atmdata <- readxl::read_excel("ATM624Data.xlsx", skip=0)
atmdata %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
## Warning: namespace 'highr' is not available and has been replaced
## by .GlobalEnv when processing object '<unknown>'
DATE | ATM | Cash |
---|---|---|
39934 | ATM1 | 96.000000 |
39934 | ATM2 | 107.000000 |
39935 | ATM1 | 82.000000 |
39935 | ATM2 | 89.000000 |
39936 | ATM1 | 85.000000 |
39936 | ATM2 | 90.000000 |
39937 | ATM1 | 90.000000 |
39937 | ATM2 | 55.000000 |
39938 | ATM1 | 99.000000 |
39938 | ATM2 | 79.000000 |
39939 | ATM1 | 88.000000 |
39939 | ATM2 | 19.000000 |
39940 | ATM1 | 8.000000 |
39940 | ATM2 | 2.000000 |
39941 | ATM1 | 104.000000 |
39941 | ATM2 | 103.000000 |
39942 | ATM1 | 87.000000 |
39942 | ATM2 | 107.000000 |
39943 | ATM1 | 93.000000 |
39943 | ATM2 | 118.000000 |
39944 | ATM1 | 86.000000 |
39944 | ATM2 | 75.000000 |
39945 | ATM1 | 111.000000 |
39945 | ATM2 | 111.000000 |
39946 | ATM1 | 75.000000 |
39946 | ATM2 | 25.000000 |
39947 | ATM1 | 6.000000 |
39947 | ATM2 | 16.000000 |
39948 | ATM1 | 102.000000 |
39948 | ATM2 | 137.000000 |
39949 | ATM1 | 73.000000 |
39949 | ATM2 | 95.000000 |
39950 | ATM1 | 92.000000 |
39950 | ATM2 | 103.000000 |
39951 | ATM1 | 82.000000 |
39951 | ATM2 | 80.000000 |
39952 | ATM1 | 86.000000 |
39952 | ATM2 | 118.000000 |
39953 | ATM1 | 73.000000 |
39953 | ATM2 | 30.000000 |
39954 | ATM1 | 20.000000 |
39954 | ATM2 | 7.000000 |
39955 | ATM1 | 100.000000 |
39955 | ATM2 | 118.000000 |
39956 | ATM1 | 93.000000 |
39956 | ATM2 | 104.000000 |
39957 | ATM1 | 90.000000 |
39957 | ATM2 | 59.000000 |
39958 | ATM1 | 94.000000 |
39958 | ATM2 | 40.000000 |
39959 | ATM1 | 98.000000 |
39959 | ATM2 | 106.000000 |
39960 | ATM1 | 73.000000 |
39960 | ATM2 | 18.000000 |
39961 | ATM1 | 10.000000 |
39961 | ATM2 | 9.000000 |
39962 | ATM1 | 97.000000 |
39962 | ATM2 | 136.000000 |
39963 | ATM1 | 102.000000 |
39963 | ATM2 | 118.000000 |
39964 | ATM1 | 85.000000 |
39964 | ATM2 | 64.000000 |
39965 | ATM1 | 85.000000 |
39965 | ATM2 | 77.000000 |
39966 | ATM1 | 108.000000 |
39966 | ATM2 | 133.000000 |
39967 | ATM1 | 94.000000 |
39967 | ATM2 | 45.000000 |
39968 | ATM1 | 14.000000 |
39968 | ATM2 | 14.000000 |
39969 | ATM1 | 3.000000 |
39969 | ATM2 | 20.000000 |
39970 | ATM1 | 96.000000 |
39970 | ATM2 | 147.000000 |
39971 | ATM1 | 109.000000 |
39971 | ATM2 | 105.000000 |
39972 | ATM1 | 96.000000 |
39972 | ATM2 | 132.000000 |
39973 | ATM1 | 145.000000 |
39973 | ATM2 | 93.000000 |
39974 | ATM1 | 81.000000 |
39974 | ATM2 | 26.000000 |
39975 | ATM1 | 16.000000 |
39975 | ATM2 | 7.000000 |
39976 | ATM1 | 142.000000 |
39976 | ATM2 | 112.000000 |
39977 | ATM1 | NA |
39977 | ATM2 | 91.000000 |
39978 | ATM1 | 120.000000 |
39978 | ATM2 | 72.000000 |
39979 | ATM1 | 106.000000 |
39979 | ATM2 | 66.000000 |
39980 | ATM1 | NA |
39980 | ATM2 | 82.000000 |
39981 | ATM1 | 108.000000 |
39981 | ATM2 | 24.000000 |
39982 | ATM1 | 21.000000 |
39982 | ATM2 | NA |
39983 | ATM1 | 140.000000 |
39983 | ATM2 | 134.000000 |
39984 | ATM1 | 110.000000 |
39984 | ATM2 | 95.000000 |
39985 | ATM1 | 115.000000 |
39985 | ATM2 | 82.000000 |
39986 | ATM1 | NA |
39986 | ATM2 | 90.000000 |
39987 | ATM1 | 108.000000 |
39987 | ATM2 | 99.000000 |
39988 | ATM1 | 66.000000 |
39988 | ATM2 | NA |
39989 | ATM1 | 13.000000 |
39989 | ATM2 | 3.000000 |
39990 | ATM1 | 99.000000 |
39990 | ATM2 | 117.000000 |
39991 | ATM1 | 105.000000 |
39991 | ATM2 | 53.000000 |
39992 | ATM1 | 104.000000 |
39992 | ATM2 | 44.000000 |
39993 | ATM1 | 98.000000 |
39993 | ATM2 | 56.000000 |
39994 | ATM1 | 110.000000 |
39994 | ATM2 | 110.000000 |
39995 | ATM1 | 79.000000 |
39995 | ATM2 | 36.000000 |
39996 | ATM1 | 16.000000 |
39996 | ATM2 | 12.000000 |
39997 | ATM1 | 110.000000 |
39997 | ATM2 | 128.000000 |
39998 | ATM1 | 96.000000 |
39998 | ATM2 | 72.000000 |
39999 | ATM1 | 114.000000 |
39999 | ATM2 | 122.000000 |
40000 | ATM1 | 126.000000 |
40000 | ATM2 | 100.000000 |
40001 | ATM1 | 126.000000 |
40001 | ATM2 | 108.000000 |
40002 | ATM1 | 73.000000 |
40002 | ATM2 | 25.000000 |
40003 | ATM1 | 4.000000 |
40003 | ATM2 | 6.000000 |
40004 | ATM1 | 19.000000 |
40004 | ATM2 | 22.000000 |
40005 | ATM1 | 114.000000 |
40005 | ATM2 | 135.000000 |
40006 | ATM1 | 98.000000 |
40006 | ATM2 | 69.000000 |
40007 | ATM1 | 97.000000 |
40007 | ATM2 | 52.000000 |
40008 | ATM1 | 114.000000 |
40008 | ATM2 | 81.000000 |
40009 | ATM1 | 78.000000 |
40009 | ATM2 | 27.000000 |
40010 | ATM1 | 19.000000 |
40010 | ATM2 | 4.000000 |
40011 | ATM1 | 102.000000 |
40011 | ATM2 | 147.000000 |
40012 | ATM1 | 94.000000 |
40012 | ATM2 | 102.000000 |
40013 | ATM1 | 108.000000 |
40013 | ATM2 | 83.000000 |
40014 | ATM1 | 91.000000 |
40014 | ATM2 | 55.000000 |
40015 | ATM1 | 86.000000 |
40015 | ATM2 | 74.000000 |
40016 | ATM1 | 78.000000 |
40016 | ATM2 | 22.000000 |
40017 | ATM1 | 16.000000 |
40017 | ATM2 | 4.000000 |
40018 | ATM1 | 114.000000 |
40018 | ATM2 | 104.000000 |
40019 | ATM1 | 115.000000 |
40019 | ATM2 | 81.000000 |
40020 | ATM1 | 108.000000 |
40020 | ATM2 | 61.000000 |
40021 | ATM1 | 102.000000 |
40021 | ATM2 | 70.000000 |
40022 | ATM1 | 129.000000 |
40022 | ATM2 | 126.000000 |
40023 | ATM1 | 79.000000 |
40023 | ATM2 | 33.000000 |
40024 | ATM1 | 13.000000 |
40024 | ATM2 | 7.000000 |
40025 | ATM1 | 103.000000 |
40025 | ATM2 | 126.000000 |
40026 | ATM1 | 90.000000 |
40026 | ATM2 | 92.000000 |
40027 | ATM1 | 68.000000 |
40027 | ATM2 | 81.000000 |
40028 | ATM1 | 85.000000 |
40028 | ATM2 | 49.000000 |
40029 | ATM1 | 99.000000 |
40029 | ATM2 | 146.000000 |
40030 | ATM1 | 86.000000 |
40030 | ATM2 | 79.000000 |
40031 | ATM1 | 13.000000 |
40031 | ATM2 | 37.000000 |
40032 | ATM1 | 116.000000 |
40032 | ATM2 | 136.000000 |
40033 | ATM1 | 105.000000 |
40033 | ATM2 | 111.000000 |
40034 | ATM1 | 123.000000 |
40034 | ATM2 | 78.000000 |
40035 | ATM1 | 114.000000 |
40035 | ATM2 | 57.000000 |
40036 | ATM1 | 127.000000 |
40036 | ATM2 | 106.000000 |
40037 | ATM1 | 111.000000 |
40037 | ATM2 | 38.000000 |
40038 | ATM1 | 34.000000 |
40038 | ATM2 | 15.000000 |
40039 | ATM1 | 151.000000 |
40039 | ATM2 | 119.000000 |
40040 | ATM1 | 110.000000 |
40040 | ATM2 | 110.000000 |
40041 | ATM1 | 115.000000 |
40041 | ATM2 | 68.000000 |
40042 | ATM1 | 112.000000 |
40042 | ATM2 | 60.000000 |
40043 | ATM1 | 132.000000 |
40043 | ATM2 | 92.000000 |
40044 | ATM1 | 94.000000 |
40044 | ATM2 | 22.000000 |
40045 | ATM1 | 24.000000 |
40045 | ATM2 | 11.000000 |
40046 | ATM1 | 122.000000 |
40046 | ATM2 | 121.000000 |
40047 | ATM1 | 104.000000 |
40047 | ATM2 | 89.000000 |
40048 | ATM1 | 128.000000 |
40048 | ATM2 | 62.000000 |
40049 | ATM1 | 120.000000 |
40049 | ATM2 | 79.000000 |
40050 | ATM1 | 174.000000 |
40050 | ATM2 | 83.000000 |
40051 | ATM1 | 96.000000 |
40051 | ATM2 | 31.000000 |
40052 | ATM1 | 13.000000 |
40052 | ATM2 | 4.000000 |
40053 | ATM1 | 121.000000 |
40053 | ATM2 | 96.000000 |
40054 | ATM1 | 133.000000 |
40054 | ATM2 | 50.000000 |
40055 | ATM1 | 118.000000 |
40055 | ATM2 | 52.000000 |
40056 | ATM1 | 91.000000 |
40056 | ATM2 | 56.000000 |
40057 | ATM1 | 120.000000 |
40057 | ATM2 | 104.000000 |
40058 | ATM1 | 88.000000 |
40058 | ATM2 | 27.000000 |
40059 | ATM1 | 19.000000 |
40059 | ATM2 | 13.000000 |
40060 | ATM1 | 150.000000 |
40060 | ATM2 | 107.000000 |
40061 | ATM1 | 144.000000 |
40061 | ATM2 | 125.000000 |
40062 | ATM1 | 121.000000 |
40062 | ATM2 | 103.000000 |
40063 | ATM1 | 105.000000 |
40063 | ATM2 | 42.000000 |
40064 | ATM1 | 133.000000 |
40064 | ATM2 | 90.000000 |
40065 | ATM1 | 109.000000 |
40065 | ATM2 | 29.000000 |
40066 | ATM1 | 18.000000 |
40066 | ATM2 | 8.000000 |
40067 | ATM1 | 1.000000 |
40067 | ATM2 | 2.000000 |
40068 | ATM1 | 105.000000 |
40068 | ATM2 | 84.000000 |
40069 | ATM1 | 112.000000 |
40069 | ATM2 | 62.000000 |
40070 | ATM1 | 82.000000 |
40070 | ATM2 | 77.000000 |
40071 | ATM1 | 111.000000 |
40071 | ATM2 | 78.000000 |
40072 | ATM1 | 79.000000 |
40072 | ATM2 | 25.000000 |
40073 | ATM1 | 13.000000 |
40073 | ATM2 | 8.000000 |
40074 | ATM1 | 112.000000 |
40074 | ATM2 | 113.000000 |
40075 | ATM1 | 99.000000 |
40075 | ATM2 | 71.000000 |
40076 | ATM1 | 140.000000 |
40076 | ATM2 | 94.000000 |
40077 | ATM1 | 110.000000 |
40077 | ATM2 | 59.000000 |
40078 | ATM1 | 180.000000 |
40078 | ATM2 | 89.000000 |
40079 | ATM1 | 73.000000 |
40079 | ATM2 | 18.000000 |
40080 | ATM1 | 7.000000 |
40080 | ATM2 | 6.000000 |
40081 | ATM1 | 106.000000 |
40081 | ATM2 | 115.000000 |
40082 | ATM1 | 103.000000 |
40082 | ATM2 | 81.000000 |
40083 | ATM1 | 93.000000 |
40083 | ATM2 | 61.000000 |
40084 | ATM1 | 96.000000 |
40084 | ATM2 | 71.000000 |
40085 | ATM1 | 117.000000 |
40085 | ATM2 | 69.000000 |
40086 | ATM1 | 80.000000 |
40086 | ATM2 | 36.000000 |
40087 | ATM1 | 14.000000 |
40087 | ATM2 | 14.000000 |
40088 | ATM1 | 120.000000 |
40088 | ATM2 | 104.000000 |
40089 | ATM1 | 91.000000 |
40089 | ATM2 | 73.000000 |
40090 | ATM1 | 96.000000 |
40090 | ATM2 | 86.000000 |
40091 | ATM1 | 74.000000 |
40091 | ATM2 | 85.000000 |
40092 | ATM1 | 108.000000 |
40092 | ATM2 | 126.000000 |
40093 | ATM1 | 73.000000 |
40093 | ATM2 | 31.000000 |
40094 | ATM1 | 13.000000 |
40094 | ATM2 | 9.000000 |
40095 | ATM1 | 93.000000 |
40095 | ATM2 | 114.000000 |
40096 | ATM1 | 94.000000 |
40096 | ATM2 | 78.000000 |
40097 | ATM1 | 76.000000 |
40097 | ATM2 | 45.000000 |
40098 | ATM1 | 111.000000 |
40098 | ATM2 | 60.000000 |
40099 | ATM1 | 88.000000 |
40099 | ATM2 | 91.000000 |
40100 | ATM1 | 76.000000 |
40100 | ATM2 | 22.000000 |
40101 | ATM1 | 9.000000 |
40101 | ATM2 | 7.000000 |
40102 | ATM1 | 87.000000 |
40102 | ATM2 | 75.000000 |
40103 | ATM1 | 105.000000 |
40103 | ATM2 | 66.000000 |
40104 | ATM1 | 78.000000 |
40104 | ATM2 | 64.000000 |
40105 | ATM1 | 67.000000 |
40105 | ATM2 | 51.000000 |
40106 | ATM1 | 90.000000 |
40106 | ATM2 | 94.000000 |
40107 | ATM1 | 68.000000 |
40107 | ATM2 | 23.000000 |
40108 | ATM1 | 9.000000 |
40108 | ATM2 | 4.000000 |
40109 | ATM1 | 78.000000 |
40109 | ATM2 | 127.000000 |
40110 | ATM1 | 74.000000 |
40110 | ATM2 | 61.000000 |
40111 | ATM1 | 74.000000 |
40111 | ATM2 | 0.000000 |
40112 | ATM1 | 60.000000 |
40112 | ATM2 | 95.000000 |
40113 | ATM1 | 75.000000 |
40113 | ATM2 | 79.000000 |
40114 | ATM1 | 61.000000 |
40114 | ATM2 | 38.000000 |
40115 | ATM1 | 9.000000 |
40115 | ATM2 | 8.000000 |
40116 | ATM1 | 90.000000 |
40116 | ATM2 | 119.000000 |
40117 | ATM1 | 86.000000 |
40117 | ATM2 | 57.000000 |
40118 | ATM1 | 86.000000 |
40118 | ATM2 | 58.000000 |
40119 | ATM1 | 79.000000 |
40119 | ATM2 | 80.000000 |
40120 | ATM1 | 90.000000 |
40120 | ATM2 | 82.000000 |
40121 | ATM1 | 80.000000 |
40121 | ATM2 | 49.000000 |
40122 | ATM1 | 21.000000 |
40122 | ATM2 | 16.000000 |
40123 | ATM1 | 93.000000 |
40123 | ATM2 | 116.000000 |
40124 | ATM1 | 104.000000 |
40124 | ATM2 | 61.000000 |
40125 | ATM1 | 109.000000 |
40125 | ATM2 | 59.000000 |
40126 | ATM1 | 88.000000 |
40126 | ATM2 | 80.000000 |
40127 | ATM1 | 96.000000 |
40127 | ATM2 | 86.000000 |
40128 | ATM1 | 70.000000 |
40128 | ATM2 | 23.000000 |
40129 | ATM1 | 15.000000 |
40129 | ATM2 | 7.000000 |
40130 | ATM1 | 73.000000 |
40130 | ATM2 | 91.000000 |
40131 | ATM1 | 94.000000 |
40131 | ATM2 | 57.000000 |
40132 | ATM1 | 108.000000 |
40132 | ATM2 | 58.000000 |
40133 | ATM1 | 73.000000 |
40133 | ATM2 | 61.000000 |
40134 | ATM1 | 87.000000 |
40134 | ATM2 | 77.000000 |
40135 | ATM1 | 75.000000 |
40135 | ATM2 | 20.000000 |
40136 | ATM1 | 10.000000 |
40136 | ATM2 | 5.000000 |
40137 | ATM1 | 92.000000 |
