10-23 17:00:00 84.877133
2015-10-23 18:00:00 50.851054
2015-10-23 19:00:00 32.179716
2015-10-23 20:00:00 51.323004
2015-10-23 21:00:00 69.854272
2015-10-23 22:00:00 64.226059
2015-10-23 23:00:00 60.754026
2015-10-24 00:00:00 78.936585
2015-10-24 01:00:00 67.728550
2015-10-24 02:00:00 60.410369
2015-10-24 03:00:00 74.352764
2015-10-24 04:00:00 51.297994
2015-10-24 05:00:00 74.440559
2015-10-24 06:00:00 67.717533
2015-10-24 07:00:00 69.119660
2015-10-24 08:00:00 61.369718
2015-10-24 09:00:00 33.100503
2015-10-24 10:00:00 71.722499
2015-10-24 11:00:00 48.754761
2015-10-24 12:00:00 53.565474
2015-10-24 13:00:00 71.160189
2015-10-24 14:00:00 79.889938
2015-10-24 15:00:00 79.227245
2015-10-24 16:00:00 43.333733
2015-10-24 17:00:00 71.814457
2015-10-24 18:00:00 77.291741
2015-10-24 19:00:00 62.655845
2015-10-24 20:00:00 55.611404
2015-10-24 21:00:00 72.157100
2015-10-24 22:00:00 86.106605
2015-10-24 23:00:00 40.611043
2015-10-25 00:00:00 80.704487
2015-10-25 01:00:00 60.833827
2015-10-25 02:00:00 68.508260
2015-10-25 03:00:00 76.796333
2015-10-25 04:00:00 45.899307
2015-10-25 05:00:00 63.981689
2015-10-25 06:00:00 83.291955
2015-10-25 07:00:00 59.127044
2015-10-25 08:00:00 59.835947
2015-10-25 09:00:00 76.036122
2015-10-25 10:00:00 57.815561
2015-10-25 11:00:00 60.237266
2015-10-25 12:00:00 60.734361
2015-10-25 13:00:00 77.455250
2015-10-25 14:00:00 75.811548
2015-10-25 15:00:00 40.876445
2015-10-25 16:00:00 81.056366
2015-10-25 17:00:00 69.088860
2015-10-25 18:00:00 97.982368
2015-10-25 19:00:00 44.859779
2015-10-25 20:00:00 64.793522
2015-10-25 21:00:00 36.393138
2015-10-25 22:00:00 36.035442
2015-10-25 23:00:00 61.172974
2015-10-26 00:00:00 90.128783
2015-10-26 01:00:00 59.978722
2015-10-26 02:00:00 51.838174
2015-10-26 03:00:00 61.708271
2015-10-26 04:00:00 85.435500
2015-10-26 05:00:00 60.967194
2015-10-26 06:00:00 57.025956
2015-10-26 07:00:00 47.530751
2015-10-26 08:00:00 73.834294
2015-10-26 09:00:00 45.541056
2015-10-26 10:00:00 60.242044
2015-10-26 11:00:00 46.003931
2015-10-26 12:00:00 39.598331
2015-10-26 13:00:00 30.103218
2015-10-26 14:00:00 55.476486
2015-10-26 15:00:00 41.884060
2015-10-26 16:00:00 79.630356
2015-10-26 17:00:00 43.319021
2015-10-26 18:00:00 59.978169
2015-10-26 19:00:00 63.490688
2015-10-26 20:00:00 65.405400
2015-10-26 21:00:00 45.702978
2015-10-26 22:00:00 52.443374
2015-10-26 23:00:00 30.368000
2015-10-27 00:00:00 90.434675
2015-10-27 01:00:00 33.569063
2015-10-27 02:00:00 64.741111
2015-10-27 03:00:00 60.745175
2015-10-27 04:00:00 40.558862
2015-10-27 05:00:00 74.921669
2015-10-27 06:00:00 54.531095
2015-10-27 07:00:00 39.797211
2015-10-27 08:00:00 36.160630
2015-10-27 09:00:00 69.383589
2015-10-27 10:00:00 18.010664
2015-10-27 11:00:00 46.219085
2015-10-27 12:00:00 34.842914
2015-10-27 13:00:00 53.375684
2015-10-27 14:00:00 76.009184
2015-10-27 15:00:00 53.658201
2015-10-27 16:00:00 64.920602
2015-10-27 17:00:00 70.311094
2015-10-27 19:00:00 33.244571
2015-10-27 20:00:00 71.845024
2015-10-27 21:00:00 70.239627
2015-10-27 22:00:00 52.819041
2015-10-27 23:00:00 45.773119
2015-10-28 00:00:00 68.205262
2015-10-28 02:00:00 54.795891
2015-10-28 03:00:00 63.724657
2015-10-28 04:00:00 38.574063
2015-10-28 05:00:00 52.376021
2015-10-28 06:00:00 86.912476
2015-10-28 07:00:00 34.940857
2015-10-28 08:00:00 24.949979
2015-10-28 09:00:00 49.298940
2015-10-28 10:00:00 25.364046
2015-10-28 11:00:00 76.554073
2015-10-28 12:00:00 70.602271
2015-10-28 13:00:00 63.360553
2015-10-28 14:00:00 48.890440
2015-10-28 15:00:00 70.607185
2015-10-28 16:00:00 76.747527
2015-10-28 17:00:00 53.883569
2015-10-28 18:00:00 63.932021
2015-10-28 19:00:00 90.777018
2015-10-28 20:00:00 39.159989
2015-10-28 21:00:00 81.518601
2015-10-28 22:00:00 69.265276
2015-10-28 23:00:00 57.428065
2015-10-29 00:00:00 67.930103
2015-10-29 01:00:00 54.912230
2015-10-29 02:00:00 86.921997
2015-10-29 03:00:00 49.888050
2015-10-29 04:00:00 34.560341
2015-10-29 05:00:00 40.619639
2015-10-29 06:00:00 46.912486
2015-10-29 07:00:00 66.122124
2015-10-29 08:00:00 29.913065
2015-10-29 09:00:00 48.112761
2015-10-29 10:00:00 51.028002
2015-10-29 11:00:00 31.690544
2015-10-29 12:00:00 69.479133
2015-10-29 13:00:00 39.693073
2015-10-29 14:00:00 38.841494
2015-10-29 15:00:00 106.498661