40137 | ATM2 | 132.000000 |
40138 | ATM1 | 87.000000 |
40138 | ATM2 | 49.000000 |
40139 | ATM1 | 74.000000 |
40139 | ATM2 | 57.000000 |
40140 | ATM1 | 73.000000 |
40140 | ATM2 | 68.000000 |
40141 | ATM1 | 93.000000 |
40141 | ATM2 | 80.000000 |
40142 | ATM1 | 66.000000 |
40142 | ATM2 | 31.000000 |
40143 | ATM1 | 18.000000 |
40143 | ATM2 | 3.000000 |
40144 | ATM1 | 99.000000 |
40144 | ATM2 | 85.000000 |
40145 | ATM1 | 94.000000 |
40145 | ATM2 | 53.000000 |
40146 | ATM1 | 136.000000 |
40146 | ATM2 | 46.000000 |
40147 | ATM1 | 6.000000 |
40147 | ATM2 | 2.000000 |
40148 | ATM1 | 140.000000 |
40148 | ATM2 | 113.000000 |
40149 | ATM1 | 73.000000 |
40149 | ATM2 | 22.000000 |
40150 | ATM1 | 9.000000 |
40150 | ATM2 | 5.000000 |
40151 | ATM1 | 140.000000 |
40151 | ATM2 | 112.000000 |
40152 | ATM1 | 103.000000 |
40152 | ATM2 | 59.000000 |
40153 | ATM1 | 110.000000 |
40153 | ATM2 | 72.000000 |
40154 | ATM1 | 90.000000 |
40154 | ATM2 | 77.000000 |
40155 | ATM1 | 135.000000 |
40155 | ATM2 | 85.000000 |
40156 | ATM1 | 67.000000 |
40156 | ATM2 | 27.000000 |
40157 | ATM1 | 12.000000 |
40157 | ATM2 | 1.000000 |
40158 | ATM1 | 109.000000 |
40158 | ATM2 | 91.000000 |
40159 | ATM1 | 84.000000 |
40159 | ATM2 | 36.000000 |
40160 | ATM1 | 92.000000 |
40160 | ATM2 | 46.000000 |
40161 | ATM1 | 84.000000 |
40161 | ATM2 | 100.000000 |
40162 | ATM1 | 118.000000 |
40162 | ATM2 | 73.000000 |
40163 | ATM1 | 68.000000 |
40163 | ATM2 | 22.000000 |
40164 | ATM1 | 14.000000 |
40164 | ATM2 | 9.000000 |
40165 | ATM1 | 90.000000 |
40165 | ATM2 | 117.000000 |
40166 | ATM1 | 92.000000 |
40166 | ATM2 | 44.000000 |
40167 | ATM1 | 93.000000 |
40167 | ATM2 | 44.000000 |
40168 | ATM1 | 85.000000 |
40168 | ATM2 | 78.000000 |
40169 | ATM1 | 93.000000 |
40169 | ATM2 | 89.000000 |
40170 | ATM1 | 70.000000 |
40170 | ATM2 | 33.000000 |
40171 | ATM1 | 13.000000 |
40171 | ATM2 | 5.000000 |
40172 | ATM1 | 90.000000 |
40172 | ATM2 | 102.000000 |
40173 | ATM1 | 91.000000 |
40173 | ATM2 | 68.000000 |
40174 | ATM1 | 102.000000 |
40174 | ATM2 | 64.000000 |
40175 | ATM1 | 97.000000 |
40175 | ATM2 | 81.000000 |
40176 | ATM1 | 42.000000 |
40176 | ATM2 | 9.000000 |
40177 | ATM1 | 2.000000 |
40177 | ATM2 | 2.000000 |
40178 | ATM1 | 14.000000 |
40178 | ATM2 | 2.000000 |
40179 | ATM1 | 132.000000 |
40179 | ATM2 | 117.000000 |
40180 | ATM1 | 108.000000 |
40180 | ATM2 | 56.000000 |
40181 | ATM1 | 120.000000 |
40181 | ATM2 | 55.000000 |
40182 | ATM1 | 120.000000 |
40182 | ATM2 | 112.000000 |
40183 | ATM1 | 90.000000 |
40183 | ATM2 | 100.000000 |
40184 | ATM1 | 48.000000 |
40184 | ATM2 | 17.000000 |
40185 | ATM1 | 15.000000 |
40185 | ATM2 | 7.000000 |
40186 | ATM1 | 86.000000 |
40186 | ATM2 | 49.000000 |
40187 | ATM1 | 109.000000 |
40187 | ATM2 | 96.000000 |
40188 | ATM1 | 115.000000 |
40188 | ATM2 | 47.000000 |
40189 | ATM1 | 123.000000 |
40189 | ATM2 | 107.000000 |
40190 | ATM1 | 123.000000 |
40190 | ATM2 | 93.000000 |
40191 | ATM1 | 60.000000 |
40191 | ATM2 | 27.000000 |
40192 | ATM1 | 22.000000 |
40192 | ATM2 | 9.000000 |
40193 | ATM1 | 81.000000 |
40193 | ATM2 | 78.000000 |
40194 | ATM1 | 98.000000 |
40194 | ATM2 | 47.000000 |
40195 | ATM1 | 94.000000 |
40195 | ATM2 | 31.000000 |
40196 | ATM1 | 76.000000 |
40196 | ATM2 | 91.000000 |
40197 | ATM1 | 96.000000 |
40197 | ATM2 | 77.000000 |
40198 | ATM1 | 72.000000 |
40198 | ATM2 | 22.000000 |
40199 | ATM1 | 12.000000 |
40199 | ATM2 | 1.000000 |
40200 | ATM1 | 91.000000 |
40200 | ATM2 | 125.000000 |
40201 | ATM1 | 74.000000 |
40201 | ATM2 | 53.000000 |
40202 | ATM1 | 104.000000 |
40202 | ATM2 | 37.000000 |
40203 | ATM1 | 74.000000 |
40203 | ATM2 | 69.000000 |
40204 | ATM1 | 91.000000 |
40204 | ATM2 | 69.000000 |
40205 | ATM1 | 66.000000 |
40205 | ATM2 | 16.000000 |
40206 | ATM1 | 28.000000 |
40206 | ATM2 | 2.000000 |
40207 | ATM1 | 152.000000 |
40207 | ATM2 | 95.000000 |
40208 | ATM1 | 97.000000 |
40208 | ATM2 | 45.000000 |
40209 | ATM1 | 100.000000 |
40209 | ATM2 | 61.000000 |
40210 | ATM1 | 85.000000 |
40210 | ATM2 | 71.000000 |
40211 | ATM1 | 123.000000 |
40211 | ATM2 | 91.000000 |
40212 | ATM1 | 46.000000 |
40212 | ATM2 | 28.000000 |
40213 | ATM1 | 38.000000 |
40213 | ATM2 | 9.000000 |
40214 | ATM1 | 138.000000 |
40214 | ATM2 | 97.000000 |
40215 | ATM1 | 74.000000 |
40215 | ATM2 | 60.000000 |
40216 | ATM1 | 85.000000 |
40216 | ATM2 | 27.000000 |
40217 | ATM1 | 78.000000 |
40217 | ATM2 | 74.000000 |
40218 | ATM1 | 123.000000 |
40218 | ATM2 | 45.000000 |
40219 | ATM1 | 50.000000 |
40219 | ATM2 | 26.000000 |
40220 | ATM1 | 28.000000 |
40220 | ATM2 | 2.000000 |
40221 | ATM1 | 105.000000 |
40221 | ATM2 | 73.000000 |
40222 | ATM1 | 109.000000 |
40222 | ATM2 | 48.000000 |
40223 | ATM1 | 26.000000 |
40223 | ATM2 | 9.000000 |
40224 | ATM1 | 54.000000 |
40224 | ATM2 | 25.000000 |
40225 | ATM1 | 105.000000 |
40225 | ATM2 | 58.000000 |
40226 | ATM1 | 179.000000 |
40226 | ATM2 | 110.000000 |
40227 | ATM1 | 125.000000 |
40227 | ATM2 | 94.000000 |
40228 | ATM1 | 84.000000 |
40228 | ATM2 | 25.000000 |
40229 | ATM1 | 99.000000 |
40229 | ATM2 | 101.000000 |
40230 | ATM1 | 110.000000 |
40230 | ATM2 | 77.000000 |
40231 | ATM1 | 80.000000 |
40231 | ATM2 | 6.000000 |
40232 | ATM1 | 1.000000 |
40232 | ATM2 | 3.000000 |
40233 | ATM1 | 111.000000 |
40233 | ATM2 | 99.000000 |
40234 | ATM1 | 115.000000 |
40234 | ATM2 | 86.000000 |
40235 | ATM1 | 108.000000 |
40235 | ATM2 | 20.000000 |
40236 | ATM1 | 100.000000 |
40236 | ATM2 | 72.000000 |
40237 | ATM1 | 152.000000 |
40237 | ATM2 | 81.000000 |
40238 | ATM1 | 90.000000 |
40238 | ATM2 | 16.000000 |
40239 | ATM1 | 4.000000 |
40239 | ATM2 | 2.000000 |
40240 | ATM1 | 128.000000 |
40240 | ATM2 | 110.000000 |
40241 | ATM1 | 87.000000 |
40241 | ATM2 | 75.000000 |
40242 | ATM1 | 84.000000 |
40242 | ATM2 | 35.000000 |
40243 | ATM1 | 69.000000 |
40243 | ATM2 | 102.000000 |
40244 | ATM1 | 112.000000 |
40244 | ATM2 | 100.000000 |
40245 | ATM1 | 62.000000 |
40245 | ATM2 | 9.000000 |
40246 | ATM1 | 4.000000 |
40246 | ATM2 | 2.000000 |
40247 | ATM1 | 94.000000 |
40247 | ATM2 | 100.000000 |
40248 | ATM1 | 102.000000 |
40248 | ATM2 | 85.000000 |
40249 | ATM1 | 98.000000 |
40249 | ATM2 | 33.000000 |
40250 | ATM1 | 88.000000 |
40250 | ATM2 | 24.000000 |
40251 | ATM1 | 123.000000 |
40251 | ATM2 | 111.000000 |
40252 | ATM1 | 55.000000 |
40252 | ATM2 | 5.000000 |
40253 | ATM1 | 4.000000 |
40253 | ATM2 | 1.000000 |
40254 | ATM1 | 92.000000 |
40254 | ATM2 | 106.000000 |
40255 | ATM1 | 88.000000 |
40255 | ATM2 | 102.000000 |
40256 | ATM1 | 92.000000 |
40256 | ATM2 | 25.000000 |
40257 | ATM1 | 92.000000 |
40257 | ATM2 | 64.000000 |
40258 | ATM1 | 117.000000 |
40258 | ATM2 | 78.000000 |
40259 | ATM1 | 73.000000 |
40259 | ATM2 | 5.000000 |
40260 | ATM1 | 3.000000 |
40260 | ATM2 | 1.000000 |
40261 | ATM1 | 85.000000 |
40261 | ATM2 | 83.000000 |
40262 | ATM1 | 88.000000 |
40262 | ATM2 | 78.000000 |
40263 | ATM1 | 76.000000 |
40263 | ATM2 | 66.000000 |
40264 | ATM1 | 93.000000 |
40264 | ATM2 | 15.000000 |
40265 | ATM1 | 116.000000 |
40265 | ATM2 | 64.000000 |
40266 | ATM1 | 68.000000 |
40266 | ATM2 | 3.000000 |
40267 | ATM1 | 19.000000 |
40267 | ATM2 | 0.000000 |
40268 | ATM1 | 127.000000 |
40268 | ATM2 | 102.000000 |
40269 | ATM1 | 93.000000 |
40269 | ATM2 | 99.000000 |
40270 | ATM1 | 97.000000 |
40270 | ATM2 | 41.000000 |
40271 | ATM1 | 102.000000 |
40271 | ATM2 | 79.000000 |
40272 | ATM1 | 109.000000 |
40272 | ATM2 | 71.000000 |
40273 | ATM1 | 68.000000 |
40273 | ATM2 | 9.000000 |
40274 | ATM1 | 4.000000 |
40274 | ATM2 | 2.000000 |
40275 | ATM1 | 105.000000 |
40275 | ATM2 | 103.000000 |
40276 | ATM1 | 79.000000 |
40276 | ATM2 | 67.000000 |
40277 | ATM1 | 90.000000 |
40277 | ATM2 | 85.000000 |
40278 | ATM1 | 87.000000 |
40278 | ATM2 | 78.000000 |
40279 | ATM1 | 92.000000 |
40279 | ATM2 | 67.000000 |
40280 | ATM1 | 63.000000 |
40280 | ATM2 | 12.000000 |
40281 | ATM1 | 3.000000 |
40281 | ATM2 | 1.000000 |
40282 | ATM1 | 103.000000 |
40282 | ATM2 | 97.000000 |
40283 | ATM1 | 80.000000 |
40283 | ATM2 | 106.000000 |
40284 | ATM1 | 80.000000 |
40284 | ATM2 | 74.000000 |
40285 | ATM1 | 84.000000 |
40285 | ATM2 | 86.000000 |
40286 | ATM1 | 81.000000 |
40286 | ATM2 | 55.000000 |
40287 | ATM1 | 88.000000 |
40287 | ATM2 | 13.000000 |
40288 | ATM1 | 3.000000 |
40288 | ATM2 | 1.000000 |
40289 | ATM1 | 100.000000 |
40289 | ATM2 | 100.000000 |
40290 | ATM1 | 69.000000 |
40290 | ATM2 | 103.000000 |
40291 | ATM1 | 85.000000 |
40291 | ATM2 | 44.000000 |
40292 | ATM1 | 85.000000 |
40292 | ATM2 | 61.000000 |
40293 | ATM1 | 109.000000 |
40293 | ATM2 | 89.000000 |
40294 | ATM1 | 74.000000 |
40294 | ATM2 | 11.000000 |
40295 | ATM1 | 4.000000 |
40295 | ATM2 | 2.000000 |
40296 | ATM1 | 96.000000 |
40296 | ATM2 | 107.000000 |
40297 | ATM1 | 82.000000 |
40297 | ATM2 | 89.000000 |
40298 | ATM1 | 85.000000 |
40298 | ATM2 | 90.000000 |
40299 | NA | NA |
40300 | NA | NA |
40301 | NA | NA |
40302 | NA | NA |
40303 | NA | NA |
40304 | NA | NA |
40305 | NA | NA |
40306 | NA | NA |
40307 | NA | NA |
40308 | NA | NA |
40309 | NA | NA |
40310 | NA | NA |
40311 | NA | NA |
40312 | NA | NA |
39934 | ATM3 | 0.000000 |
39935 | ATM3 | 0.000000 |
39936 | ATM3 | 0.000000 |
39937 | ATM3 | 0.000000 |
39938 | ATM3 | 0.000000 |
39939 | ATM3 | 0.000000 |
39940 | ATM3 | 0.000000 |
39941 | ATM3 | 0.000000 |
39942 | ATM3 | 0.000000 |
39943 | ATM3 | 0.000000 |
39944 | ATM3 | 0.000000 |
39945 | ATM3 | 0.000000 |
39946 | ATM3 | 0.000000 |
39947 | ATM3 | 0.000000 |
39948 | ATM3 | 0.000000 |
39949 | ATM3 | 0.000000 |
39950 | ATM3 | 0.000000 |
39951 | ATM3 | 0.000000 |
39952 | ATM3 | 0.000000 |
39953 | ATM3 | 0.000000 |
39954 | ATM3 | 0.000000 |
39955 | ATM3 | 0.000000 |
39956 | ATM3 | 0.000000 |
39957 | ATM3 | 0.000000 |
39958 | ATM3 | 0.000000 |
39959 | ATM3 | 0.000000 |
39960 | ATM3 | 0.000000 |
39961 | ATM3 | 0.000000 |
39962 | ATM3 | 0.000000 |
39963 | ATM3 | 0.000000 |
39964 | ATM3 | 0.000000 |
39965 | ATM3 | 0.000000 |
39966 | ATM3 | 0.000000 |
39967 | ATM3 | 0.000000 |
39968 | ATM3 | 0.000000 |
39969 | ATM3 | 0.000000 |
39970 | ATM3 | 0.000000 |
39971 | ATM3 | 0.000000 |
39972 | ATM3 | 0.000000 |
39973 | ATM3 | 0.000000 |
39974 | ATM3 | 0.000000 |
39975 | ATM3 | 0.000000 |
39976 | ATM3 | 0.000000 |
39977 | ATM3 | 0.000000 |
39978 | ATM3 | 0.000000 |
39979 | ATM3 | 0.000000 |
39980 | ATM3 | 0.000000 |
39981 | ATM3 | 0.000000 |
39982 | ATM3 | 0.000000 |
39983 | ATM3 | 0.000000 |
39984 | ATM3 | 0.000000 |
39985 | ATM3 | 0.000000 |
39986 | ATM3 | 0.000000 |
39987 | ATM3 | 0.000000 |
39988 | ATM3 | 0.000000 |
39989 | ATM3 | 0.000000 |
39990 | ATM3 | 0.000000 |
39991 | ATM3 | 0.000000 |
39992 | ATM3 | 0.000000 |
39993 | ATM3 | 0.000000 |
39994 | ATM3 | 0.000000 |
39995 | ATM3 | 0.000000 |
39996 | ATM3 | 0.000000 |
39997 | ATM3 | 0.000000 |
39998 | ATM3 | 0.000000 |
39999 | ATM3 | 0.000000 |
40000 | ATM3 | 0.000000 |
40001 | ATM3 | 0.000000 |
40002 | ATM3 | 0.000000 |
40003 | ATM3 | 0.000000 |
40004 | ATM3 | 0.000000 |
40005 | ATM3 | 0.000000 |
40006 | ATM3 | 0.000000 |
40007 | ATM3 | 0.000000 |
40008 | ATM3 | 0.000000 |
40009 | ATM3 | 0.000000 |
40010 | ATM3 | 0.000000 |
40011 | ATM3 | 0.000000 |
40012 | ATM3 | 0.000000 |
40013 | ATM3 | 0.000000 |
40014 | ATM3 | 0.000000 |
40015 | ATM3 | 0.000000 |
40016 | ATM3 | 0.000000 |
40017 | ATM3 | 0.000000 |
40018 | ATM3 | 0.000000 |
40019 | ATM3 | 0.000000 |
40020 | ATM3 | 0.000000 |
40021 | ATM3 | 0.000000 |
40022 | ATM3 | 0.000000 |
40023 | ATM3 | 0.000000 |
40024 | ATM3 | 0.000000 |
40025 | ATM3 | 0.000000 |
40026 | ATM3 | 0.000000 |
40027 | ATM3 | 0.000000 |
40028 | ATM3 | 0.000000 |
40029 | ATM3 | 0.000000 |
40030 | ATM3 | 0.000000 |
40031 | ATM3 | 0.000000 |
40032 | ATM3 | 0.000000 |
40033 | ATM3 | 0.000000 |
40034 | ATM3 | 0.000000 |
40035 | ATM3 | 0.000000 |
40036 | ATM3 | 0.000000 |
40037 | ATM3 | 0.000000 |
40038 | ATM3 | 0.000000 |
40039 | ATM3 | 0.000000 |
40040 | ATM3 | 0.000000 |
40041 | ATM3 | 0.000000 |
40042 | ATM3 | 0.000000 |
40043 | ATM3 | 0.000000 |
40044 | ATM3 | 0.000000 |
40045 | ATM3 | 0.000000 |
40046 | ATM3 | 0.000000 |
40047 | ATM3 | 0.000000 |
40048 | ATM3 | 0.000000 |
40049 | ATM3 | 0.000000 |
40050 | ATM3 | 0.000000 |
40051 | ATM3 | 0.000000 |
40052 | ATM3 | 0.000000 |
40053 | ATM3 | 0.000000 |
40054 | ATM3 | 0.000000 |
40055 | ATM3 | 0.000000 |
40056 | ATM3 | 0.000000 |
40057 | ATM3 | 0.000000 |
40058 | ATM3 | 0.000000 |
40059 | ATM3 | 0.000000 |
40060 | ATM3 | 0.000000 |
40061 | ATM3 | 0.000000 |
40062 | ATM3 | 0.000000 |
40063 | ATM3 | 0.000000 |
40064 | ATM3 | 0.000000 |
40065 | ATM3 | 0.000000 |
40066 | ATM3 | 0.000000 |
40067 | ATM3 | 0.000000 |
40068 | ATM3 | 0.000000 |
40069 | ATM3 | 0.000000 |
40070 | ATM3 | 0.000000 |
40071 | ATM3 | 0.000000 |
40072 | ATM3 | 0.000000 |
40073 | ATM3 | 0.000000 |
40074 | ATM3 | 0.000000 |
40075 | ATM3 | 0.000000 |
40076 | ATM3 | 0.000000 |
40077 | ATM3 | 0.000000 |
40078 | ATM3 | 0.000000 |
40079 | ATM3 | 0.000000 |
40080 | ATM3 | 0.000000 |
40081 | ATM3 | 0.000000 |
40082 | ATM3 | 0.000000 |
40083 | ATM3 | 0.000000 |
40084 | ATM3 | 0.000000 |
40085 | ATM3 | 0.000000 |
40086 | ATM3 | 0.000000 |
40087 | ATM3 | 0.000000 |
40088 | ATM3 | 0.000000 |
40089 | ATM3 | 0.000000 |
40090 | ATM3 | 0.000000 |
40091 | ATM3 | 0.000000 |
40092 | ATM3 | 0.000000 |
40093 | ATM3 | 0.000000 |
40094 | ATM3 | 0.000000 |
40095 | ATM3 | 0.000000 |
40096 | ATM3 | 0.000000 |
40097 | ATM3 | 0.000000 |
40098 | ATM3 | 0.000000 |
40099 | ATM3 | 0.000000 |
40100 | ATM3 | 0.000000 |
40101 | ATM3 | 0.000000 |
40102 | ATM3 | 0.000000 |
40103 | ATM3 | 0.000000 |
40104 | ATM3 | 0.000000 |
40105 | ATM3 | 0.000000 |
40106 | ATM3 | 0.000000 |
40107 | ATM3 | 0.000000 |
40108 | ATM3 | 0.000000 |
40109 | ATM3 | 0.000000 |
40110 | ATM3 | 0.000000 |
40111 | ATM3 | 0.000000 |
40112 | ATM3 | 0.000000 |
40113 | ATM3 | 0.000000 |
40114 | ATM3 | 0.000000 |
40115 | ATM3 | 0.000000 |
40116 | ATM3 | 0.000000 |
40117 | ATM3 | 0.000000 |
40118 | ATM3 | 0.000000 |
40119 | ATM3 | 0.000000 |
40120 | ATM3 | 0.000000 |
40121 | ATM3 | 0.000000 |
40122 | ATM3 | 0.000000 |
40123 | ATM3 | 0.000000 |
40124 | ATM3 | 0.000000 |
40125 | ATM3 | 0.000000 |
40126 | ATM3 | 0.000000 |
40127 | ATM3 | 0.000000 |
40128 | ATM3 | 0.000000 |
40129 | ATM3 | 0.000000 |
40130 | ATM3 | 0.000000 |
40131 | ATM3 | 0.000000 |
40132 | ATM3 | 0.000000 |
40133 | ATM3 | 0.000000 |
40134 | ATM3 | 0.000000 |
40135 | ATM3 | 0.000000 |
40136 | ATM3 | 0.000000 |
40137 | ATM3 | 0.000000 |
40138 | ATM3 | 0.000000 |
40139 | ATM3 | 0.000000 |
40140 | ATM3 | 0.000000 |
40141 | ATM3 | 0.000000 |
40142 | ATM3 | 0.000000 |
40143 | ATM3 | 0.000000 |
40144 | ATM3 | 0.000000 |
40145 | ATM3 | 0.000000 |
40146 | ATM3 | 0.000000 |
40147 | ATM3 | 0.000000 |
40148 | ATM3 | 0.000000 |
40149 | ATM3 | 0.000000 |
40150 | ATM3 | 0.000000 |
40151 | ATM3 | 0.000000 |
40152 | ATM3 | 0.000000 |
40153 | ATM3 | 0.000000 |
40154 | ATM3 | 0.000000 |
40155 | ATM3 | 0.000000 |
40156 | ATM3 | 0.000000 |
40157 | ATM3 | 0.000000 |
40158 | ATM3 | 0.000000 |
40159 | ATM3 | 0.000000 |
40160 | ATM3 | 0.000000 |
40161 | ATM3 | 0.000000 |
40162 | ATM3 | 0.000000 |
40163 | ATM3 | 0.000000 |
40164 | ATM3 | 0.000000 |
40165 | ATM3 | 0.000000 |
40166 | ATM3 | 0.000000 |
40167 | ATM3 | 0.000000 |
40168 | ATM3 | 0.000000 |
40169 | ATM3 | 0.000000 |
40170 | ATM3 | 0.000000 |
40171 | ATM3 | 0.000000 |
40172 | ATM3 | 0.000000 |
40173 | ATM3 | 0.000000 |
40174 | ATM3 | 0.000000 |
40175 | ATM3 | 0.000000 |
40176 | ATM3 | 0.000000 |
40177 | ATM3 | 0.000000 |
40178 | ATM3 | 0.000000 |
40179 | ATM3 | 0.000000 |
40180 | ATM3 | 0.000000 |
40181 | ATM3 | 0.000000 |
40182 | ATM3 | 0.000000 |
40183 | ATM3 | 0.000000 |
40184 | ATM3 | 0.000000 |
40185 | ATM3 | 0.000000 |
40186 | ATM3 | 0.000000 |
40187 | ATM3 | 0.000000 |
40188 | ATM3 | 0.000000 |
40189 | ATM3 | 0.000000 |
40190 | ATM3 | 0.000000 |
40191 | ATM3 | 0.000000 |
40192 | ATM3 | 0.000000 |
40193 | ATM3 | 0.000000 |
40194 | ATM3 | 0.000000 |
40195 | ATM3 | 0.000000 |
40196 | ATM3 | 0.000000 |
40197 | ATM3 | 0.000000 |
40198 | ATM3 | 0.000000 |
40199 | ATM3 | 0.000000 |
40200 | ATM3 | 0.000000 |
40201 | ATM3 | 0.000000 |
40202 | ATM3 | 0.000000 |
40203 | ATM3 | 0.000000 |
40204 | ATM3 | 0.000000 |
40205 | ATM3 | 0.000000 |
40206 | ATM3 | 0.000000 |
40207 | ATM3 | 0.000000 |
40208 | ATM3 | 0.000000 |
40209 | ATM3 | 0.000000 |
40210 | ATM3 | 0.000000 |
40211 | ATM3 | 0.000000 |
40212 | ATM3 | 0.000000 |
40213 | ATM3 | 0.000000 |
40214 | ATM3 | 0.000000 |
40215 | ATM3 | 0.000000 |
40216 | ATM3 | 0.000000 |
40217 | ATM3 | 0.000000 |
40218 | ATM3 | 0.000000 |
40219 | ATM3 | 0.000000 |
40220 | ATM3 | 0.000000 |
40221 | ATM3 | 0.000000 |
40222 | ATM3 | 0.000000 |
40223 | ATM3 | 0.000000 |
40224 | ATM3 | 0.000000 |
40225 | ATM3 | 0.000000 |
40226 | ATM3 | 0.000000 |
40227 | ATM3 | 0.000000 |
40228 | ATM3 | 0.000000 |
40229 | ATM3 | 0.000000 |
40230 | ATM3 | 0.000000 |
40231 | ATM3 | 0.000000 |
40232 | ATM3 | 0.000000 |
40233 | ATM3 | 0.000000 |
40234 | ATM3 | 0.000000 |
40235 | ATM3 | 0.000000 |
40236 | ATM3 | 0.000000 |
40237 | ATM3 | 0.000000 |
40238 | ATM3 | 0.000000 |
40239 | ATM3 | 0.000000 |
40240 | ATM3 | 0.000000 |
40241 | ATM3 | 0.000000 |
40242 | ATM3 | 0.000000 |
40243 | ATM3 | 0.000000 |
40244 | ATM3 | 0.000000 |
40245 | ATM3 | 0.000000 |
40246 | ATM3 | 0.000000 |
40247 | ATM3 | 0.000000 |
40248 | ATM3 | 0.000000 |
40249 | ATM3 | 0.000000 |
40250 | ATM3 | 0.000000 |
40251 | ATM3 | 0.000000 |
40252 | ATM3 | 0.000000 |
40253 | ATM3 | 0.000000 |
40254 | ATM3 | 0.000000 |
40255 | ATM3 | 0.000000 |
40256 | ATM3 | 0.000000 |
40257 | ATM3 | 0.000000 |
40258 | ATM3 | 0.000000 |
40259 | ATM3 | 0.000000 |
40260 | ATM3 | 0.000000 |
40261 | ATM3 | 0.000000 |
40262 | ATM3 | 0.000000 |
40263 | ATM3 | 0.000000 |
40264 | ATM3 | 0.000000 |
40265 | ATM3 | 0.000000 |
40266 | ATM3 | 0.000000 |
40267 | ATM3 | 0.000000 |
40268 | ATM3 | 0.000000 |
40269 | ATM3 | 0.000000 |
40270 | ATM3 | 0.000000 |
40271 | ATM3 | 0.000000 |
40272 | ATM3 | 0.000000 |
40273 | ATM3 | 0.000000 |
40274 | ATM3 | 0.000000 |
40275 | ATM3 | 0.000000 |
40276 | ATM3 | 0.000000 |
40277 | ATM3 | 0.000000 |
40278 | ATM3 | 0.000000 |
40279 | ATM3 | 0.000000 |
40280 | ATM3 | 0.000000 |
40281 | ATM3 | 0.000000 |
40282 | ATM3 | 0.000000 |
40283 | ATM3 | 0.000000 |
40284 | ATM3 | 0.000000 |
40285 | ATM3 | 0.000000 |
40286 | ATM3 | 0.000000 |
40287 | ATM3 | 0.000000 |
40288 | ATM3 | 0.000000 |
40289 | ATM3 | 0.000000 |
40290 | ATM3 | 0.000000 |
40291 | ATM3 | 0.000000 |
40292 | ATM3 | 0.000000 |
40293 | ATM3 | 0.000000 |
40294 | ATM3 | 0.000000 |
40295 | ATM3 | 0.000000 |
40296 | ATM3 | 96.000000 |
40297 | ATM3 | 82.000000 |
40298 | ATM3 | 85.000000 |
39934 | ATM4 | 776.993423 |
39935 | ATM4 | 524.417959 |
39936 | ATM4 | 792.811362 |
39937 | ATM4 | 908.238457 |
39938 | ATM4 | 52.832103 |
39939 | ATM4 | 52.208454 |
39940 | ATM4 | 55.473609 |
39941 | ATM4 | 558.503251 |
39942 | ATM4 | 904.341359 |
39943 | ATM4 | 879.493588 |
39944 | ATM4 | 274.022340 |
39945 | ATM4 | 396.108347 |
39946 | ATM4 | 274.547188 |
39947 | ATM4 | 16.321159 |
39948 | ATM4 | 852.307037 |
39949 | ATM4 | 379.561703 |
39950 | ATM4 | 31.284953 |
39951 | ATM4 | 491.850577 |
39952 | ATM4 | 83.705480 |
39953 | ATM4 | 128.653781 |
39954 | ATM4 | 14.357590 |
39955 | ATM4 | 815.358321 |
39956 | ATM4 | 758.218587 |
39957 | ATM4 | 601.421108 |
39958 | ATM4 | 906.796873 |
39959 | ATM4 | 502.907894 |
39960 | ATM4 | 88.273138 |
39961 | ATM4 | 35.438336 |
39962 | ATM4 | 338.459425 |
39963 | ATM4 | 4.547996 |
39964 | ATM4 | 122.667745 |
39965 | ATM4 | 150.234945 |
39966 | ATM4 | 721.155281 |
39967 | ATM4 | 443.012568 |
39968 | ATM4 | 17.151720 |
39969 | ATM4 | 14.887695 |
39970 | ATM4 | 740.543155 |
39971 | ATM4 | 1058.083384 |
39972 | ATM4 | 576.183701 |
39973 | ATM4 | 1484.126887 |
39974 | ATM4 | 193.787327 |
39975 | ATM4 | 27.054779 |
39976 | ATM4 | 1190.898921 |
39977 | ATM4 | 746.495617 |
39978 | ATM4 | 1220.767882 |
39979 | ATM4 | 1021.503529 |
39980 | ATM4 | 372.623610 |
39981 | ATM4 | 321.272935 |
39982 | ATM4 | 92.476655 |
39983 | ATM4 | 116.644133 |
39984 | ATM4 | 202.413503 |
39985 | ATM4 | 524.434514 |
39986 | ATM4 | 80.644354 |
39987 | ATM4 | 64.273589 |
39988 | ATM4 | 90.636571 |
39989 | ATM4 | 48.046061 |
39990 | ATM4 | 1026.032172 |
39991 | ATM4 | 423.770971 |
39992 | ATM4 | 60.626453 |
39993 | ATM4 | 540.281404 |
39994 | ATM4 | 173.705568 |
39995 | ATM4 | 393.239982 |
39996 | ATM4 | 41.948621 |
39997 | ATM4 | 310.006527 |
39998 | ATM4 | 110.051915 |
39999 | ATM4 | 682.182367 |
40000 | ATM4 | 54.667904 |
40001 | ATM4 | 213.989896 |
40002 | ATM4 | 738.126360 |
40003 | ATM4 | 16.206081 |
40004 | ATM4 | 16.223205 |
40005 | ATM4 | 1050.206528 |
40006 | ATM4 | 438.477361 |
40007 | ATM4 | 546.691592 |
40008 | ATM4 | 858.236420 |
40009 | ATM4 | 446.733514 |
40010 | ATM4 | 94.672035 |
40011 | ATM4 | 644.390623 |
40012 | ATM4 | 568.815899 |
40013 | ATM4 | 704.507042 |
40014 | ATM4 | 571.645285 |
40015 | ATM4 | 479.875501 |
40016 | ATM4 | 418.864062 |
40017 | ATM4 | 27.569130 |
40018 | ATM4 | 834.834363 |
40019 | ATM4 | 910.834075 |
40020 | ATM4 | 468.106927 |
40021 | ATM4 | 768.121660 |
40022 | ATM4 | 1089.167762 |
40023 | ATM4 | 266.898417 |
40024 | ATM4 | 7.110665 |
40025 | ATM4 | 704.192012 |
40026 | ATM4 | 495.350606 |
40027 | ATM4 | 142.638951 |
40028 | ATM4 | 428.560174 |
40029 | ATM4 | 894.969364 |
40030 | ATM4 | 610.290623 |
40031 | ATM4 | 70.613731 |
40032 | ATM4 | 593.570261 |
40033 | ATM4 | 341.601807 |
40034 | ATM4 | 735.035708 |
40035 | ATM4 | 462.773028 |
40036 | ATM4 | 1156.496108 |
40037 | ATM4 | 454.091939 |
40038 | ATM4 | 283.337265 |
40039 | ATM4 | 571.508226 |
40040 | ATM4 | 772.179652 |
40041 | ATM4 | 260.125517 |
40042 | ATM4 | 357.515267 |
40043 | ATM4 | 16.157597 |
40044 | ATM4 | 334.312503 |
40045 | ATM4 | 25.696404 |
40046 | ATM4 | 254.887098 |
40047 | ATM4 | 357.003129 |
40048 | ATM4 | 1245.594280 |
40049 | ATM4 | 917.371157 |
40050 | ATM4 | 592.180082 |
40051 | ATM4 | 412.474975 |
40052 | ATM4 | 82.911171 |
40053 | ATM4 | 996.010226 |
40054 | ATM4 | 103.910375 |
40055 | ATM4 | 1116.915044 |
40056 | ATM4 | 816.847015 |
40057 | ATM4 | 914.493389 |
40058 | ATM4 | 648.209198 |
40059 | ATM4 | 140.515569 |
40060 | ATM4 | 1495.154775 |
40061 | ATM4 | 1301.396344 |
40062 | ATM4 | 779.717193 |
40063 | ATM4 | 744.262278 |
40064 | ATM4 | 200.391803 |
40065 | ATM4 | 854.179084 |
40066 | ATM4 | 50.719369 |
40067 | ATM4 | 7.404799 |
40068 | ATM4 | 1061.192780 |
40069 | ATM4 | 715.021459 |
40070 | ATM4 | 35.444668 |
40071 | ATM4 | 491.884510 |
40072 | ATM4 | 343.496923 |
40073 | ATM4 | 20.714186 |
40074 | ATM4 | 505.717125 |
40075 | ATM4 | 97.325113 |
40076 | ATM4 | 473.570486 |
40077 | ATM4 | 899.773474 |
40078 | ATM4 | 1712.074986 |
40079 | ATM4 | 281.388412 |
40080 | ATM4 | 26.337969 |
40081 | ATM4 | 328.644988 |
40082 | ATM4 | 761.371143 |
40083 | ATM4 | 629.319901 |