2015-10-29 16:00:00 52.419169
2015-10-29 17:00:00 65.718025
2015-10-29 18:00:00 83.210785
2015-10-29 19:00:00 27.200803
2015-10-29 20:00:00 66.631265
2015-10-29 21:00:00 64.137879
2015-10-29 22:00:00 32.504478
2015-10-29 23:00:00 59.285917
2015-10-30 00:00:00 82.212442
2015-10-30 01:00:00 43.909347
2015-10-30 02:00:00 69.783034
2015-10-30 03:00:00 79.742385
2015-10-30 04:00:00 56.357222
2015-10-30 05:00:00 38.185796
2015-10-30 06:00:00 72.786180
2015-10-30 07:00:00 71.810647
2015-10-30 08:00:00 85.095304
2015-10-30 09:00:00 64.522958
2015-10-30 10:00:00 49.350691
2015-10-30 11:00:00 52.421844
2015-10-30 12:00:00 53.780605
2015-10-30 13:00:00 64.310550
2015-10-30 14:00:00 61.204439
2015-10-30 15:00:00 92.421152
2015-10-30 16:00:00 59.725705
2015-10-30 17:00:00 65.648968
2015-10-30 18:00:00 97.334852
2015-10-30 19:00:00 45.534784
2015-10-30 20:00:00 58.953140
2015-10-30 21:00:00 67.247357
2015-10-30 22:00:00 34.670658
2015-10-30 23:00:00 57.399450
2015-10-31 00:00:00 70.518282
2015-10-31 01:00:00 92.003273
2015-10-31 02:00:00 55.453464
2015-10-31 03:00:00 82.299031
2015-10-31 04:00:00 50.264340
2015-10-31 05:00:00 65.460709
2015-10-31 06:00:00 61.613500
2015-10-31 07:00:00 38.519453
2015-10-31 08:00:00 67.029686
2015-10-31 09:00:00 34.778057
2015-10-31 10:00:00 55.034934
2015-10-31 11:00:00 59.489782
2015-10-31 12:00:00 61.995140
2015-10-31 13:00:00 62.304632
2015-10-31 14:00:00 65.391823
2015-10-31 15:00:00 80.346087
2015-10-31 16:00:00 67.914178
2015-10-31 17:00:00 31.024587
2015-10-31 18:00:00 55.407324
2015-10-31 19:00:00 53.558740
2015-10-31 20:00:00 74.085136
2015-10-31 21:00:00 44.700169
2015-10-31 22:00:00 65.353078
2015-10-31 23:00:00 82.893232
2015-11-01 00:00:00 29.844402
2015-11-01 01:00:00 71.732562
2015-11-01 02:00:00 68.548480
2015-11-01 03:00:00 72.316774
2015-11-01 04:00:00 57.537986
2015-11-01 05:00:00 88.466733
2015-11-01 07:00:00 39.192589
2015-11-01 08:00:00 65.482031
2015-11-01 09:00:00 64.091511
2015-11-01 11:00:00 55.113433
2015-11-01 12:00:00 73.109812
2015-11-01 13:00:00 39.837476
2015-11-01 14:00:00 51.943454
2015-11-01 15:00:00 48.977677
2015-11-01 16:00:00 58.922026
2015-11-01 17:00:00 23.845301
2015-11-01 18:00:00 67.380438
2015-11-01 19:00:00 61.372422
2015-11-01 20:00:00 36.736413
2015-11-01 21:00:00 43.653505
2015-11-01 22:00:00 70.872964
2015-11-01 23:00:00 81.433507
2015-11-02 00:00:00 38.801579
2015-10-27 18:00:00 55.343373
2015-10-28 01:00:00 42.308140
2015-11-01 06:00:00 45.642905
2015-11-01 10:00:00 36.391814
2015-11-02 01:00:00 69.677403
2015-11-02 02:00:00 70.643756
2015-11-02 03:00:00 32.130700
2015-11-02 04:00:00 43.286488
2015-11-02 05:00:00 46.519110
2015-11-02 06:00:00 49.418788
2015-11-02 07:00:00 22.603133
2015-11-02 08:00:00 17.204039
2015-11-02 09:00:00 36.098841
2015-11-02 10:00:00 37.426039
2015-11-02 11:00:00 68.958258
2015-11-02 12:00:00 56.355300
2015-11-02 13:00:00 27.421826
2015-11-02 14:00:00 21.977013
2015-11-02 15:00:00 31.650012
2015-11-02 16:00:00 19.103725
2015-11-02 17:00:00 40.573976
2015-11-02 18:00:00 34.139365
2015-11-02 19:00:00 31.604146
2015-11-02 20:00:00 53.455162
2015-11-02 21:00:00 50.932862
2015-11-02 22:00:00 21.382117
2015-11-02 23:00:00 28.707991
2015-11-03 00:00:00 28.266119
2015-11-03 01:00:00 56.643025
2015-11-03 02:00:00 65.491297
2015-11-03 03:00:00 45.264900
2015-11-03 04:00:00 32.083226
2015-11-03 05:00:00 20.034940
2015-11-03 06:00:00 59.361131
2015-11-03 07:00:00 63.062853
2015-11-03 08:00:00 36.311024
2015-11-03 09:00:00 28.786016
2015-11-03 10:00:00 41.529467
2015-11-03 11:00:00 15.911946
2015-11-03 12:00:00 50.859685
2015-11-03 13:00:00 43.005399
2015-11-03 14:00:00 34.650963
2015-11-03 15:00:00 53.490976
2015-11-03 16:00:00 30.670295
2015-11-03 17:00:00 11.915951
2015-11-03 18:00:00 24.722517
2015-11-03 19:00:00 38.936218
2015-11-03 20:00:00 35.450478
2015-11-03 21:00:00 45.970258
2015-11-03 22:00:00 56.407256
2015-11-03 23:00:00 49.554872
2015-11-04 00:00:00 48.358182
2015-11-04 01:00:00 16.816164
2015-11-04 02:00:00 19.084841
2015-11-04 03:00:00 49.944728
2015-11-04 04:00:00 21.617885
2015-11-04 05:00:00 26.981540
2015-11-04 06:00:00 51.754010
2015-11-04 07:00:00 35.729160
2015-11-04 08:00:00 71.273732
2015-11-04 09:00:00 28.418581
2015-11-04 10:00:00 16.964691