40084 | ATM4 | 235.753411 |
40085 | ATM4 | 1195.223181 |
40086 | ATM4 | 782.407474 |
40087 | ATM4 | 108.331743 |
40088 | ATM4 | 846.556566 |
40089 | ATM4 | 576.169344 |
40090 | ATM4 | 441.883927 |
40091 | ATM4 | 319.404846 |
40092 | ATM4 | 154.163484 |
40093 | ATM4 | 543.239375 |
40094 | ATM4 | 124.334415 |
40095 | ATM4 | 449.074910 |
40096 | ATM4 | 614.654064 |
40097 | ATM4 | 219.237855 |
40098 | ATM4 | 945.736417 |
40099 | ATM4 | 9.691243 |
40100 | ATM4 | 696.245755 |
40101 | ATM4 | 8.084283 |
40102 | ATM4 | 845.463546 |
40103 | ATM4 | 212.902683 |
40104 | ATM4 | 9.155135 |
40105 | ATM4 | 46.831421 |
40106 | ATM4 | 30.372376 |
40107 | ATM4 | 400.484974 |
40108 | ATM4 | 61.338241 |
40109 | ATM4 | 428.046952 |
40110 | ATM4 | 1.563260 |
40111 | ATM4 | 9.018826 |
40112 | ATM4 | 50.304215 |
40113 | ATM4 | 313.414359 |
40114 | ATM4 | 626.687136 |
40115 | ATM4 | 5.882076 |
40116 | ATM4 | 77.803024 |
40117 | ATM4 | 337.894871 |
40118 | ATM4 | 211.812232 |
40119 | ATM4 | 690.122884 |
40120 | ATM4 | 596.381877 |
40121 | ATM4 | 65.278483 |
40122 | ATM4 | 77.444454 |
40123 | ATM4 | 43.721410 |
40124 | ATM4 | 964.175255 |
40125 | ATM4 | 834.959599 |
40126 | ATM4 | 636.962626 |
40127 | ATM4 | 927.078614 |
40128 | ATM4 | 75.873055 |
40129 | ATM4 | 43.690550 |
40130 | ATM4 | 621.292501 |
40131 | ATM4 | 312.582041 |
40132 | ATM4 | 825.635396 |
40133 | ATM4 | 413.620440 |
40134 | ATM4 | 194.047355 |
40135 | ATM4 | 345.695900 |
40136 | ATM4 | 32.428111 |
40137 | ATM4 | 655.315200 |
40138 | ATM4 | 638.136824 |
40139 | ATM4 | 15.306757 |
40140 | ATM4 | 299.663010 |
40141 | ATM4 | 626.662127 |
40142 | ATM4 | 601.141158 |
40143 | ATM4 | 64.131249 |
40144 | ATM4 | 562.763323 |
40145 | ATM4 | 317.253589 |
40146 | ATM4 | 1167.264437 |
40147 | ATM4 | 47.365125 |
40148 | ATM4 | 993.777470 |
40149 | ATM4 | 687.196935 |
40150 | ATM4 | 71.147567 |
40151 | ATM4 | 1046.971281 |
40152 | ATM4 | 1009.050230 |
40153 | ATM4 | 288.649516 |
40154 | ATM4 | 591.508331 |
40155 | ATM4 | 230.605915 |
40156 | ATM4 | 578.431798 |
40157 | ATM4 | 70.210639 |
40158 | ATM4 | 580.796406 |
40159 | ATM4 | 149.150820 |
40160 | ATM4 | 403.861263 |
40161 | ATM4 | 124.958721 |
40162 | ATM4 | 230.148897 |
40163 | ATM4 | 19.008453 |
40164 | ATM4 | 128.638640 |
40165 | ATM4 | 327.965321 |
40166 | ATM4 | 532.245673 |
40167 | ATM4 | 877.397771 |
40168 | ATM4 | 662.112869 |
40169 | ATM4 | 300.629002 |
40170 | ATM4 | 667.628261 |
40171 | ATM4 | 14.573322 |
40172 | ATM4 | 660.355296 |
40173 | ATM4 | 510.988823 |
40174 | ATM4 | 164.462091 |
40175 | ATM4 | 748.172762 |
40176 | ATM4 | 174.241405 |
40177 | ATM4 | 20.192725 |
40178 | ATM4 | 100.686543 |
40179 | ATM4 | 985.956884 |
40180 | ATM4 | 597.058060 |
40181 | ATM4 | 468.457250 |
40182 | ATM4 | 856.581158 |
40183 | ATM4 | 684.774261 |
40184 | ATM4 | 381.562058 |
40185 | ATM4 | 152.092362 |
40186 | ATM4 | 271.934402 |
40187 | ATM4 | 135.499645 |
40188 | ATM4 | 1105.018595 |
40189 | ATM4 | 291.765790 |
40190 | ATM4 | 1141.426655 |
40191 | ATM4 | 140.502720 |
40192 | ATM4 | 8.781528 |
40193 | ATM4 | 85.260115 |
40194 | ATM4 | 66.655933 |
40195 | ATM4 | 709.938568 |
40196 | ATM4 | 567.549590 |
40197 | ATM4 | 486.824572 |
40198 | ATM4 | 17.481238 |
40199 | ATM4 | 49.208112 |
40200 | ATM4 | 357.233561 |
40201 | ATM4 | 179.888632 |
40202 | ATM4 | 728.992926 |
40203 | ATM4 | 261.121740 |
40204 | ATM4 | 628.863047 |
40205 | ATM4 | 277.044815 |
40206 | ATM4 | 41.475487 |
40207 | ATM4 | 1574.779330 |
40208 | ATM4 | 669.707653 |
40209 | ATM4 | 979.675944 |
40210 | ATM4 | 426.406008 |
40211 | ATM4 | 153.242692 |
40212 | ATM4 | 274.949921 |
40213 | ATM4 | 136.276358 |
40214 | ATM4 | 454.416950 |
40215 | ATM4 | 458.304270 |
40216 | ATM4 | 112.030628 |
40217 | ATM4 | 417.912276 |
40218 | ATM4 | 10919.761638 |
40219 | ATM4 | 42.438078 |
40220 | ATM4 | 280.043427 |
40221 | ATM4 | 412.318881 |
40222 | ATM4 | 852.837416 |
40223 | ATM4 | 179.702084 |
40224 | ATM4 | 226.047368 |
40225 | ATM4 | 989.195610 |
40226 | ATM4 | 824.916781 |
40227 | ATM4 | 966.610561 |
40228 | ATM4 | 734.220167 |
40229 | ATM4 | 121.332622 |
40230 | ATM4 | 287.931829 |
40231 | ATM4 | 502.748346 |
40232 | ATM4 | 9.752776 |
40233 | ATM4 | 258.138869 |
40234 | ATM4 | 1170.288228 |
40235 | ATM4 | 193.079004 |
40236 | ATM4 | 402.770395 |
40237 | ATM4 | 1275.968167 |
40238 | ATM4 | 819.881512 |
40239 | ATM4 | 26.392615 |
40240 | ATM4 | 893.884507 |
40241 | ATM4 | 360.641557 |
40242 | ATM4 | 859.899389 |
40243 | ATM4 | 381.473089 |
40244 | ATM4 | 9.711205 |
40245 | ATM4 | 601.016953 |
40246 | ATM4 | 32.454958 |
40247 | ATM4 | 553.395793 |
40248 | ATM4 | 572.374702 |
40249 | ATM4 | 218.831558 |
40250 | ATM4 | 828.326828 |
40251 | ATM4 | 630.762176 |
40252 | ATM4 | 339.418304 |
40253 | ATM4 | 31.502210 |
40254 | ATM4 | 486.679944 |
40255 | ATM4 | 335.363138 |
40256 | ATM4 | 340.008595 |
40257 | ATM4 | 291.282267 |
40258 | ATM4 | 46.029410 |
40259 | ATM4 | 201.403616 |
40260 | ATM4 | 9.558300 |
40261 | ATM4 | 877.966103 |
40262 | ATM4 | 778.110791 |
40263 | ATM4 | 707.613494 |
40264 | ATM4 | 351.457835 |
40265 | ATM4 | 711.049107 |
40266 | ATM4 | 502.518192 |
40267 | ATM4 | 23.337569 |
40268 | ATM4 | 492.909936 |
40269 | ATM4 | 405.312584 |
40270 | ATM4 | 818.394331 |
40271 | ATM4 | 152.270800 |
40272 | ATM4 | 281.113528 |
40273 | ATM4 | 470.425772 |
40274 | ATM4 | 2.507317 |
40275 | ATM4 | 414.741223 |
40276 | ATM4 | 719.426783 |
40277 | ATM4 | 811.716825 |
40278 | ATM4 | 889.584209 |
40279 | ATM4 | 616.127547 |
40280 | ATM4 | 61.144354 |
40281 | ATM4 | 27.325671 |
40282 | ATM4 | 767.778153 |
40283 | ATM4 | 326.084093 |
40284 | ATM4 | 825.197816 |
40285 | ATM4 | 383.815025 |
40286 | ATM4 | 195.483454 |
40287 | ATM4 | 711.164653 |
40288 | ATM4 | 29.869011 |
40289 | ATM4 | 556.792330 |
40290 | ATM4 | 386.175335 |
40291 | ATM4 | 165.294181 |
40292 | ATM4 | 5.451815 |
40293 | ATM4 | 542.280602 |
40294 | ATM4 | 403.839336 |
40295 | ATM4 | 13.697331 |
40296 | ATM4 | 348.201061 |
40297 | ATM4 | 44.245345 |
40298 | ATM4 | 482.287107 |
## Counts of missing data per feature
train_na_df <- data.frame(apply(atmdata, 2, function(x) length(which(is.na(x)))))
train_na_df1 <- data.frame(apply(atmdata, 2,function(x) {sum(is.na(x)) / length(x) * 100}))
train_na_df <- cbind(Feature = rownames(train_na_df), train_na_df, train_na_df1)
colnames(train_na_df) <- c('Feature Name','No. of NA Recocrds','Percentage of NA Records')
rownames(train_na_df) <- NULL
train_na_df%>% filter(`No. of NA Recocrds` != 0) %>% arrange(desc(`No. of NA Recocrds`)) %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="150px")
Feature Name | No. of NA Recocrds | Percentage of NA Records |
---|---|---|
Cash | 19 | 1.2890095 |
ATM | 14 | 0.9497965 |
Firstly, removing records with missing ‘ATM’ values -
Converting the ‘DATE’ column from Excel numeric format to proper date format -
atmdata$DATE_Formatted <- as.Date(atmdata$DATE, origin = "1899-12-30")
atmdataDF <- atmdata %>% select(DATE_Formatted,ATM,Cash)
colnames(atmdataDF) <- c("DATE","ATM","Cash")
Pivoting the dataframe by ATM:
atmdataDF <- atmdataDF %>% pivot_wider(names_from = ATM, values_from = Cash)
atmdataDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DATE | ATM1 | ATM2 | ATM3 | ATM4 |
---|---|---|---|---|
2009-05-01 | 96 | 107 | 0 | 776.993423 |
2009-05-02 | 82 | 89 | 0 | 524.417959 |
2009-05-03 | 85 | 90 | 0 | 792.811362 |
2009-05-04 | 90 | 55 | 0 | 908.238457 |
2009-05-05 | 99 | 79 | 0 | 52.832103 |
2009-05-06 | 88 | 19 | 0 | 52.208454 |
2009-05-07 | 8 | 2 | 0 | 55.473609 |
2009-05-08 | 104 | 103 | 0 | 558.503251 |
2009-05-09 | 87 | 107 | 0 | 904.341359 |
2009-05-10 | 93 | 118 | 0 | 879.493588 |
2009-05-11 | 86 | 75 | 0 | 274.022340 |
2009-05-12 | 111 | 111 | 0 | 396.108347 |
2009-05-13 | 75 | 25 | 0 | 274.547188 |
2009-05-14 | 6 | 16 | 0 | 16.321159 |
2009-05-15 | 102 | 137 | 0 | 852.307037 |
2009-05-16 | 73 | 95 | 0 | 379.561703 |
2009-05-17 | 92 | 103 | 0 | 31.284953 |
2009-05-18 | 82 | 80 | 0 | 491.850577 |
2009-05-19 | 86 | 118 | 0 | 83.705480 |
2009-05-20 | 73 | 30 | 0 | 128.653781 |
2009-05-21 | 20 | 7 | 0 | 14.357590 |
2009-05-22 | 100 | 118 | 0 | 815.358321 |
2009-05-23 | 93 | 104 | 0 | 758.218587 |
2009-05-24 | 90 | 59 | 0 | 601.421108 |
2009-05-25 | 94 | 40 | 0 | 906.796873 |
2009-05-26 | 98 | 106 | 0 | 502.907894 |
2009-05-27 | 73 | 18 | 0 | 88.273138 |
2009-05-28 | 10 | 9 | 0 | 35.438336 |
2009-05-29 | 97 | 136 | 0 | 338.459425 |
2009-05-30 | 102 | 118 | 0 | 4.547996 |
2009-05-31 | 85 | 64 | 0 | 122.667745 |
2009-06-01 | 85 | 77 | 0 | 150.234945 |
2009-06-02 | 108 | 133 | 0 | 721.155281 |
2009-06-03 | 94 | 45 | 0 | 443.012568 |
2009-06-04 | 14 | 14 | 0 | 17.151720 |
2009-06-05 | 3 | 20 | 0 | 14.887695 |
2009-06-06 | 96 | 147 | 0 | 740.543155 |
2009-06-07 | 109 | 105 | 0 | 1058.083384 |
2009-06-08 | 96 | 132 | 0 | 576.183701 |
2009-06-09 | 145 | 93 | 0 | 1484.126887 |
2009-06-10 | 81 | 26 | 0 | 193.787327 |
2009-06-11 | 16 | 7 | 0 | 27.054779 |
2009-06-12 | 142 | 112 | 0 | 1190.898921 |
2009-06-13 | NA | 91 | 0 | 746.495617 |
2009-06-14 | 120 | 72 | 0 | 1220.767882 |
2009-06-15 | 106 | 66 | 0 | 1021.503529 |
2009-06-16 | NA | 82 | 0 | 372.623610 |
2009-06-17 | 108 | 24 | 0 | 321.272935 |
2009-06-18 | 21 | NA | 0 | 92.476655 |
2009-06-19 | 140 | 134 | 0 | 116.644133 |
2009-06-20 | 110 | 95 | 0 | 202.413503 |
2009-06-21 | 115 | 82 | 0 | 524.434514 |
2009-06-22 | NA | 90 | 0 | 80.644354 |
2009-06-23 | 108 | 99 | 0 | 64.273589 |
2009-06-24 | 66 | NA | 0 | 90.636571 |
2009-06-25 | 13 | 3 | 0 | 48.046061 |
2009-06-26 | 99 | 117 | 0 | 1026.032172 |
2009-06-27 | 105 | 53 | 0 | 423.770971 |
2009-06-28 | 104 | 44 | 0 | 60.626453 |
2009-06-29 | 98 | 56 | 0 | 540.281404 |
2009-06-30 | 110 | 110 | 0 | 173.705568 |
2009-07-01 | 79 | 36 | 0 | 393.239982 |
2009-07-02 | 16 | 12 | 0 | 41.948621 |
2009-07-03 | 110 | 128 | 0 | 310.006527 |
2009-07-04 | 96 | 72 | 0 | 110.051915 |
2009-07-05 | 114 | 122 | 0 | 682.182367 |
2009-07-06 | 126 | 100 | 0 | 54.667904 |
2009-07-07 | 126 | 108 | 0 | 213.989896 |
2009-07-08 | 73 | 25 | 0 | 738.126360 |
2009-07-09 | 4 | 6 | 0 | 16.206081 |
2009-07-10 | 19 | 22 | 0 | 16.223205 |
2009-07-11 | 114 | 135 | 0 | 1050.206528 |
2009-07-12 | 98 | 69 | 0 | 438.477361 |
2009-07-13 | 97 | 52 | 0 | 546.691592 |
2009-07-14 | 114 | 81 | 0 | 858.236420 |
2009-07-15 | 78 | 27 | 0 | 446.733514 |
2009-07-16 | 19 | 4 | 0 | 94.672035 |
2009-07-17 | 102 | 147 | 0 | 644.390623 |
2009-07-18 | 94 | 102 | 0 | 568.815899 |
2009-07-19 | 108 | 83 | 0 | 704.507042 |
2009-07-20 | 91 | 55 | 0 | 571.645285 |
2009-07-21 | 86 | 74 | 0 | 479.875501 |
2009-07-22 | 78 | 22 | 0 | 418.864062 |
2009-07-23 | 16 | 4 | 0 | 27.569130 |
2009-07-24 | 114 | 104 | 0 | 834.834363 |
2009-07-25 | 115 | 81 | 0 | 910.834075 |
2009-07-26 | 108 | 61 | 0 | 468.106927 |
2009-07-27 | 102 | 70 | 0 | 768.121660 |
2009-07-28 | 129 | 126 | 0 | 1089.167762 |
2009-07-29 | 79 | 33 | 0 | 266.898417 |
2009-07-30 | 13 | 7 | 0 | 7.110665 |
2009-07-31 | 103 | 126 | 0 | 704.192012 |
2009-08-01 | 90 | 92 | 0 | 495.350606 |
2009-08-02 | 68 | 81 | 0 | 142.638951 |
2009-08-03 | 85 | 49 | 0 | 428.560174 |
2009-08-04 | 99 | 146 | 0 | 894.969364 |
2009-08-05 | 86 | 79 | 0 | 610.290623 |
2009-08-06 | 13 | 37 | 0 | 70.613731 |
2009-08-07 | 116 | 136 | 0 | 593.570261 |
2009-08-08 | 105 | 111 | 0 | 341.601807 |
2009-08-09 | 123 | 78 | 0 | 735.035708 |
2009-08-10 | 114 | 57 | 0 | 462.773028 |
2009-08-11 | 127 | 106 | 0 | 1156.496108 |
2009-08-12 | 111 | 38 | 0 | 454.091939 |
2009-08-13 | 34 | 15 | 0 | 283.337265 |
2009-08-14 | 151 | 119 | 0 | 571.508226 |
2009-08-15 | 110 | 110 | 0 | 772.179652 |
2009-08-16 | 115 | 68 | 0 | 260.125517 |
2009-08-17 | 112 | 60 | 0 | 357.515267 |
2009-08-18 | 132 | 92 | 0 | 16.157597 |
2009-08-19 | 94 | 22 | 0 | 334.312503 |
2009-08-20 | 24 | 11 | 0 | 25.696404 |
2009-08-21 | 122 | 121 | 0 | 254.887098 |
2009-08-22 | 104 | 89 | 0 | 357.003129 |
2009-08-23 | 128 | 62 | 0 | 1245.594280 |
2009-08-24 | 120 | 79 | 0 | 917.371157 |
2009-08-25 | 174 | 83 | 0 | 592.180082 |
2009-08-26 | 96 | 31 | 0 | 412.474975 |
2009-08-27 | 13 | 4 | 0 | 82.911171 |
2009-08-28 | 121 | 96 | 0 | 996.010226 |
2009-08-29 | 133 | 50 | 0 | 103.910375 |
2009-08-30 | 118 | 52 | 0 | 1116.915044 |
2009-08-31 | 91 | 56 | 0 | 816.847015 |
2009-09-01 | 120 | 104 | 0 | 914.493389 |
2009-09-02 | 88 | 27 | 0 | 648.209198 |
2009-09-03 | 19 | 13 | 0 | 140.515569 |
2009-09-04 | 150 | 107 | 0 | 1495.154775 |
2009-09-05 | 144 | 125 | 0 | 1301.396344 |
2009-09-06 | 121 | 103 | 0 | 779.717193 |
2009-09-07 | 105 | 42 | 0 | 744.262278 |
2009-09-08 | 133 | 90 | 0 | 200.391803 |
2009-09-09 | 109 | 29 | 0 | 854.179084 |
2009-09-10 | 18 | 8 | 0 | 50.719369 |
2009-09-11 | 1 | 2 | 0 | 7.404799 |
2009-09-12 | 105 | 84 | 0 | 1061.192780 |
2009-09-13 | 112 | 62 | 0 | 715.021459 |
2009-09-14 | 82 | 77 | 0 | 35.444668 |
2009-09-15 | 111 | 78 | 0 | 491.884510 |
2009-09-16 | 79 | 25 | 0 | 343.496923 |
2009-09-17 | 13 | 8 | 0 | 20.714186 |
2009-09-18 | 112 | 113 | 0 | 505.717125 |
2009-09-19 | 99 | 71 | 0 | 97.325113 |
2009-09-20 | 140 | 94 | 0 | 473.570486 |
2009-09-21 | 110 | 59 | 0 | 899.773474 |
2009-09-22 | 180 | 89 | 0 | 1712.074986 |
2009-09-23 | 73 | 18 | 0 | 281.388412 |
2009-09-24 | 7 | 6 | 0 | 26.337969 |
2009-09-25 | 106 | 115 | 0 | 328.644988 |
2009-09-26 | 103 | 81 | 0 | 761.371143 |
2009-09-27 | 93 | 61 | 0 | 629.319901 |
2009-09-28 | 96 | 71 | 0 | 235.753411 |
2009-09-29 | 117 | 69 | 0 | 1195.223181 |
2009-09-30 | 80 | 36 | 0 | 782.407474 |
2009-10-01 | 14 | 14 | 0 | 108.331743 |
2009-10-02 | 120 | 104 | 0 | 846.556566 |
2009-10-03 | 91 | 73 | 0 | 576.169344 |
2009-10-04 | 96 | 86 | 0 | 441.883927 |
2009-10-05 | 74 | 85 | 0 | 319.404846 |
2009-10-06 | 108 | 126 | 0 | 154.163484 |
2009-10-07 | 73 | 31 | 0 | 543.239375 |
2009-10-08 | 13 | 9 | 0 | 124.334415 |
2009-10-09 | 93 | 114 | 0 | 449.074910 |
2009-10-10 | 94 | 78 | 0 | 614.654064 |
2009-10-11 | 76 | 45 | 0 | 219.237855 |
2009-10-12 | 111 | 60 | 0 | 945.736417 |
2009-10-13 | 88 | 91 | 0 | 9.691243 |
2009-10-14 | 76 | 22 | 0 | 696.245755 |
2009-10-15 | 9 | 7 | 0 | 8.084283 |
2009-10-16 | 87 | 75 | 0 | 845.463546 |
2009-10-17 | 105 | 66 | 0 | 212.902683 |
2009-10-18 | 78 | 64 | 0 | 9.155135 |
2009-10-19 | 67 | 51 | 0 | 46.831421 |
2009-10-20 | 90 | 94 | 0 | 30.372376 |
2009-10-21 | 68 | 23 | 0 | 400.484974 |
2009-10-22 | 9 | 4 | 0 | 61.338241 |
2009-10-23 | 78 | 127 | 0 | 428.046952 |
2009-10-24 | 74 | 61 | 0 | 1.563260 |
2009-10-25 | 74 | 0 | 0 | 9.018826 |
2009-10-26 | 60 | 95 | 0 | 50.304215 |
2009-10-27 | 75 | 79 | 0 | 313.414359 |
2009-10-28 | 61 | 38 | 0 | 626.687136 |
2009-10-29 | 9 | 8 | 0 | 5.882076 |
2009-10-30 | 90 | 119 | 0 | 77.803024 |
2009-10-31 | 86 | 57 | 0 | 337.894871 |
2009-11-01 | 86 | 58 | 0 | 211.812232 |
2009-11-02 | 79 | 80 | 0 | 690.122884 |
2009-11-03 | 90 | 82 | 0 | 596.381877 |
2009-11-04 | 80 | 49 | 0 | 65.278483 |
2009-11-05 | 21 | 16 | 0 | 77.444454 |
2009-11-06 | 93 | 116 | 0 | 43.721410 |
2009-11-07 | 104 | 61 | 0 | 964.175255 |
2009-11-08 | 109 | 59 | 0 | 834.959599 |
2009-11-09 | 88 | 80 | 0 | 636.962626 |
2009-11-10 | 96 | 86 | 0 | 927.078614 |
2009-11-11 | 70 | 23 | 0 | 75.873055 |
2009-11-12 | 15 | 7 | 0 | 43.690550 |
2009-11-13 | 73 | 91 | 0 | 621.292501 |
2009-11-14 | 94 | 57 | 0 | 312.582041 |
2009-11-15 | 108 | 58 | 0 | 825.635396 |
2009-11-16 | 73 | 61 | 0 | 413.620440 |
2009-11-17 | 87 | 77 | 0 | 194.047355 |
2009-11-18 | 75 | 20 | 0 | 345.695900 |
2009-11-19 | 10 | 5 | 0 | 32.428111 |
2009-11-20 | 92 | 132 | 0 | 655.315200 |
2009-11-21 | 87 | 49 | 0 | 638.136824 |
2009-11-22 | 74 | 57 | 0 | 15.306757 |
2009-11-23 | 73 | 68 | 0 | 299.663010 |
2009-11-24 | 93 | 80 | 0 | 626.662127 |
2009-11-25 | 66 | 31 | 0 | 601.141158 |
2009-11-26 | 18 | 3 | 0 | 64.131249 |
2009-11-27 | 99 | 85 | 0 | 562.763323 |
2009-11-28 | 94 | 53 | 0 | 317.253589 |
2009-11-29 | 136 | 46 | 0 | 1167.264437 |
2009-11-30 | 6 | 2 | 0 | 47.365125 |
2009-12-01 | 140 | 113 | 0 | 993.777470 |
2009-12-02 | 73 | 22 | 0 | 687.196935 |
2009-12-03 | 9 | 5 | 0 | 71.147567 |
2009-12-04 | 140 | 112 | 0 | 1046.971281 |
2009-12-05 | 103 | 59 | 0 | 1009.050230 |
2009-12-06 | 110 | 72 | 0 | 288.649516 |
2009-12-07 | 90 | 77 | 0 | 591.508331 |
2009-12-08 | 135 | 85 | 0 | 230.605915 |
2009-12-09 | 67 | 27 | 0 | 578.431798 |
2009-12-10 | 12 | 1 | 0 | 70.210639 |
2009-12-11 | 109 | 91 | 0 | 580.796406 |
2009-12-12 | 84 | 36 | 0 | 149.150820 |
2009-12-13 | 92 | 46 | 0 | 403.861263 |
2009-12-14 | 84 | 100 | 0 | 124.958721 |
2009-12-15 | 118 | 73 | 0 | 230.148897 |
2009-12-16 | 68 | 22 | 0 | 19.008453 |
2009-12-17 | 14 | 9 | 0 | 128.638640 |
2009-12-18 | 90 | 117 | 0 | 327.965321 |
2009-12-19 | 92 | 44 | 0 | 532.245673 |
2009-12-20 | 93 | 44 | 0 | 877.397771 |
2009-12-21 | 85 | 78 | 0 | 662.112869 |
2009-12-22 | 93 | 89 | 0 | 300.629002 |
2009-12-23 | 70 | 33 | 0 | 667.628261 |
2009-12-24 | 13 | 5 | 0 | 14.573322 |
2009-12-25 | 90 | 102 | 0 | 660.355296 |
2009-12-26 | 91 | 68 | 0 | 510.988823 |
2009-12-27 | 102 | 64 | 0 | 164.462091 |
2009-12-28 | 97 | 81 | 0 | 748.172762 |
2009-12-29 | 42 | 9 | 0 | 174.241405 |
2009-12-30 | 2 | 2 | 0 | 20.192725 |
2009-12-31 | 14 | 2 | 0 | 100.686543 |
2010-01-01 | 132 | 117 | 0 | 985.956884 |
2010-01-02 | 108 | 56 | 0 | 597.058060 |
2010-01-03 | 120 | 55 | 0 | 468.457250 |
2010-01-04 | 120 | 112 | 0 | 856.581158 |
2010-01-05 | 90 | 100 | 0 | 684.774261 |
2010-01-06 | 48 | 17 | 0 | 381.562058 |
2010-01-07 | 15 | 7 | 0 | 152.092362 |
2010-01-08 | 86 | 49 | 0 | 271.934402 |
2010-01-09 | 109 | 96 | 0 | 135.499645 |
2010-01-10 | 115 | 47 | 0 | 1105.018595 |
2010-01-11 | 123 | 107 | 0 | 291.765790 |
2010-01-12 | 123 | 93 | 0 | 1141.426655 |
2010-01-13 | 60 | 27 | 0 | 140.502720 |
2010-01-14 | 22 | 9 | 0 | 8.781528 |
2010-01-15 | 81 | 78 | 0 | 85.260115 |
2010-01-16 | 98 | 47 | 0 | 66.655933 |
2010-01-17 | 94 | 31 | 0 | 709.938568 |
2010-01-18 | 76 | 91 | 0 | 567.549590 |
2010-01-19 | 96 | 77 | 0 | 486.824572 |
2010-01-20 | 72 | 22 | 0 | 17.481238 |
2010-01-21 | 12 | 1 | 0 | 49.208112 |
2010-01-22 | 91 | 125 | 0 | 357.233561 |
2010-01-23 | 74 | 53 | 0 | 179.888632 |
2010-01-24 | 104 | 37 | 0 | 728.992926 |
2010-01-25 | 74 | 69 | 0 | 261.121740 |
2010-01-26 | 91 | 69 | 0 | 628.863047 |
2010-01-27 | 66 | 16 | 0 | 277.044815 |
2010-01-28 | 28 | 2 | 0 | 41.475487 |
2010-01-29 | 152 | 95 | 0 | 1574.779330 |
2010-01-30 | 97 | 45 | 0 | 669.707653 |
2010-01-31 | 100 | 61 | 0 | 979.675944 |
2010-02-01 | 85 | 71 | 0 | 426.406008 |
2010-02-02 | 123 | 91 | 0 | 153.242692 |
2010-02-03 | 46 | 28 | 0 | 274.949921 |
2010-02-04 | 38 | 9 | 0 | 136.276358 |
2010-02-05 | 138 | 97 | 0 | 454.416950 |
2010-02-06 | 74 | 60 | 0 | 458.304270 |
2010-02-07 | 85 | 27 | 0 | 112.030628 |
2010-02-08 | 78 | 74 | 0 | 417.912276 |
2010-02-09 | 123 | 45 | 0 | 10919.761638 |
2010-02-10 | 50 | 26 | 0 | 42.438078 |
2010-02-11 | 28 | 2 | 0 | 280.043427 |
2010-02-12 | 105 | 73 | 0 | 412.318881 |
2010-02-13 | 109 | 48 | 0 | 852.837416 |
2010-02-14 | 26 | 9 | 0 | 179.702084 |
2010-02-15 | 54 | 25 | 0 | 226.047368 |
2010-02-16 | 105 | 58 | 0 | 989.195610 |
2010-02-17 | 179 | 110 | 0 | 824.916781 |
2010-02-18 | 125 | 94 | 0 | 966.610561 |
2010-02-19 | 84 | 25 | 0 | 734.220167 |
2010-02-20 | 99 | 101 | 0 | 121.332622 |
2010-02-21 | 110 | 77 | 0 | 287.931829 |
2010-02-22 | 80 | 6 | 0 | 502.748346 |
2010-02-23 | 1 | 3 | 0 | 9.752776 |
2010-02-24 | 111 | 99 | 0 | 258.138869 |
2010-02-25 | 115 | 86 | 0 | 1170.288228 |
2010-02-26 | 108 | 20 | 0 | 193.079004 |
2010-02-27 | 100 | 72 | 0 | 402.770395 |
2010-02-28 | 152 | 81 | 0 | 1275.968167 |
2010-03-01 | 90 | 16 | 0 | 819.881512 |
2010-03-02 | 4 | 2 | 0 | 26.392615 |
2010-03-03 | 128 | 110 | 0 | 893.884507 |
2010-03-04 | 87 | 75 | 0 | 360.641557 |
2010-03-05 | 84 | 35 | 0 | 859.899389 |
2010-03-06 | 69 | 102 | 0 | 381.473089 |
2010-03-07 | 112 | 100 | 0 | 9.711205 |
2010-03-08 | 62 | 9 | 0 | 601.016953 |
2010-03-09 | 4 | 2 | 0 | 32.454958 |
2010-03-10 | 94 | 100 | 0 | 553.395793 |
2010-03-11 | 102 | 85 | 0 | 572.374702 |
2010-03-12 | 98 | 33 | 0 | 218.831558 |
2010-03-13 | 88 | 24 | 0 | 828.326828 |
2010-03-14 | 123 | 111 | 0 | 630.762176 |
2010-03-15 | 55 | 5 | 0 | 339.418304 |
2010-03-16 | 4 | 1 | 0 | 31.502210 |
2010-03-17 | 92 | 106 | 0 | 486.679944 |
2010-03-18 | 88 | 102 | 0 | 335.363138 |
2010-03-19 | 92 | 25 | 0 | 340.008595 |
2010-03-20 | 92 | 64 | 0 | 291.282267 |
2010-03-21 | 117 | 78 | 0 | 46.029410 |
2010-03-22 | 73 | 5 | 0 | 201.403616 |
2010-03-23 | 3 | 1 | 0 | 9.558300 |
2010-03-24 | 85 | 83 | 0 | 877.966103 |
2010-03-25 | 88 | 78 | 0 | 778.110791 |
2010-03-26 | 76 | 66 | 0 | 707.613494 |
2010-03-27 | 93 | 15 | 0 | 351.457835 |
2010-03-28 | 116 | 64 | 0 | 711.049107 |
2010-03-29 | 68 | 3 | 0 | 502.518192 |
2010-03-30 | 19 | 0 | 0 | 23.337569 |
2010-03-31 | 127 | 102 | 0 | 492.909936 |
2010-04-01 | 93 | 99 | 0 | 405.312584 |
2010-04-02 | 97 | 41 | 0 | 818.394331 |
2010-04-03 | 102 | 79 | 0 | 152.270800 |
2010-04-04 | 109 | 71 | 0 | 281.113528 |
2010-04-05 | 68 | 9 | 0 | 470.425772 |
2010-04-06 | 4 | 2 | 0 | 2.507317 |
2010-04-07 | 105 | 103 | 0 | 414.741223 |
2010-04-08 | 79 | 67 | 0 | 719.426783 |
2010-04-09 | 90 | 85 | 0 | 811.716825 |
2010-04-10 | 87 | 78 | 0 | 889.584209 |
2010-04-11 | 92 | 67 | 0 | 616.127547 |
2010-04-12 | 63 | 12 | 0 | 61.144354 |
2010-04-13 | 3 | 1 | 0 | 27.325671 |
2010-04-14 | 103 | 97 | 0 | 767.778153 |
2010-04-15 | 80 | 106 | 0 | 326.084093 |
2010-04-16 | 80 | 74 | 0 | 825.197816 |
2010-04-17 | 84 | 86 | 0 | 383.815025 |
2010-04-18 | 81 | 55 | 0 | 195.483454 |
2010-04-19 | 88 | 13 | 0 | 711.164653 |
2010-04-20 | 3 | 1 | 0 | 29.869011 |
2010-04-21 | 100 | 100 | 0 | 556.792330 |
2010-04-22 | 69 | 103 | 0 | 386.175335 |
2010-04-23 | 85 | 44 | 0 | 165.294181 |
2010-04-24 | 85 | 61 | 0 | 5.451815 |
2010-04-25 | 109 | 89 | 0 | 542.280602 |
2010-04-26 | 74 | 11 | 0 | 403.839336 |
2010-04-27 | 4 | 2 | 0 | 13.697331 |
2010-04-28 | 96 | 107 | 96 | 348.201061 |
2010-04-29 | 82 | 89 | 82 | 44.245345 |
2010-04-30 | 85 | 90 | 85 | 482.287107 |
## DATE ATM1 ATM2 ATM3
## Min. :2009-05-01 Min. : 1.00 Min. : 0.00 Min. : 0.0000
## 1st Qu.:2009-07-31 1st Qu.: 73.00 1st Qu.: 25.50 1st Qu.: 0.0000
## Median :2009-10-30 Median : 91.00 Median : 67.00 Median : 0.0000
## Mean :2009-10-30 Mean : 83.89 Mean : 62.58 Mean : 0.7206
## 3rd Qu.:2010-01-29 3rd Qu.:108.00 3rd Qu.: 93.00 3rd Qu.: 0.0000
## Max. :2010-04-30 Max. :180.00 Max. :147.00 Max. :96.0000
## NA's :3 NA's :2
## ATM4
## Min. : 1.563
## 1st Qu.: 124.334
## Median : 403.839
## Mean : 474.043
## 3rd Qu.: 704.507
## Max. :10919.762
##
It can be observed for ATM1 and ATM2, there are some missing ‘NA’ values present which need to be imputed. For ATM3, we have data from only 3 days which could be due to the fact that ATM might have a delayed operational start date compared to other two ATMs. ATM4 clearly has an outlier.