2015-11-04 11:00:00 47.892948
2015-11-04 12:00:00 50.257181
2015-11-04 13:00:00 48.595430
2015-11-04 14:00:00 49.996359
2015-11-04 15:00:00 48.920110
2015-11-04 16:00:00 68.161543
2015-11-04 17:00:00 30.529780
2015-11-04 18:00:00 55.694453
2015-11-04 19:00:00 47.145238
2015-11-04 20:00:00 50.778857
2015-11-04 21:00:00 47.658571
2015-11-04 22:00:00 26.331098
2015-11-04 23:00:00 67.761091
2015-11-05 00:00:00 51.085154
2015-11-05 01:00:00 41.117956
2015-11-05 02:00:00 9.068800
2015-11-05 03:00:00 61.260012
2015-11-05 04:00:00 20.384767
2015-11-05 05:00:00 23.371558
2015-11-05 06:00:00 54.130721
2015-11-05 07:00:00 47.173422
2015-11-05 08:00:00 17.330480
2015-11-05 09:00:00 27.900997
2015-11-05 10:00:00 60.693928
2015-11-05 11:00:00 55.750439
2015-11-05 12:00:00 31.980729
2015-11-05 13:00:00 46.026815
2015-11-05 14:00:00 51.486720
2015-11-05 15:00:00 35.083882
2015-11-05 16:00:00 29.222731
2015-11-05 17:00:00 38.054577
2015-11-05 18:00:00 32.803461
2015-11-05 19:00:00 34.590651
2015-11-05 20:00:00 7.041455
2015-11-05 21:00:00 43.879486
2015-11-05 22:00:00 54.260075
2015-11-05 23:00:00 49.607998
2015-11-06 00:00:00 51.166843
2015-11-06 01:00:00 60.332261
2015-11-06 02:00:00 54.000615
2015-11-06 03:00:00 48.402953
2015-11-06 04:00:00 71.293996
2015-11-06 05:00:00 25.864377
2015-11-06 06:00:00 43.534985
2015-11-06 07:00:00 10.294754
2015-11-06 08:00:00 27.211552
2015-11-06 09:00:00 68.771180
2015-11-06 10:00:00 40.635575
2015-11-06 11:00:00 48.547279
2015-11-06 12:00:00 51.211695
2015-11-06 13:00:00 62.323132
2015-11-06 14:00:00 36.042205
2015-11-06 15:00:00 65.867425
2015-11-06 16:00:00 43.091257
2015-11-06 17:00:00 49.999283
2015-11-06 18:00:00 42.753244
2015-11-06 19:00:00 43.280302
2015-11-06 20:00:00 12.215143
2015-11-06 21:00:00 30.790950
2015-11-06 22:00:00 43.146264
2015-11-06 23:00:00 24.862962
2015-11-07 00:00:00 60.419541
2015-11-07 01:00:00 2.829191
2015-11-07 02:00:00 41.358591
2015-11-07 03:00:00 32.518025
2015-11-07 04:00:00 32.936246
2015-11-07 05:00:00 53.903692
2015-11-07 06:00:00 54.349240
2015-11-07 07:00:00 48.667338
2015-11-07 08:00:00 43.697246
2015-11-07 09:00:00 64.391019
2015-11-07 10:00:00 54.642566
2015-11-07 11:00:00 31.579795
2015-11-07 12:00:00 10.697792
2015-11-07 13:00:00 69.408304
2015-11-07 14:00:00 57.739228
2015-11-07 15:00:00 54.043036
2015-11-07 16:00:00 21.378107
2015-11-07 17:00:00 68.557246
2015-11-07 18:00:00 49.990255
2015-11-07 19:00:00 60.870852
2015-11-07 20:00:00 15.231194
2015-11-07 21:00:00 35.271872
2015-11-07 22:00:00 47.834724
2015-11-07 23:00:00 39.042589
2015-11-08 00:00:00 31.282543
2015-11-08 01:00:00 34.318646
2015-11-08 02:00:00 45.695737
2015-11-08 03:00:00 34.761724
2015-11-08 04:00:00 41.324282
2015-11-08 05:00:00 22.815585
2015-11-08 06:00:00 63.250742
2015-11-08 07:00:00 13.839852
2015-11-08 08:00:00 46.006283
2015-11-08 09:00:00 44.493733
2015-11-08 10:00:00 63.378401
2015-11-08 11:00:00 42.817629
2015-11-08 12:00:00 45.072082
2015-11-08 13:00:00 46.040137
2015-11-08 14:00:00 11.573340
2015-11-08 15:00:00 39.922730
2015-11-08 16:00:00 40.153338
2015-11-08 17:00:00 63.037254
2015-11-08 18:00:00 48.776710
2015-11-08 19:00:00 53.306946
2015-11-08 20:00:00 41.484211
2015-11-08 21:00:00 45.348702
2015-11-08 22:00:00 54.969466
2015-11-08 23:00:00 47.595072
2015-11-09 00:00:00 40.591619
2015-11-09 01:00:00 43.363619
2015-11-09 02:00:00 65.789153
2015-11-09 03:00:00 29.012179
2015-11-09 04:00:00 38.944844
2015-11-09 05:00:00 26.349575
2015-11-09 06:00:00 33.638500
2015-11-09 07:00:00 8.524681
2015-11-09 08:00:00 7.047517
2015-11-09 09:00:00 71.864778
2015-11-09 10:00:00 33.775195
2015-11-09 11:00:00 34.524480
2015-11-09 12:00:00 13.277970
2015-11-09 13:00:00 20.951475
2015-11-09 14:00:00 42.715256
2015-11-09 15:00:00 51.101163
2015-11-09 16:00:00 8.718182
2015-11-09 17:00:00 23.884311
2015-11-09 18:00:00 44.208632
2015-11-09 19:00:00 47.094925
2015-11-09 20:00:00 25.140574
2015-11-09 21:00:00 33.723718
2015-11-09 22:00:00 23.366525
2015-11-09 23:00:00 41.851025
2015-11-10 00:00:00 28.565955
2015-11-10 01:00:00 49.010418
2015-11-10 02:00:00 76.953288
2015-11-10 03:00:00 33.641144
2015-11-10 04:00:00 61.127699
2015-11-10 05:00:00 61.822340
2015-11-10 06:00:00 22.690029
2015-11-10 07:00:00 52.496753
2015-11-10 08:00:00 26.962412
2015-11-10 09:00:00 55.912366
2015-11-10 10:00:00 38.827366
2015-11-10 11:00:00 51.170992
2015-11-10 12:00:00 38.982250
2015-11-10 13:00:00 36.403632
2015-11-10 14:00:00 45.511136
2015-11-10 15:00:00 35.450764
2015-11-10 16:00:00 12.781466
2015-11-10 17:00:00 34.596144
2015-11-10 18:00:00 19.863000
2015-11-10 19:00:00 61.422724
2015-11-10 20:00:00 37.871542
2015-11-10 21:00:00 44.714030
2015-11-10 22:00:00 52.438546
2015-11-10 23:00:00 21.870034
2015-11-11 00:00:00 42.775527
2015-11-11 01:00:00 37.075660
2015-11-11 02:00:00 55.922491
2015-11-11 03:00:00 21.725370
2015-11-11 04:00:00 27.383226
2015-11-11 05:00:00 26.474453
2015-11-11 06:00:00 24.992206
2015-11-11 07:00:00 29.420236
2015-11-11 08:00:00 18.593189
2015-11-11 09:00:00 19.401002
2015-11-11 10:00:00 30.797664
2015-11-11 11:00:00 53.005290
2015-11-11 12:00:00 29.785165
2015-11-11 13:00:00 48.478284
2015-11-11 14:00:00 41.000063
2015-11-11 15:00:00 55.985426
2015-11-11 16:00:00 23.593107
2015-11-11 17:00:00 16.929397
2015-11-11 18:00:00 26.105809
2015-11-11 19:00:00 27.278099
2015-11-11 20:00:00 35.966696
2015-11-11 21:00:00 62.321017
2015-11-11 22:00:00 22.551005
2015-11-11 23:00:00 32.326498
2015-11-12 00:00:00 36.768426
2015-11-12 01:00:00 16.655779
2015-11-12 02:00:00 50.903035
2015-11-12 03:00:00 32.744233
2015-11-12 04:00:00 43.446611
2015-11-12 05:00:00 12.872882
2015-11-12 06:00:00 43.626821
2015-11-12 07:00:00 17.932564
2015-11-12 08:00:00 46.430782
2015-11-12 09:00:00 47.555630
2015-11-12 10:00:00 23.164628
2015-11-12 11:00:00 36.320166
2015-11-12 12:00:00 41.829277
2015-11-12 13:00:00 65.063811
2015-11-12 14:00:00 53.996669
2015-11-12 15:00:00 53.065490
2015-11-12 16:00:00 36.048012
2015-11-12 17:00:00 23.164822
2015-11-12 18:00:00 38.652909
2015-11-12 19:00:00 48.085267
2015-11-12 20:00:00 39.547030
2015-11-12 21:00:00 36.281582
2015-11-12 22:00:00 22.304580
2015-11-12 23:00:00 39.054497
2015-11-13 00:00:00 62.456375
2015-11-13 01:00:00 21.058794
2015-11-13 02:00:00 24.986703
2015-11-13 03:00:00 47.340037
2015-11-13 04:00:00 42.103710
2015-11-13 05:00:00 46.277421
2015-11-13 06:00:00 41.346360
2015-11-13 07:00:00 8.198421
2015-11-13 08:00:00 49.820480
2015-11-13 09:00:00 52.630520
2015-11-13 10:00:00 14.320846
2015-11-13 11:00:00 29.429210
2015-11-13 12:00:00 46.610070
2015-11-13 13:00:00 27.718158
2015-11-13 14:00:00 43.646591
2015-11-13 15:00:00 58.249277
2015-11-13 16:00:00 37.955810
2015-11-13 17:00:00 53.167141
2015-11-13 18:00:00 17.003180
2015-11-13 19:00:00 36.987767
2015-11-13 20:00:00 69.421289
2015-11-13 21:00:00 42.282380
2015-11-13 22:00:00 60.299183
2015-11-13 23:00:00 77.388036
2015-11-14 00:00:00 38.187514
2015-11-14 01:00:00 73.920364
2015-11-14 02:00:00 23.427619
2015-11-14 03:00:00 74.049763
2015-11-14 04:00:00 71.025842
2015-11-14 05:00:00 36.310935
2015-11-14 06:00:00 69.727846
2015-11-14 07:00:00 47.318911
2015-11-14 08:00:00 54.552009
2015-11-14 09:00:00 22.047066
2015-11-14 10:00:00 33.286940
2015-11-14 11:00:00 44.805901
2015-11-14 12:00:00 30.968865
2015-11-14 13:00:00 32.250332
2015-11-14 14:00:00 60.449541
2015-11-14 15:00:00 17.006485
2015-11-14 16:00:00 42.845801
2015-11-14 17:00:00 47.528852
2015-11-14 18:00:00 39.715687
2015-11-14 19:00:00 23.905351
2015-11-14 20:00:00 60.468321
2015-11-14 21:00:00 16.016156
2015-11-14 22:00:00 24.913911
2015-11-14 23:00:00 52.127222
2015-11-15 00:00:00 31.771907
2015-11-15 01:00:00 33.992850
2015-11-15 02:00:00 12.282765
2015-11-15 03:00:00 50.596037
2015-11-15 04:00:00 31.542007
2015-11-15 05:00:00 20.514348
2015-11-15 06:00:00 27.990267
2015-11-15 07:00:00 70.663541
2015-11-15 08:00:00 44.674916
2015-11-15 09:00:00 22.821463
2015-11-15 10:00:00 28.171757
2015-11-15 11:00:00 38.060556
2015-11-15 12:00:00 28.251189
2015-11-15 13:00:00 20.650803
2015-11-15 14:00:00 42.038281
2015-11-15 15:00:00 33.657499
2015-11-15 16:00:00 24.628537
2015-11-15 17:00:00 62.740169
2015-11-15 18:00:00 37.227280
2015-11-15 19:00:00 66.834372
2015-11-15 20:00:00 54.885094
2015-11-15 21:00:00 38.741754
2015-11-15 22:00:00 52.565861
2015-11-15 23:00:00 42.011579
2015-11-16 00:00:00 1.884618
2015-11-16 01:00:00 33.697009
2015-11-16 02:00:00 35.136376
2015-11-16 03:00:00 52.342981
2015-11-16 04:00:00 56.699116