Outlier handling:
Converting into a Timeseries object:
autoplot(atm_ts, facets = TRUE) +
ggtitle("ATM Cash Withdrawal") +
xlab("Days") +
ylab("Thousands of Dollars")
From the plots above, it is evident that- - ATM1 and ATM2 have some weekly or monthly seasonality present in teh data - ATM3 has very little data available - only 3 days - ATM4 looks more or less stationary apart from one observation which could be an outlier
I have used imputeTS package to impute missing data for ATM1.
atm1_ts <- na_kalman(atm_ts[,"ATM1"], model = "auto.arima")
ggplot_na_imputations(atm_ts[,"ATM1"], atm1_ts)
Before running any models I will check the ACF and PACF plots, and the ndiffs, nsdiffs, and BoxCox.lambda functions to see what they recommend for differencing and what type of model they suggest might be most appropriate.
# Time plot
atm1_ts %>% ggtsdisplay(main = "Cash Drawn from ATM1"
,xlab = "Days"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
Hence, due to the presence of strong weekly trend I chaged the frequency of time series to 7.
Before running any models I will check the ACF and PACF plots, and the ndiffs, nsdiffs, and BoxCox.lambda functions to see what they recommend for differencing and what type of model they suggest might be most appropriate.
atm1_weekly_ts %>% ggtsdisplay(main = "Cash Drawn from ATM1"
,xlab = "Weeks"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
## [1] 0
## [1] 1
atm1_lambda <- BoxCox.lambda(atm1_weekly_ts)
cat("Box Cox Transformation factor lambda=",atm1_lambda)
## Box Cox Transformation factor lambda= 0.3240927
For ATM1 no first order differencing is recommended, only a first order seasonal difference and a box-cox transformation with lambda = 0.3240927. Let’s plot the data again after these transformations are performed to see what impact they have.
atm1_weekly_ts %>% BoxCox(atm1_lambda) %>% diff(lag=7) %>% ggtsdisplay(main = "Cash Drawn from ATM1 - w/ Box Cox Transform + Seasonal Differencing"
,xlab = "Weeks"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
The plot above shows stationary timeseries data with most of the seasonality eliminated, although there are still spikes in the ACF plot at lag 7 and in the PACF plot at lags 7, 14, and 21. So I am going to add a first order differencing to eliminate any remaining seasonality -
atm1_weekly_ts %>% BoxCox(atm1_lambda) %>% diff(lag=7) %>% diff() %>% ggtsdisplay(main = "Cash Drawn from ATM1 - w/ Box Cox Transform + Seasonal + 1st Order Differencing"
,xlab = "Weeks"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
#### Model1: Holt-Winters w/ Box Cox
atm1_model_fit1 <- atm1_weekly_ts %>% hw(h=31, seasonal="additive",
damped=TRUE, lambda = atm1_lambda)
autoplot(atm1_model_fit1) + theme(panel.background = element_blank()) +
ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(atm1_model_fit1), row.names = NULL)
accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 2.587001 | 26.31578 | 17.17477 | -96.05645 | 115.8894 | 0.9095107 | 0.066713 |
##
## Ljung-Box test
##
## data: Residuals from Damped Holt-Winters' additive method
## Q* = 24.592, df = 3, p-value = 1.879e-05
##
## Model df: 12. Total lags used: 15
The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.
atm1_model_fit2 <- atm1_weekly_ts %>% ets(model="ZZZ", lambda = atm1_lambda)
autoplot(atm1_model_fit2) + theme(panel.background = element_blank())
autoplot(forecast(atm1_model_fit2, h=31)) + theme(panel.background = element_blank()) +
ggtitle("ETS method w/ Box Cox Transofrm") +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
accuracyDF <- rbind(accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(atm1_model_fit2), row.names = NULL))
accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 2.587001 | 26.31578 | 17.17477 | -96.05645 | 115.8894 | 0.9095107 | 0.0667130 |
ETS Method with Box-Cox Transform | 2.611202 | 26.31169 | 17.15176 | -95.24957 | 115.2117 | 0.9082923 | 0.0664474 |
##
## Ljung-Box test
##
## data: Residuals from ETS(A,N,A)
## Q* = 24.585, df = 5, p-value = 0.0001675
##
## Model df: 9. Total lags used: 14
The ETS model produced almost exactly the same results as Holt Winter’s model with only slightly better RMSE and Ljung-Box results.
atm1_model_fit3 <- auto.arima(atm1_weekly_ts,stepwise=FALSE, approximation=FALSE)
autoplot(forecast(atm1_model_fit3, h=31)) + theme(panel.background = element_blank()) +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
accuracyDF <- rbind(accuracyDF,data.frame(Model = "ARIMA(0,0,1)(1,1,1)[7]", accuracy(atm1_model_fit3), row.names = NULL))
accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 2.5870006 | 26.31578 | 17.17477 | -96.05645 | 115.8894 | 0.9095107 | 0.0667130 |
ETS Method with Box-Cox Transform | 2.6112023 | 26.31169 | 17.15176 | -95.24957 | 115.2117 | 0.9082923 | 0.0664474 |
ARIMA(0,0,1)(1,1,1)[7] | -0.0651367 | 24.94054 | 15.68764 | -107.44696 | 123.0573 | 0.8307584 | -0.0057811 |
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,0,1)(1,1,1)[7]
## Q* = 18.903, df = 11, p-value = 0.06286
##
## Model df: 3. Total lags used: 14
The ARIMA model resulted in the best fit with the best RMSE and a Ljung-Box p-value that means we cannot reject the null hypothesis that the series is consistent with white noise. The plot of the forecast also looks like a more reasonable estimate of what we can expect based on the historical data.
Following the exact same procedure for ATM2 -
atm2_ts <- na_kalman(atm_ts[,"ATM2"], model = "auto.arima")
ggplot_na_imputations(atm_ts[,"ATM2"], atm2_ts)
atm2_weekly_ts <- ts(atm2_ts, frequency=7)
# Time plot
atm2_weekly_ts %>% ggtsdisplay(main = "Cash Drawn from ATM2"
,xlab = "Days"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
## [1] 1
## [1] 1
atm2_lambda <- BoxCox.lambda(atm2_weekly_ts)
cat("Box Cox Transformation factor lambda=",atm2_lambda)
## Box Cox Transformation factor lambda= 0.7286677
For ATM2 a first order differencing is recommended along with a first order seasonal difference and a box-cox transformation with lambda = 0.7286677. Let’s plot the data again after these transformations are performed to see what impact they have.
atm2_weekly_ts %>% BoxCox(atm2_lambda) %>% diff(lag=7) %>% ggtsdisplay(main = "Cash Drawn from ATM2 - w/ Box Cox Transform + Seasonal Differencing"
,xlab = "Weeks"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
The plot above shows stationary timeseries data with most of the seasonality eliminated, although there are still spikes in the ACF plot at lag 7 and in the PACF plot at lags 1 and 7
atm2_model_fit1 <- atm2_weekly_ts %>% hw(h=31, seasonal="additive",
damped=TRUE, lambda = atm2_lambda)
autoplot(atm2_model_fit1) + theme(panel.background = element_blank()) +
ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm2_accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(atm2_model_fit1), row.names = NULL)
atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 0.6437591 | 25.43064 | 17.93037 | -Inf | Inf | 0.8611268 | 0.0193814 |
##
## Ljung-Box test
##
## data: Residuals from Damped Holt-Winters' additive method
## Q* = 34.089, df = 3, p-value = 1.898e-07
##
## Model df: 12. Total lags used: 15
The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.
atm2_model_fit2 <- atm2_weekly_ts %>% ets(model="ZZZ", lambda = atm2_lambda)
autoplot(atm2_model_fit2) + theme(panel.background = element_blank())
autoplot(forecast(atm2_model_fit2, h=31)) + theme(panel.background = element_blank()) +
ggtitle("ETS method w/ Box Cox Transofrm") +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm2_accuracyDF <- rbind(atm2_accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(atm2_model_fit2), row.names = NULL))
atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 0.6437591 | 25.43064 | 17.93037 | -Inf | Inf | 0.8611268 | 0.0193814 |
ETS Method with Box-Cox Transform | 0.5087362 | 25.33260 | 17.79530 | -Inf | Inf | 0.8546398 | 0.0195558 |
atm2_model_fit3 <- auto.arima(atm2_weekly_ts,stepwise=FALSE, approximation=FALSE)
autoplot(forecast(atm2_model_fit3, h=31)) + theme(panel.background = element_blank()) +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm2_accuracyDF <- rbind(atm2_accuracyDF,data.frame(Model = "ARIMA (2,0,2)(0,1,1)[7]", accuracy(atm2_model_fit3), row.names = NULL))
atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 0.6437591 | 25.43064 | 17.93037 | -Inf | Inf | 0.8611268 | 0.0193814 |
ETS Method with Box-Cox Transform | 0.5087362 | 25.33260 | 17.79530 | -Inf | Inf | 0.8546398 | 0.0195558 |
ARIMA (2,0,2)(0,1,1)[7] | -0.8859274 | 24.13986 | 17.04571 | -Inf | Inf | 0.8186400 | -0.0051208 |
Since the ndiffs() function recommended first order differencing but the auto.arima() function did not use differencing in the model, I want to manually adding it to see if we can improve the model.
atm2_model_fit4 <- Arima(diff(atm2_weekly_ts), order=c(2,1,2),seasonal=c(0,1,1), lambda = atm2_lambda)
autoplot(forecast(atm2_model_fit4, h=31)) + theme(panel.background = element_blank()) +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
##### Model4 Accuracy
atm2_accuracyDF <- rbind(atm2_accuracyDF,data.frame(Model = "ARIMA (2,1,2)(0,1,1)[7]", accuracy(atm2_model_fit4), row.names = NULL))
atm2_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 0.6437591 | 25.43064 | 17.93037 | -Inf | Inf | 0.8611268 | 0.0193814 |
ETS Method with Box-Cox Transform | 0.5087362 | 25.33260 | 17.79530 | -Inf | Inf | 0.8546398 | 0.0195558 |
ARIMA (2,0,2)(0,1,1)[7] | -0.8859274 | 24.13986 | 17.04571 | -Inf | Inf | 0.8186400 | -0.0051208 |
ARIMA (2,1,2)(0,1,1)[7] | 2.3306931 | 28.98641 | 20.53656 | NaN | Inf | 0.7139819 | -0.0411685 |
Sicne there is not enough data for ATM3, I am going to use simple mean value to forecast for month of May -
atm3_ts <- atm_ts[(nrow(atm_ts) - 2):nrow(atm_ts), "ATM3"]
atm3_ts <- ts(atm3_ts, start = 363)
atm_ts[,"ATM3"] -> atm3_ts
atm3_ts[which(atm3_ts == 0)] <- NA
# Time plot
atm3_ts %>% ggtsdisplay(main = "Cash Drawn from ATM3"
,xlab = "Weeks"
,ylab = "Cash in hundreds of dollars")
## Warning: Removed 362 rows containing missing values (geom_point).
#### Mean Forecast Model:
For ATM4, I have followed the exact same procedure as ATM1 and ATM2.
atm4_weekly_ts <- ts(atm_ts[,"ATM4"],frequency = 7)
# Time plot
atm4_weekly_ts %>% ggtsdisplay(main = "Cash Drawn from ATM4"
,xlab = "Days"
,ylab = "Cash in hundreds of dollars")
## [1] 0
## [1] 0
atm4_lambda <- BoxCox.lambda(atm4_weekly_ts)
cat("Box Cox Transformation factor lambda=",atm4_lambda)
## Box Cox Transformation factor lambda= 0.4525697
atm4_weekly_ts %>% BoxCox(atm4_lambda) %>% diff(lag=7) %>% ggtsdisplay(main = "Cash Drawn from ATM4 - w/ Box Cox Transform + Seasonal Differencing"
,xlab = "Weeks"
,ylab = "Cash Withdrawn (in hundreds of dollars)")
The plot above shows stationary timeseries data with most of the seasonality eliminated, although there are still spikes in the ACF plot at lag 7 and in the PACF plot at lags 7
atm4_model_fit1 <- atm4_weekly_ts %>% hw(h=31, seasonal="additive",
damped=TRUE, lambda = atm1_lambda)
autoplot(atm4_model_fit1) + theme(panel.background = element_blank()) +
ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm4_accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(atm4_model_fit1), row.names = NULL)
atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 91.46219 | 345.9815 | 264.085 | -344.7372 | 392.3998 | 0.7623343 | 0.0982354 |
##
## Ljung-Box test
##
## data: Residuals from Damped Holt-Winters' additive method
## Q* = 22.128, df = 3, p-value = 6.136e-05
##
## Model df: 12. Total lags used: 15
The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.
atm4_model_fit2 <- atm4_weekly_ts %>% ets(model="ZZZ", lambda = atm4_lambda)
autoplot(atm4_model_fit2) + theme(panel.background = element_blank())
autoplot(forecast(atm4_model_fit2, h=31)) + theme(panel.background = element_blank()) +
ggtitle("ETS method w/ Box Cox Transofrm") +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm4_accuracyDF <- rbind(atm4_accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(atm4_model_fit2), row.names = NULL))
atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 91.46219 | 345.9815 | 264.0850 | -344.7372 | 392.3998 | 0.7623343 | 0.0982354 |
ETS Method with Box-Cox Transform | 67.23932 | 338.2241 | 259.7873 | -376.9491 | 420.7907 | 0.7499281 | 0.0973636 |
atm4_model_fit3 <- auto.arima(atm4_weekly_ts,stepwise=FALSE, approximation=FALSE)
autoplot(forecast(atm4_model_fit3, h=31)) + theme(panel.background = element_blank()) +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm4_accuracyDF <- rbind(atm4_accuracyDF,data.frame(Model = "ARIMA (1,0,0)(2,0,0)[7]", accuracy(atm4_model_fit3), row.names = NULL))
atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 91.4621871 | 345.9815 | 264.0850 | -344.7372 | 392.3998 | 0.7623343 | 0.0982354 |
ETS Method with Box-Cox Transform | 67.2393208 | 338.2241 | 259.7873 | -376.9491 | 420.7907 | 0.7499281 | 0.0973636 |
ARIMA (1,0,0)(2,0,0)[7] | -0.1991644 | 342.2617 | 282.1983 | -525.0011 | 557.1753 | 0.8146221 | -0.0005572 |
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,0)(2,0,0)[7] with non-zero mean
## Q* = 14.942, df = 10, p-value = 0.1342
##
## Model df: 4. Total lags used: 14
For ATM4, the ARIMA model performs poorly as compared to ETS model and slightly better RMSE than the Holt-Winter’s. But since the auto.arima() function did not choose to use any seasonal differencing and some seasonality seems apparent in the plots, a different arima model was tested using first order seasonal differencing until the best performance was attained using the model below.