2015-11-16 05:00:00 55.563435
2015-11-16 06:00:00 45.758364
2015-11-16 07:00:00 50.659673
2015-11-16 08:00:00 40.169564
2015-11-16 09:00:00 24.979220
2015-11-16 10:00:00 47.796589
2015-11-16 11:00:00 35.726957
2015-11-16 12:00:00 54.028989
2015-11-16 13:00:00 45.341975
2015-11-16 14:00:00 48.476311
2015-11-16 15:00:00 33.640512
2015-11-16 16:00:00 30.864809
2015-11-16 17:00:00 20.844211
2015-11-16 18:00:00 19.803964
2015-11-16 19:00:00 36.264543
2015-11-16 20:00:00 31.291821
2015-11-16 21:00:00 10.358942
2015-11-16 22:00:00 31.271942
2015-11-16 23:00:00 39.143974
2015-11-17 00:00:00 40.599863
2015-11-17 01:00:00 4.404232
2015-11-17 02:00:00 60.532204
2015-11-17 03:00:00 42.654711
2015-11-17 04:00:00 11.865801
2015-11-17 05:00:00 22.798883
2015-11-17 06:00:00 32.524959
2015-11-17 07:00:00 65.957563
2015-11-17 08:00:00 26.382528
2015-11-17 09:00:00 33.062656
2015-11-17 10:00:00 18.365385
2015-11-17 11:00:00 59.433134
2015-11-17 12:00:00 38.719453
2015-11-17 13:00:00 70.619444
2015-11-17 14:00:00 51.069993
2015-11-17 15:00:00 29.489031
2015-11-17 16:00:00 15.808655
2015-11-17 17:00:00 39.223626
2015-11-17 18:00:00 47.080228
2015-11-17 19:00:00 41.980568
2015-11-17 20:00:00 61.214361
2015-11-17 21:00:00 23.836742
2015-11-17 22:00:00 35.213413
2015-11-17 23:00:00 66.174825
2015-11-18 00:00:00 11.472738
2015-11-18 01:00:00 40.944768
2015-11-18 02:00:00 73.297982
2015-11-18 03:00:00 21.705112
2015-11-18 04:00:00 13.445279
2015-11-18 05:00:00 33.855644
2015-11-18 06:00:00 38.425269
2015-11-18 07:00:00 7.564169
2015-11-18 08:00:00 20.792792
2015-11-18 09:00:00 47.126813
2015-11-18 10:00:00 38.557200
2015-11-18 11:00:00 30.619750
2015-11-18 12:00:00 27.548411
2015-11-18 13:00:00 34.697505
2015-11-18 14:00:00 36.676699
2015-11-18 15:00:00 30.025806
2015-11-18 16:00:00 44.290001
2015-11-18 17:00:00 31.476714
2015-11-18 18:00:00 16.554329
2015-11-18 19:00:00 28.467637
2015-11-18 20:00:00 60.756805
2015-11-18 21:00:00 53.156311
2015-11-18 22:00:00 43.736182
2015-11-18 23:00:00 44.678285
2015-11-19 00:00:00 32.500159
2015-11-19 01:00:00 53.096718
2015-11-19 02:00:00 50.450171
2015-11-19 03:00:00 20.671851
2015-11-19 04:00:00 48.500930
2015-11-19 05:00:00 55.872094
2015-11-19 06:00:00 16.955515
2015-11-19 07:00:00 47.782032
2015-11-19 08:00:00 64.182162
2015-11-19 09:00:00 19.123758
2015-11-19 10:00:00 26.630040
2015-11-19 11:00:00 24.693264
2015-11-19 12:00:00 14.882576
2015-11-19 13:00:00 54.702633
2015-11-19 14:00:00 28.045472
2015-11-19 15:00:00 44.237443
2015-11-19 16:00:00 53.989477
2015-11-19 17:00:00 44.208531
2015-11-19 18:00:00 44.145634
2015-11-19 19:00:00 40.174149
2015-11-19 20:00:00 75.699763
2015-11-19 21:00:00 33.688595
2015-11-19 22:00:00 60.315099
2015-11-19 23:00:00 37.811607
2015-11-20 00:00:00 62.216296
2015-11-20 01:00:00 21.923579
2015-11-20 02:00:00 50.856824
2015-11-20 03:00:00 9.506527
2015-11-20 04:00:00 39.037833
2015-11-20 05:00:00 47.392675
2015-11-20 06:00:00 39.774791
2015-11-20 07:00:00 48.835634
2015-11-20 08:00:00 46.283958
2015-11-20 09:00:00 48.833873
2015-11-20 10:00:00 41.321219
2015-11-20 11:00:00 49.126166
2015-11-20 12:00:00 26.070307
2015-11-20 13:00:00 37.334013
2015-11-20 14:00:00 44.013403
2015-11-20 15:00:00 63.076857
2015-11-20 16:00:00 44.009289
2015-11-20 17:00:00 53.765517
2015-11-20 18:00:00 6.907394
2015-11-20 19:00:00 51.625765
2015-11-20 20:00:00 64.845969
2015-11-20 21:00:00 23.791188
2015-11-20 22:00:00 41.551253
2015-11-20 23:00:00 45.032033
2015-11-21 00:00:00 30.722590
2015-11-21 01:00:00 37.643845
2015-11-21 02:00:00 33.978619
2015-11-21 03:00:00 59.975566
2015-11-21 04:00:00 24.821922
2015-11-21 05:00:00 24.426441
2015-11-21 06:00:00 58.768110
2015-11-21 07:00:00 47.487387
2015-11-21 08:00:00 41.046481
2015-11-21 09:00:00 32.077990
2015-11-21 10:00:00 61.332384
2015-11-21 11:00:00 33.779878
2015-11-21 12:00:00 68.860907
2015-11-21 13:00:00 28.228687
2015-11-21 14:00:00 41.392049
2015-11-21 15:00:00 55.493874
2015-11-21 16:00:00 41.741668
2015-11-21 17:00:00 54.743921
2015-11-21 18:00:00 51.711642
2015-11-21 19:00:00 21.725879
2015-11-21 20:00:00 45.572460
2015-11-21 21:00:00 29.984989
2015-11-21 22:00:00 31.946214
2015-11-21 23:00:00 74.120935
2015-11-22 00:00:00 39.799580
2015-11-22 01:00:00 28.923704
2015-11-22 02:00:00 34.125230
2015-11-22 03:00:00 47.261910
2015-11-22 04:00:00 31.905987
2015-11-22 05:00:00 53.219995
2015-11-22 06:00:00 26.944213
2015-11-22 07:00:00 54.151730
2015-11-22 08:00:00 31.557127
2015-11-22 09:00:00 47.108037
2015-11-22 10:00:00 16.939418
2015-11-22 11:00:00 56.867922
2015-11-22 12:00:00 56.924140
2015-11-22 13:00:00 7.143941
2015-11-22 14:00:00 49.925868
2015-11-22 15:00:00 58.971000
2015-11-22 16:00:00 34.281085
2015-11-22 17:00:00 42.682790
2015-11-22 18:00:00 36.855911
2015-11-22 19:00:00 22.575510
2015-11-22 20:00:00 43.106407
2015-11-22 21:00:00 57.423548
2015-11-22 22:00:00 60.982311
2015-11-22 23:00:00 19.184503
2015-11-23 00:00:00 27.031110
2015-11-23 01:00:00 24.985017
2015-11-23 02:00:00 41.859799
2015-11-23 03:00:00 7.230717
2015-11-23 04:00:00 24.225717
2015-11-23 05:00:00 46.453707
2015-11-23 06:00:00 51.230189
2015-11-23 07:00:00 44.442608
2015-11-23 08:00:00 49.115951
2015-11-23 09:00:00 32.865960
2015-11-23 10:00:00 23.082460
2015-11-23 11:00:00 34.718627
2015-11-23 12:00:00 66.163243
2015-11-23 13:00:00 68.177732
2015-11-23 14:00:00 42.731288
2015-11-23 15:00:00 65.160220
2015-11-23 16:00:00 18.855938
2015-11-23 17:00:00 28.938320
2015-11-23 18:00:00 4.388469
2015-11-23 19:00:00 44.976017
2015-11-23 20:00:00 35.722734
2015-11-23 21:00:00 45.347123
2015-11-23 22:00:00 22.781328
2015-11-23 23:00:00 43.114767
2015-11-24 00:00:00 24.184121
2015-11-24 01:00:00 43.356235
2015-11-24 02:00:00 35.089344
2015-11-24 03:00:00 42.129951
2015-11-24 04:00:00 65.064061
2015-11-24 05:00:00 31.054652
2015-11-24 06:00:00 43.142107
2015-11-24 07:00:00 33.909621
2015-11-24 08:00:00 25.199164
2015-11-24 09:00:00 26.900095
2015-11-24 10:00:00 54.820399
2015-11-24 11:00:00 36.714245
2015-11-24 12:00:00 58.612063
2015-11-24 13:00:00 48.918951
2015-11-24 14:00:00 55.173613
2015-11-24 15:00:00 34.770766
2015-11-24 16:00:00 4.595560
2015-11-24 17:00:00 17.717682
2015-11-24 18:00:00 63.682387
2015-11-24 19:00:00 16.459204
2015-11-24 20:00:00 39.174167
2015-11-24 21:00:00 5.544962
2015-11-24 22:00:00 51.408889
2015-11-24 23:00:00 71.206396
2015-11-25 00:00:00 20.604607
2015-11-25 01:00:00 45.903558
2015-11-25 02:00:00 47.996068
2015-11-25 03:00:00 51.515777
2015-11-25 04:00:00 27.643937
2015-11-25 05:00:00 19.950425
2015-11-25 06:00:00 42.934676
2015-11-25 07:00:00 33.758964
2015-11-25 08:00:00 60.198257
2015-11-25 09:00:00 64.822648
2015-11-25 10:00:00 26.160919
2015-11-25 11:00:00 44.729294
2015-11-25 12:00:00 28.503025
2015-11-25 13:00:00 75.771776
2015-11-25 14:00:00 27.112065
2015-11-25 15:00:00 49.403191
2015-11-25 16:00:00 38.397854
2015-11-25 17:00:00 38.091870
2015-11-25 18:00:00 43.485536
2015-11-25 19:00:00 13.170863
2015-11-25 20:00:00 52.137698
2015-11-25 21:00:00 43.204897
2015-11-25 22:00:00 37.660492
2015-11-25 23:00:00 31.197636
2015-11-26 00:00:00 34.074007
2015-11-26 01:00:00 64.403364
2015-11-26 02:00:00 61.575249
2015-11-26 03:00:00 32.426134
2015-11-26 04:00:00 30.168290
2015-11-26 05:00:00 37.227840
2015-11-26 06:00:00 18.700339
2015-11-26 07:00:00 27.573602
2015-11-26 08:00:00 48.217705
2015-11-26 09:00:00 45.173003
2015-11-26 10:00:00 18.890009
2015-11-26 11:00:00 27.141646
2015-11-26 12:00:00 14.635885
2015-11-26 13:00:00 30.364299
2015-11-26 14:00:00 8.753475
2015-11-26 15:00:00 18.768489
2015-11-26 16:00:00 39.735482
2015-11-26 17:00:00 13.730282
2015-11-26 18:00:00 44.824872
2015-11-26 19:00:00 39.809994
2015-11-26 20:00:00 28.565875
2015-11-26 21:00:00 43.661477
2015-11-26 22:00:00 55.906271
2015-11-26 23:00:00 31.129181
2015-11-27 00:00:00 19.962453
2015-11-27 01:00:00 42.683700
2015-11-27 02:00:00 59.089857
2015-11-27 03:00:00 23.640381
2015-11-27 04:00:00 26.785668
2015-11-27 05:00:00 40.640046
2015-11-27 06:00:00 35.918847
2015-11-27 07:00:00 48.929382
2015-11-27 08:00:00 25.118402
2015-11-27 09:00:00 34.981362
2015-11-27 10:00:00 8.636697
2015-11-27 11:00:00 59.959267
2015-11-27 12:00:00 18.643766
2015-11-27 13:00:00 17.155756
2015-11-27 14:00:00 5.500306
2015-11-27 15:00:00 14.505197
2015-11-27 16:00:00 24.883430
2015-11-27 17:00:00 54.744878
2015-11-27 18:00:00 55.735616
2015-11-27 19:00:00 32.256413
2015-11-27 20:00:00 38.956010
2015-11-27 21:00:00 60.020956
2015-11-27 22:00:00 69.425402