atm4_model_fit4 <- Arima(diff(atm4_weekly_ts), order=c(0,0,1),seasonal=c(14,1,0), lambda = atm4_lambda)
autoplot(forecast(atm4_model_fit4, h=31)) + theme(panel.background = element_blank()) +
xlab ("Weeks") +
ylab ("Cash Withdrawn (in hundreds of dollars)")
atm4_accuracyDF <- rbind(atm4_accuracyDF,data.frame(Model = "ARIMA (0,0,1)(14,1,0)[7]", accuracy(atm4_model_fit4), row.names = NULL))
atm4_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 91.4621871 | 345.9815 | 264.0850 | -344.7372 | 392.3998 | 0.7623343 | 0.0982354 |
ETS Method with Box-Cox Transform | 67.2393208 | 338.2241 | 259.7873 | -376.9491 | 420.7907 | 0.7499281 | 0.0973636 |
ARIMA (1,0,0)(2,0,0)[7] | -0.1991644 | 342.2617 | 282.1983 | -525.0011 | 557.1753 | 0.8146221 | -0.0005572 |
ARIMA (0,0,1)(14,1,0)[7] | 10.5447481 | 396.8201 | 312.0851 | -3078.8560 | 3429.0398 | 0.6216631 | -0.1830855 |
dates <- seq(as.Date("2010-05-01"), length=31, by="days")
atm4_forecast <- forecast(atm4_model_fit2, h=31)
tibble(DATE = rep(max(atmdataDF$DATE) + 1:31, 4),
ATM = rep(names(atmdataDF)[-1], each = 31),
Cash = c(atm1_forecast$mean, atm2_forecast$mean,
atm3_forecast$mean, atm4_forecast$mean)) %>%
write_csv("ATM_Forecast.csv")
ATM Forecast File Path:
powerdata <- readxl::read_excel("ResidentialCustomerForecastLoad-624.xlsx", skip=0)
powerdata %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
CaseSequence | YYYY-MMM | KWH |
---|---|---|
733 | 1998-Jan | 6862583 |
734 | 1998-Feb | 5838198 |
735 | 1998-Mar | 5420658 |
736 | 1998-Apr | 5010364 |
737 | 1998-May | 4665377 |
738 | 1998-Jun | 6467147 |
739 | 1998-Jul | 8914755 |
740 | 1998-Aug | 8607428 |
741 | 1998-Sep | 6989888 |
742 | 1998-Oct | 6345620 |
743 | 1998-Nov | 4640410 |
744 | 1998-Dec | 4693479 |
745 | 1999-Jan | 7183759 |
746 | 1999-Feb | 5759262 |
747 | 1999-Mar | 4847656 |
748 | 1999-Apr | 5306592 |
749 | 1999-May | 4426794 |
750 | 1999-Jun | 5500901 |
751 | 1999-Jul | 7444416 |
752 | 1999-Aug | 7564391 |
753 | 1999-Sep | 7899368 |
754 | 1999-Oct | 5358314 |
755 | 1999-Nov | 4436269 |
756 | 1999-Dec | 4419229 |
757 | 2000-Jan | 7068296 |
758 | 2000-Feb | 5876083 |
759 | 2000-Mar | 4807961 |
760 | 2000-Apr | 4873080 |
761 | 2000-May | 5050891 |
762 | 2000-Jun | 7092865 |
763 | 2000-Jul | 6862662 |
764 | 2000-Aug | 7517830 |
765 | 2000-Sep | 8912169 |
766 | 2000-Oct | 5844352 |
767 | 2000-Nov | 5041769 |
768 | 2000-Dec | 6220334 |
769 | 2001-Jan | 7538529 |
770 | 2001-Feb | 6602448 |
771 | 2001-Mar | 5779180 |
772 | 2001-Apr | 4835210 |
773 | 2001-May | 4787904 |
774 | 2001-Jun | 6283324 |
775 | 2001-Jul | 7855129 |
776 | 2001-Aug | 8450717 |
777 | 2001-Sep | 7112069 |
778 | 2001-Oct | 5242535 |
779 | 2001-Nov | 4461979 |
780 | 2001-Dec | 5240995 |
781 | 2002-Jan | 7099063 |
782 | 2002-Feb | 6413429 |
783 | 2002-Mar | 5839514 |
784 | 2002-Apr | 5371604 |
785 | 2002-May | 5439166 |
786 | 2002-Jun | 5850383 |
787 | 2002-Jul | 7039702 |
788 | 2002-Aug | 8058748 |
789 | 2002-Sep | 8245227 |
790 | 2002-Oct | 5865014 |
791 | 2002-Nov | 4908979 |
792 | 2002-Dec | 5779958 |
793 | 2003-Jan | 7256079 |
794 | 2003-Feb | 6190517 |
795 | 2003-Mar | 6120626 |
796 | 2003-Apr | 4885643 |
797 | 2003-May | 5296096 |
798 | 2003-Jun | 6051571 |
799 | 2003-Jul | 6900676 |
800 | 2003-Aug | 8476499 |
801 | 2003-Sep | 7791791 |
802 | 2003-Oct | 5344613 |
803 | 2003-Nov | 4913707 |
804 | 2003-Dec | 5756193 |
805 | 2004-Jan | 7584596 |
806 | 2004-Feb | 6560742 |
807 | 2004-Mar | 6526586 |
808 | 2004-Apr | 4831688 |
809 | 2004-May | 4878262 |
810 | 2004-Jun | 6421614 |
811 | 2004-Jul | 7307931 |
812 | 2004-Aug | 7309774 |
813 | 2004-Sep | 6690366 |
814 | 2004-Oct | 5444948 |
815 | 2004-Nov | 4824940 |
816 | 2004-Dec | 5791208 |
817 | 2005-Jan | 8225477 |
818 | 2005-Feb | 6564338 |
819 | 2005-Mar | 5581725 |
820 | 2005-Apr | 5563071 |
821 | 2005-May | 4453983 |
822 | 2005-Jun | 5900212 |
823 | 2005-Jul | 8337998 |
824 | 2005-Aug | 7786659 |
825 | 2005-Sep | 7057213 |
826 | 2005-Oct | 6694523 |
827 | 2005-Nov | 4313019 |
828 | 2005-Dec | 6181548 |
829 | 2006-Jan | 7793358 |
830 | 2006-Feb | 5914945 |
831 | 2006-Mar | 5819734 |
832 | 2006-Apr | 5255988 |
833 | 2006-May | 4740588 |
834 | 2006-Jun | 7052275 |
835 | 2006-Jul | 7945564 |
836 | 2006-Aug | 8241110 |
837 | 2006-Sep | 7296355 |
838 | 2006-Oct | 5104799 |
839 | 2006-Nov | 4458429 |
840 | 2006-Dec | 6226214 |
841 | 2007-Jan | 8031295 |
842 | 2007-Feb | 7928337 |
843 | 2007-Mar | 6443170 |
844 | 2007-Apr | 4841979 |
845 | 2007-May | 4862847 |
846 | 2007-Jun | 5022647 |
847 | 2007-Jul | 6426220 |
848 | 2007-Aug | 7447146 |
849 | 2007-Sep | 7666970 |
850 | 2007-Oct | 5785964 |
851 | 2007-Nov | 4907057 |
852 | 2007-Dec | 6047292 |
853 | 2008-Jan | 7964293 |
854 | 2008-Feb | 7597060 |
855 | 2008-Mar | 6085644 |
856 | 2008-Apr | 5352359 |
857 | 2008-May | 4608528 |
858 | 2008-Jun | 6548439 |
859 | 2008-Jul | 7643987 |
860 | 2008-Aug | 8037137 |
861 | 2008-Sep | NA |
862 | 2008-Oct | 5101803 |
863 | 2008-Nov | 4555602 |
864 | 2008-Dec | 6442746 |
865 | 2009-Jan | 8072330 |
866 | 2009-Feb | 6976800 |
867 | 2009-Mar | 5691452 |
868 | 2009-Apr | 5531616 |
869 | 2009-May | 5264439 |
870 | 2009-Jun | 5804433 |
871 | 2009-Jul | 7713260 |
872 | 2009-Aug | 8350517 |
873 | 2009-Sep | 7583146 |
874 | 2009-Oct | 5566075 |
875 | 2009-Nov | 5339890 |
876 | 2009-Dec | 7089880 |
877 | 2010-Jan | 9397357 |
878 | 2010-Feb | 8390677 |
879 | 2010-Mar | 7347915 |
880 | 2010-Apr | 5776131 |
881 | 2010-May | 4919289 |
882 | 2010-Jun | 6696292 |
883 | 2010-Jul | 770523 |
884 | 2010-Aug | 7922701 |
885 | 2010-Sep | 7819472 |
886 | 2010-Oct | 5875917 |
887 | 2010-Nov | 4800733 |
888 | 2010-Dec | 6152583 |
889 | 2011-Jan | 8394747 |
890 | 2011-Feb | 8898062 |
891 | 2011-Mar | 6356903 |
892 | 2011-Apr | 5685227 |
893 | 2011-May | 5506308 |
894 | 2011-Jun | 8037779 |
895 | 2011-Jul | 10093343 |
896 | 2011-Aug | 10308076 |
897 | 2011-Sep | 8943599 |
898 | 2011-Oct | 5603920 |
899 | 2011-Nov | 6154138 |
900 | 2011-Dec | 8273142 |
901 | 2012-Jan | 8991267 |
902 | 2012-Feb | 7952204 |
903 | 2012-Mar | 6356961 |
904 | 2012-Apr | 5569828 |
905 | 2012-May | 5783598 |
906 | 2012-Jun | 7926956 |
907 | 2012-Jul | 8886851 |
908 | 2012-Aug | 9612423 |
909 | 2012-Sep | 7559148 |
910 | 2012-Oct | 5576852 |
911 | 2012-Nov | 5731899 |
912 | 2012-Dec | 6609694 |
913 | 2013-Jan | 10655730 |
914 | 2013-Feb | 7681798 |
915 | 2013-Mar | 6517514 |
916 | 2013-Apr | 6105359 |
917 | 2013-May | 5940475 |
918 | 2013-Jun | 7920627 |
919 | 2013-Jul | 8415321 |
920 | 2013-Aug | 9080226 |
921 | 2013-Sep | 7968220 |
922 | 2013-Oct | 5759367 |
923 | 2013-Nov | 5769083 |
924 | 2013-Dec | 9606304 |
## CaseSequence YYYY-MMM KWH
## Min. :733.0 Length:192 Min. : 770523
## 1st Qu.:780.8 Class :character 1st Qu.: 5429912
## Median :828.5 Mode :character Median : 6283324
## Mean :828.5 Mean : 6502475
## 3rd Qu.:876.2 3rd Qu.: 7620524
## Max. :924.0 Max. :10655730
## NA's :1
# Format DATE column
powerdata$`YYYY-MMM` <- paste0(powerdata$`YYYY-MMM`,"-01")
powerdata$DATE <- lubridate::ymd(powerdata$`YYYY-MMM`)
# Plot data
ggplot(powerdata, aes(DATE, KWH)) + geom_line() +
labs(title="Residential Power Usage", y="KWH", x="") +
theme(panel.background = element_blank())
We can clearly see an outlier that is most likely a data error so we will impute the data point with the mean of the other data for the same month.
CaseSequence | YYYY-MMM | KWH | DATE | MONTH |
---|---|---|---|---|
861 | 2008-Sep-01 | NA | 2008-09-01 | 9 |
powerdata$KWH[is.na(powerdata$KWH)] <- mean(powerdata$KWH[powerdata$MONTH==9], na.rm = TRUE)
# Outlier is in July 2010
powerdata[powerdata$KWH==min(powerdata$KWH),]
CaseSequence | YYYY-MMM | KWH | DATE | MONTH |
---|---|---|---|---|
883 | 2010-Jul-01 | 770523 | 2010-07-01 | 7 |
powerdata$KWH[powerdata$KWH==min(powerdata$KWH)] <- mean(powerdata$KWH[powerdata$MONTH==7], na.rm = TRUE)
Convert to a Time Series:
power_ts <- ts(powerdata$KWH, start = c(1998,1), frequency = 12)
# Plot data
autoplot(power_ts) + theme(panel.background = element_blank()) +
ggtitle("Residential Power Usage") +
xlab("Time") +
ylab("Power Usage (in KWH)")
# Time plot
power_ts %>% ggtsdisplay(main = "Residential Power Usage"
,xlab = "Time"
,ylab = "Power Usage (in KWH)")
## [1] 1
## [1] 1
## Box Cox Transformation factor lambda= -0.2018638
We can see annual seasonality in the data -
power_ts %>% BoxCox(power_lambda) %>% diff(lag=12) %>% ggtsdisplay(main = "Residential Power Usage - w/ Box Cox Transform + Seasonal Differencing"
,xlab = "Time"
,ylab = "Power Usage (in KWH)")
The series is stationary, so no non-seasonal differencing is needed. The decaying seasonal spikes in the PACF suggests a seasonal AR(1) component, while the very quickly-decaying seasonal spikes in the ACF suggest the possibility of a seasonal MA(1) component. Spikes in the PACF and ACF at k=1 and k=4 suggest non-seasonal AR(1) or AR(4) components, and non-seasonal MA(1) or MA(4) components.
power_model_fit1 <- power_ts %>% hw(h=12, seasonal="additive",
damped=TRUE, lambda = power_lambda)
autoplot(power_model_fit1) + theme(panel.background = element_blank()) +
ggtitle("Holt-Winters Damped Additive Method w/ Box Cox Transofrm") +
xlab ("Time") +
ylab ("Power Usage (in KWH)")
power_accuracyDF <- data.frame(Model = "Holt-Winter's Additive Method with Box-Cox Transform", accuracy(power_model_fit1), row.names = NULL)
power_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 78844.59 | 620901.7 | 455088.7 | 0.477213 | 6.802764 | 0.7435267 | 0.2858823 |
##
## Ljung-Box test
##
## data: Residuals from Damped Holt-Winters' additive method
## Q* = 44.62, df = 7, p-value = 1.621e-07
##
## Model df: 17. Total lags used: 24
The residuals plot looks not too bad, but Ljung-Box test has an extremely small p-value indicating that there is still some autocorrelation in our data as we saw in the plot of the transformed data. Our forecast plot looks not too bad either although those confidence intervals extend way past what we have seen historically in the data.
power_model_fit2 <- power_ts %>% ets(model="ZZZ", lambda = power_lambda)
autoplot(power_model_fit2) + theme(panel.background = element_blank())
autoplot(forecast(power_model_fit2, h=12)) + theme(panel.background = element_blank()) +
ggtitle("ETS method w/ Box Cox Transofrm") +
xlab ("Time") +
ylab ("Power Usage (in KWH)")
power_accuracyDF <- rbind(power_accuracyDF,data.frame(Model = "ETS Method with Box-Cox Transform", accuracy(power_model_fit2), row.names = NULL))
power_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 78844.59 | 620901.7 | 455088.7 | 0.4772130 | 6.802764 | 0.7435267 | 0.2858823 |
ETS Method with Box-Cox Transform | 32423.43 | 613027.6 | 453744.7 | -0.2772083 | 6.836306 | 0.7413308 | 0.2817121 |
power_model_fit3 <- auto.arima(power_ts,stepwise=FALSE, approximation=FALSE)
autoplot(forecast(power_model_fit3, h=12)) + theme(panel.background = element_blank()) +
xlab ("Weeks") +
ylab ("Power Usage (in KWH)")
power_accuracyDF <- rbind(power_accuracyDF,data.frame(Model = "ARIMA (0,0,3)(2,1,0)[12]", accuracy(power_model_fit3), row.names = NULL))
power_accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
Holt-Winter’s Additive Method with Box-Cox Transform | 78844.586 | 620901.7 | 455088.7 | 0.4772130 | 6.802764 | 0.7435267 | 0.2858823 |
ETS Method with Box-Cox Transform | 32423.431 | 613027.6 | 453744.7 | -0.2772083 | 6.836306 | 0.7413308 | 0.2817121 |
ARIMA (0,0,3)(2,1,0)[12] | -8220.325 | 586905.7 | 423740.1 | -0.7944092 | 6.468297 | 0.6923092 | -0.0111059 |
##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,0,3)(2,1,0)[12] with drift
## Q* = 15.178, df = 18, p-value = 0.6497
##
## Model df: 6. Total lags used: 24
auto.arima() function produced better RMSE than the other two methods. So we will use this model fit to forecast.
Part C consists of two data sets. These are simple 2 columns sets, however they have different time stamps. Optional assignment is to time-base sequence the data and aggregate based on hour (example of what this looks like, follows). Note for multiple recordings within an hour, take the mean. Then to determine if the data is stationary and can it be forecast. If so, provide a week forward forecast and present results via Rpubs and .rmd and the forecast in an Excel readable file.