2015-11-27 23:00:00 8.688084
2015-11-28 00:00:00 42.970294
2015-11-28 01:00:00 27.727545
2015-11-28 02:00:00 38.962854
2015-11-28 03:00:00 13.365612
2015-11-28 04:00:00 31.819558
2015-11-28 05:00:00 33.103063
2015-11-28 06:00:00 30.924940
2015-11-28 07:00:00 26.308201
2015-11-28 08:00:00 9.565704
2015-11-28 09:00:00 13.830709
2015-11-28 10:00:00 48.527078
2015-11-28 11:00:00 29.341300
2015-11-28 12:00:00 56.402469
2015-11-28 13:00:00 24.985439
2015-11-28 14:00:00 36.644183
2015-11-28 15:00:00 26.098598
2015-11-28 16:00:00 24.020212
2015-11-28 17:00:00 50.831756
2015-11-28 18:00:00 56.770995
2015-11-28 19:00:00 47.023474
2015-11-28 20:00:00 59.280305
2015-11-28 21:00:00 37.453182
2015-11-28 22:00:00 72.102666
2015-11-28 23:00:00 30.348483
2015-11-29 00:00:00 53.805047
2015-11-29 01:00:00 22.456437
2015-11-29 02:00:00 60.534383
2015-11-29 03:00:00 16.088490
2015-11-29 04:00:00 36.382437
2015-11-29 05:00:00 59.246121
2015-11-29 06:00:00 45.077214
2015-11-29 07:00:00 45.120941
2015-11-29 08:00:00 38.232433
2015-11-29 09:00:00 19.465618
2015-11-29 10:00:00 38.230367
2015-11-29 11:00:00 18.690932
2015-11-29 12:00:00 20.769636
2015-11-29 13:00:00 61.135055
2015-11-29 14:00:00 27.915517
2015-11-29 15:00:00 30.520160
2015-11-29 16:00:00 28.824846
2015-11-29 17:00:00 69.571855
2015-11-29 18:00:00 37.361398
2015-11-29 19:00:00 38.282275
2015-11-29 20:00:00 46.356586
2015-11-29 21:00:00 24.056497
2015-11-29 22:00:00 53.198139
2015-11-29 23:00:00 35.252730
2015-11-30 00:00:00 43.607553
2015-11-30 01:00:00 60.174882
2015-11-30 02:00:00 17.935532
2015-11-30 03:00:00 68.517692
2015-11-30 04:00:00 29.962754
2015-11-30 05:00:00 61.862104
2015-11-30 06:00:00 20.989968
2015-11-30 07:00:00 60.410201
2015-11-30 08:00:00 59.574523
2015-11-30 09:00:00 56.018735
2015-11-30 10:00:00 24.071468
2015-11-30 11:00:00 49.377007
2015-11-30 12:00:00 38.429695
2015-11-30 13:00:00 26.261928
2015-11-30 14:00:00 66.245234
2015-11-30 15:00:00 32.917481
2015-11-30 16:00:00 25.103363
2015-11-30 17:00:00 27.791581
2015-11-30 18:00:00 46.185805
2015-11-30 19:00:00 33.197581
2015-11-30 20:00:00 45.298259
2015-11-30 21:00:00 15.820063
2015-11-30 22:00:00 19.494634
2015-11-30 23:00:00 39.350548
2015-12-01 00:00:00 39.319314
2015-12-01 01:00:00 2.474597
2015-12-01 02:00:00 41.595853
2015-12-01 03:00:00 15.030481
2015-12-01 04:00:00 71.055191
2015-12-01 05:00:00 52.047501
2015-12-01 06:00:00 72.879618
2015-12-01 07:00:00 37.068471
2015-12-01 08:00:00 34.298235
2015-12-01 09:00:00 41.579046
2015-12-01 10:00:00 40.660273
2015-12-01 11:00:00 61.635744
2015-12-01 12:00:00 43.405853
2015-12-01 13:00:00 18.588931
2015-12-01 14:00:00 47.898820
2015-12-01 15:00:00 33.526542
2015-12-01 16:00:00 53.297195
2015-12-01 17:00:00 29.570191
2015-12-01 18:00:00 18.813022
2015-12-01 19:00:00 32.032767
2015-12-01 20:00:00 43.580802
2015-12-01 21:00:00 29.927978
2015-12-01 22:00:00 65.725895
2015-12-01 23:00:00 14.997650
2015-12-02 00:00:00 21.467634
2015-12-02 01:00:00 35.542969
2015-12-02 02:00:00 67.452311
2015-12-02 03:00:00 57.589935
2015-12-02 04:00:00 35.194673
2015-12-02 05:00:00 46.114270
2015-12-02 06:00:00 35.049139
2015-12-02 07:00:00 34.855851
2015-12-02 08:00:00 31.369865
2015-12-02 09:00:00 43.440536
2015-12-02 10:00:00 5.292336
2015-12-02 11:00:00 15.588859
2015-12-02 12:00:00 45.724622
2015-12-02 13:00:00 46.292510
2015-12-02 14:00:00 38.483379
2015-12-02 15:00:00 51.287088
2015-12-02 16:00:00 35.419347
2015-12-02 17:00:00 38.717686
2015-12-02 18:00:00 53.184185
2015-12-02 19:00:00 66.245006
2015-12-02 20:00:00 40.550695
2015-12-02 21:00:00 57.073648
2015-12-02 22:00:00 49.285885
2015-12-02 23:00:00 22.874043
2015-12-03 00:00:00 46.236585
2015-12-03 01:00:00 77.101826
2015-12-03 02:00:00 49.775351
2015-12-03 03:00:00 71.134530
2015-12-03 04:00:00 58.448860
2015-12-03 05:00:00 58.534300
2015-12-03 06:00:00 28.555859
2015-12-03 07:00:00 39.062662
2015-12-03 08:00:00 16.662519
2015-12-03 09:00:00 27.000278
2015-12-03 10:00:00 44.246493
2015-12-03 11:00:00 72.966772
2015-12-03 12:00:00 31.483105
2015-12-03 13:00:00 66.816731
2015-12-03 14:00:00 42.936656
2015-12-03 15:00:00 33.401326
2015-12-03 16:00:00 66.681471
waterdata_ts <- xts(waterdata %>% select(-DateTime), order.by = waterdata$DateTime)