# Dataset1
waterdata1 <- readxl::read_excel("Waterflow_Pipe1.xlsx", skip=0)
colnames(waterdata1) <- c("DateTimeNbr","WaterFlow")
waterdata1 %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DateTimeNbr | WaterFlow |
---|---|
42300.02 | 23.369599 |
42300.03 | 28.002881 |
42300.04 | 23.065895 |
42300.04 | 29.972809 |
42300.06 | 5.997953 |
42300.06 | 15.935223 |
42300.08 | 26.617330 |
42300.08 | 33.282900 |
42300.08 | 12.426692 |
42300.12 | 21.833494 |
42300.12 | 8.483647 |
42300.14 | 29.336901 |
42300.14 | 19.809146 |
42300.14 | 31.019744 |
42300.16 | 18.339962 |
42300.17 | 16.888527 |
42300.17 | 13.664312 |
42300.20 | 17.300074 |
42300.21 | 23.260984 |
42300.22 | 8.152496 |
42300.22 | 19.875628 |
42300.22 | 32.886499 |
42300.22 | 22.260364 |
42300.23 | 5.778369 |
42300.24 | 32.545557 |
42300.24 | 30.687744 |
42300.24 | 29.080907 |
42300.25 | 30.047784 |
42300.26 | 5.752456 |
42300.27 | 30.414162 |
42300.27 | 26.175716 |
42300.28 | 27.155307 |
42300.28 | 13.605943 |
42300.29 | 11.184568 |
42300.29 | 20.383057 |
42300.32 | 13.405331 |
42300.33 | 14.461091 |
42300.33 | 27.234671 |
42300.34 | 9.089498 |
42300.35 | 29.162384 |
42300.37 | 24.123214 |
42300.38 | 6.207443 |
42300.38 | 27.666923 |
42300.40 | 29.781898 |
42300.42 | 19.035463 |
42300.42 | 14.539055 |
42300.44 | 16.304829 |
42300.46 | 9.089600 |
42300.46 | 24.160478 |
42300.49 | 33.013436 |
42300.50 | 14.924758 |
42300.52 | 20.688466 |
42300.54 | 25.396306 |
42300.56 | 21.661800 |
42300.57 | 23.214093 |
42300.57 | 3.811189 |
42300.59 | 37.300056 |
42300.59 | 26.468501 |
42300.59 | 30.532230 |
42300.60 | 10.910886 |
42300.61 | 31.534557 |
42300.62 | 13.552525 |
42300.64 | 27.485792 |
42300.65 | 19.136787 |
42300.65 | 26.371215 |
42300.66 | 17.623757 |
42300.67 | 26.704584 |
42300.68 | 36.172465 |
42300.69 | 24.153054 |
42300.69 | 27.510917 |
42300.70 | 34.642728 |
42300.70 | 16.144607 |
42300.72 | 18.210857 |
42300.73 | 7.485977 |
42300.73 | 14.821554 |
42300.76 | 15.446337 |
42300.76 | 21.084892 |
42300.76 | 32.985346 |
42300.79 | 13.270245 |
42300.81 | 15.531714 |
42300.83 | 22.678874 |
42300.83 | 19.404605 |
42300.84 | 23.996745 |
42300.85 | 18.409485 |
42300.85 | 21.749392 |
42300.85 | 25.759675 |
42300.86 | 20.225869 |
42300.86 | 16.523979 |
42300.87 | 9.328124 |
42300.87 | 30.186021 |
42300.91 | 15.092513 |
42300.93 | 16.576799 |
42300.93 | 20.801956 |
42300.96 | 33.220434 |
42300.97 | 3.468986 |
42300.98 | 24.980254 |
42301.00 | 14.899085 |
42301.01 | 18.882710 |
42301.01 | 14.917666 |
42301.03 | 14.611356 |
42301.03 | 8.291781 |
42301.04 | 32.224859 |
42301.04 | 12.116040 |
42301.05 | 3.540229 |
42301.05 | 29.955002 |
42301.05 | 10.685479 |
42301.06 | 4.333859 |
42301.07 | 31.906732 |
42301.07 | 19.858555 |
42301.09 | 27.823642 |
42301.11 | 30.243204 |
42301.12 | 27.224879 |
42301.14 | 17.359630 |
42301.14 | 23.114636 |
42301.15 | 17.968616 |
42301.15 | 18.797541 |
42301.16 | 15.543472 |
42301.17 | 21.289698 |
42301.17 | 14.368194 |
42301.17 | 37.529108 |
42301.17 | 22.403861 |
42301.17 | 29.825719 |
42301.18 | 28.857015 |
42301.19 | 31.655559 |
42301.23 | 20.618727 |
42301.24 | 19.895307 |
42301.27 | 17.667198 |
42301.28 | 19.604548 |
42301.29 | 13.292335 |
42301.31 | 32.916568 |
42301.32 | 30.530947 |
42301.32 | 15.630320 |
42301.33 | 36.094851 |
42301.33 | 14.727994 |
42301.34 | 35.615230 |
42301.34 | 3.374230 |
42301.35 | 28.994393 |
42301.35 | 8.709073 |
42301.36 | 12.166129 |
42301.37 | 25.880772 |
42301.37 | 15.914648 |
42301.38 | 35.387907 |
42301.39 | 32.588662 |
42301.39 | 9.715206 |
42301.40 | 19.990902 |
42301.41 | 35.738928 |
42301.42 | 12.302267 |
42301.42 | 17.440709 |
42301.43 | 8.191574 |
42301.44 | 5.744446 |
42301.45 | 5.611853 |
42301.49 | 13.573641 |
42301.51 | 8.347535 |
42301.51 | 5.136542 |
42301.52 | 20.709564 |
42301.53 | 7.565246 |
42301.54 | 29.624084 |
42301.54 | 29.713121 |
42301.55 | 18.456777 |
42301.56 | 11.264648 |
42301.58 | 12.524692 |
42301.58 | 13.847150 |
42301.62 | 11.844761 |
42301.65 | 13.688625 |
42301.67 | 14.014548 |
42301.67 | 19.487640 |
42301.69 | 13.493671 |
42301.69 | 30.573025 |
42301.70 | 30.070133 |
42301.70 | 23.001359 |
42301.70 | 15.640681 |
42301.70 | 15.541255 |
42301.72 | 13.010382 |
42301.72 | 21.034331 |
42301.73 | 10.533891 |
42301.73 | 16.163425 |
42301.73 | 9.205656 |
42301.74 | 21.880140 |
42301.75 | 21.099017 |
42301.76 | 23.838431 |
42301.76 | 13.840718 |
42301.78 | 13.500420 |
42301.79 | 9.027780 |
42301.79 | 25.106092 |
42301.80 | 26.202501 |
42301.81 | 26.414528 |
42301.82 | 13.367800 |
42301.84 | 19.210336 |
42301.84 | 9.513509 |
42301.84 | 19.588526 |
42301.84 | 25.182741 |
42301.85 | 25.706475 |
42301.87 | 13.241693 |
42301.88 | 15.249657 |
42301.88 | 18.650854 |
42301.90 | 11.663895 |
42301.91 | 15.967304 |
42301.93 | 26.243780 |
42301.93 | 22.197560 |
42301.95 | 11.207257 |
42301.95 | 21.145070 |
42301.95 | 19.284440 |
42301.96 | 14.163063 |
42301.97 | 9.450620 |
42301.97 | 18.434140 |
42302.00 | 24.417248 |
42302.01 | 22.328697 |
42302.01 | 27.569425 |
42302.02 | 18.778384 |
42302.03 | 29.695369 |
42302.04 | 28.224715 |
42302.04 | 20.568090 |
42302.04 | 12.528874 |
42302.05 | 23.416298 |
42302.06 | 35.774203 |
42302.06 | 35.017588 |
42302.07 | 15.854556 |
42302.08 | 24.583600 |
42302.08 | 16.582313 |
42302.08 | 36.785131 |
42302.09 | 11.396241 |
42302.12 | 21.786939 |
42302.13 | 19.484790 |
42302.16 | 17.895142 |
42302.18 | 29.726704 |
42302.19 | 6.365252 |
42302.20 | 23.272001 |
42302.22 | 11.154273 |
42302.23 | 29.477854 |
42302.24 | 19.357380 |
42302.25 | 35.990674 |
42302.25 | 3.876221 |
42302.26 | 23.610348 |
42302.26 | 15.837558 |
42302.27 | 17.831027 |
42302.27 | 23.212585 |
42302.29 | 12.492665 |
42302.30 | 17.194266 |
42302.33 | 11.122795 |
42302.33 | 19.542182 |
42302.34 | 16.203565 |
42302.34 | 22.444751 |
42302.35 | 38.912543 |
42302.38 | 25.512180 |
42302.42 | 9.937115 |
42302.45 | 11.085878 |
42302.45 | 20.629891 |
42302.46 | 21.641392 |
42302.46 | 25.927652 |
42302.47 | 13.840443 |
42302.48 | 20.866951 |
42302.48 | 10.924171 |
42302.52 | 11.209960 |
42302.54 | 14.215079 |
42302.54 | 27.214242 |
42302.54 | 32.051209 |
42302.55 | 38.153452 |
42302.55 | 24.800756 |
42302.56 | 16.682505 |
42302.56 | 12.963376 |
42302.57 | 11.772861 |
42302.59 | 18.646844 |
42302.59 | 22.657938 |
42302.60 | 15.825160 |
42302.60 | 19.602839 |
42302.60 | 23.143213 |
42302.61 | 12.989419 |
42302.61 | 27.762283 |
42302.62 | 29.339674 |
42302.62 | 14.262038 |
42302.63 | 16.895755 |
42302.63 | 22.536438 |
42302.64 | 27.873838 |
42302.66 | 5.766525 |
42302.66 | 27.436980 |
42302.67 | 4.951878 |
42302.71 | 21.602308 |
42302.71 | 29.974356 |
42302.76 | 36.040846 |
42302.76 | 13.590471 |
42302.77 | 24.405622 |
42302.79 | 21.543160 |
42302.82 | 7.034301 |
42302.82 | 16.018952 |
42302.82 | 6.464795 |
42302.83 | 20.015932 |
42302.83 | 23.872172 |
42302.85 | 6.801017 |
42302.86 | 17.639643 |
42302.88 | 14.146407 |
42302.89 | 29.207344 |
42302.90 | 23.086044 |
42302.90 | 18.685165 |
42302.91 | 11.519158 |
42302.92 | 16.778935 |
42302.92 | 22.861365 |
42302.93 | 4.477698 |
42302.95 | 30.364928 |
42302.99 | 18.097103 |
42302.99 | 21.407191 |
42303.01 | 21.830050 |
42303.01 | 35.111999 |
42303.02 | 16.474314 |
42303.04 | 28.948058 |
42303.04 | 17.410201 |
42303.05 | 5.650083 |
42303.05 | 27.119217 |
42303.06 | 34.377131 |
42303.06 | 31.513826 |
42303.06 | 10.150090 |
42303.07 | 23.257435 |
42303.07 | 21.373494 |
42303.08 | 22.293125 |
42303.08 | 17.961744 |
42303.09 | 10.535267 |
42303.09 | 27.968007 |
42303.10 | 7.909216 |
42303.11 | 23.589371 |
42303.11 | 32.882866 |
42303.13 | 16.127026 |
42303.13 | 2.424413 |
42303.13 | 13.965955 |
42303.13 | 11.293508 |
42303.13 | 20.318204 |
42303.15 | 9.687025 |
42303.15 | 12.313706 |
42303.16 | 26.627911 |
42303.16 | 6.605821 |
42303.17 | 22.553012 |
42303.19 | 6.362539 |
42303.19 | 1.880352 |
42303.19 | 7.806599 |
42303.19 | 28.388833 |
42303.20 | 24.337457 |
42303.23 | 20.702873 |
42303.25 | 8.760748 |
42303.25 | 20.353981 |
42303.26 | 7.440057 |
42303.26 | 24.305299 |
42303.27 | 20.199217 |
42303.27 | 26.890775 |
42303.27 | 13.720630 |
42303.28 | 22.516922 |
42303.28 | 26.236660 |
42303.29 | 6.164736 |
42303.30 | 29.225423 |
42303.30 | 2.541620 |
42303.31 | 19.748843 |
42303.31 | 18.629947 |
42303.31 | 21.492807 |
42303.34 | 30.676615 |
42303.34 | 27.743591 |
42303.35 | 11.155979 |
42303.37 | 35.673641 |
42303.38 | 24.083618 |
42303.39 | 29.339891 |
42303.39 | 9.010886 |
42303.39 | 12.934983 |
42303.41 | 17.531019 |
42303.41 | 31.822392 |
42303.42 | 19.068476 |
42303.42 | 6.142128 |
42303.42 | 15.914329 |
42303.43 | 19.733454 |
42303.43 | 7.167233 |
42303.45 | 17.041633 |
42303.45 | 37.307322 |
42303.48 | 9.971110 |
42303.50 | 23.996322 |
42303.50 | 28.636649 |
42303.54 | 14.543358 |
42303.54 | 26.006360 |
42303.55 | 11.983168 |
42303.55 | 11.317868 |
42303.56 | 18.358191 |
42303.58 | 18.575016 |
42303.58 | 13.293359 |
42303.59 | 15.597069 |
42303.59 | 11.560628 |
42303.59 | 21.923801 |
42303.60 | 30.104583 |
42303.63 | 19.982949 |
42303.63 | 5.951358 |
42303.64 | 18.428602 |
42303.65 | 31.812915 |
42303.65 | 24.244282 |
42303.68 | 20.472107 |
42303.69 | 28.827925 |
42303.70 | 19.628814 |
42303.74 | 19.779596 |
42303.76 | 29.545589 |
42303.76 | 10.458315 |
42303.76 | 25.871714 |
42303.77 | 7.309851 |
42303.77 | 22.871136 |
42303.78 | 23.016887 |
42303.79 | 31.888125 |
42303.79 | 15.872456 |
42303.79 | 21.736855 |
42303.79 | 35.640611 |
42303.80 | 20.434095 |
42303.80 | 38.364251 |
42303.81 | 19.916968 |
42303.81 | 19.909526 |
42303.83 | 19.737001 |
42303.83 | 25.499218 |
42303.87 | 12.099414 |
42303.90 | 21.347209 |
42303.91 | 15.697209 |
42303.92 | 22.118142 |
42303.92 | 37.681461 |
42303.93 | 18.017428 |
42303.94 | 20.814277 |
42303.95 | 20.334498 |
42303.96 | 12.338779 |
42303.97 | 30.826175 |
42304.00 | 34.624445 |
42304.00 | 10.143766 |
42304.01 | 20.921089 |
42304.02 | 4.161076 |
42304.02 | 22.095022 |
42304.03 | 28.210173 |
42304.05 | 17.573078 |
42304.05 | 24.898260 |
42304.08 | 29.096392 |
42304.09 | 24.664065 |
42304.10 | 18.229647 |
42304.12 | 27.045116 |
42304.13 | 22.711105 |
42304.14 | 21.892313 |
42304.14 | 1.834943 |
42304.15 | 11.672494 |
42304.15 | 22.457280 |
42304.15 | 15.334399 |
42304.16 | 30.453794 |
42304.17 | 18.515347 |
42304.17 | 27.862217 |
42304.18 | 22.075402 |
42304.18 | 16.577465 |
42304.20 | 33.917748 |
42304.21 | 26.771479 |
42304.22 | 16.975983 |
42304.23 | 5.896884 |
42304.23 | 9.704311 |
42304.24 | 19.888716 |
42304.24 | 12.176629 |
42304.24 | 17.789691 |
42304.26 | 20.182560 |
42304.26 | 7.297558 |
42304.29 | 19.073031 |
42304.29 | 23.098007 |
42304.29 | 18.416993 |
42304.29 | 11.417748 |
42304.30 | 25.302040 |
42304.30 | 10.355350 |
42304.30 | 16.875640 |
42304.31 | 28.261230 |
42304.31 | 26.794716 |
42304.32 | 1.840051 |
42304.32 | 22.780229 |
42304.32 | 22.913370 |
42304.33 | 23.502077 |
42304.34 | 20.597856 |
42304.35 | 15.742843 |
42304.36 | 4.300935 |
42304.36 | 14.751233 |
42304.37 | 13.106007 |
42304.41 | 13.329034 |
42304.43 | 16.583423 |
42304.44 | 16.827504 |
42304.45 | 12.249572 |
42304.50 | 23.706073 |
42304.53 | 25.660001 |
42304.53 | 35.462551 |
42304.54 | 12.644275 |
42304.54 | 14.066707 |
42304.54 | 25.789953 |
42304.55 | 19.518356 |
42304.55 | 12.342679 |
42304.55 | 26.810005 |
42304.56 | 12.999374 |
42304.57 | 21.557762 |
42304.57 | 22.698339 |
42304.59 | 22.291995 |
42304.60 | 20.133424 |
42304.64 | 24.908145 |
42304.65 | 31.190743 |
42304.65 | 22.448257 |
42304.66 | 16.165643 |
42304.69 | 17.544574 |
42304.69 | 24.487887 |
42304.69 | 35.758575 |
42304.75 | 22.130042 |
42304.77 | 3.823961 |
42304.77 | 21.366360 |
42304.77 | 28.956420 |
42304.82 | 30.530129 |
42304.82 | 9.887806 |
42304.83 | 34.600655 |
42304.83 | 20.517520 |
42304.84 | 28.409780 |
42304.85 | 22.410120 |
42304.85 | 18.890813 |
42304.86 | 16.661537 |
42304.86 | 17.734415 |
42304.86 | 32.645647 |
42304.87 | 7.219724 |
42304.87 | 12.918680 |
42304.88 | 25.439756 |
42304.89 | 15.551786 |
42304.90 | 19.765020 |
42304.91 | 16.457690 |
42304.96 | 10.293176 |
42304.97 | 1.781904 |
42304.98 | 19.880796 |
42304.99 | 13.011420 |
42305.00 | 19.132300 |
42305.05 | 15.046151 |
42305.06 | 37.352759 |
42305.06 | 13.062743 |
42305.06 | 34.842589 |
42305.08 | 20.422971 |
42305.10 | 31.749759 |
42305.10 | 33.801223 |
42305.12 | 19.938320 |
42305.12 | 13.603916 |
42305.14 | 11.825927 |
42305.16 | 13.562697 |
42305.16 | 20.342015 |
42305.17 | 28.632022 |
42305.17 | 34.699990 |
42305.19 | 35.015636 |
42305.19 | 25.312763 |
42305.20 | 27.380108 |
42305.21 | 8.946983 |
42305.21 | 23.729636 |
42305.22 | 20.390630 |
42305.22 | 16.259039 |
42305.23 | 13.635565 |
42305.24 | 29.241959 |
42305.25 | 14.467571 |
42305.25 | 14.124179 |
42305.25 | 22.979674 |
42305.26 | 13.443790 |
42305.26 | 27.598373 |
42305.28 | 20.445029 |
42305.28 | 15.755541 |
42305.28 | 9.550570 |
42305.29 | 15.505543 |
42305.31 | 13.627235 |
42305.32 | 9.594463 |
42305.33 | 24.911034 |
42305