Time plot

 waterdata_ts %>% ggtsdisplay(main = "Hourly waterflow Pipeline1 + Pipeline2"
                         ,xlab = "Days"
                         ,ylab = "Total waterflow")

Observations:

  • There is an initial downward trend in the data uptill Day 10, but after that there is no observable trend.
  • No apparent seasonality present in data
  • The variance is more or less constant across time range.
  • No apparent anomalies or outliers.

From the initial plot data doesn’t look completely stationary even though absence of seasonality and constant variance are good signs. Hence I will perform Box Cox transformation and evaluate 1st order differencing needs to convert the data to stationary.

ndiffs(waterdata_ts)
## [1] 1
water_lambda <- BoxCox.lambda(waterdata_ts)

cat("Box Cox Transformation factor lambda=",water_lambda)
## Box Cox Transformation factor lambda= 0.8353232
 waterdata_ts %>% BoxCox(water_lambda) %>% diff() %>% ggtsdisplay(main = "Hourly Waterflow w/ Box Cox + Differencing"
                         ,xlab = "Days"
                         ,ylab = "Total Waterflow")
## Warning: Removed 1 rows containing missing values (geom_point).

With the Box Cox transformation and 1st order differencing applied, data does appear stationary. Hence we can apply non-season ARIMA with d=1. Also, since ACF and PACF plots both have largest spike at lag=1, so we can assume AR(1) (p=1) and MA(1) (q=1) etc. So we can use an ARIMA (1,1,1) model to forecast the waterflow for the upcoming week.

ARIMA Model:

water_model_fit <- Arima(waterdata_ts, order = c(1, 1, 1), lambda = water_lambda)

autoplot(forecast(water_model_fit, h=7*24)) + theme(panel.background = element_blank()) +
  xlab ("Days") +
  ylab ("Total Waterflow")

Model Accuracy
accuracyDF <- data.frame(Model = "ARIMA (1,1,1)", accuracy(water_model_fit), row.names = NULL)

accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model ME RMSE MAE MPE MAPE MASE ACF1
ARIMA (1,1,1) 0.283184 16.38391 13.36601 -27.89199 50.16992 0.3020555 -0.0032977
Model Residual
checkresiduals(water_model_fit)

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,1,1)
## Q* = 2.7066, df = 8, p-value = 0.9514
## 
## Model df: 2.   Total lags used: 10

From Ljung-Box test, the p-Value is 0.9514 which is sufficiently higher than 0.05. So it can be safe to reject the null hypothesis that residuals are not independent and hence the model meets the assumption and generate quality forecast.

Results:

water_forecast <- forecast(water_model_fit, h=7*24)

tibble(`DateTime` = seq(as.POSIXct("2015-12-03 17:00:00",origin="1899-12-30", tz="GMT"), length=7*24, by="hours"),
       WaterFlow = water_forecast$mean) %>% 
write_csv("Water_Forecast.csv")

Waterflow Forecast File Path: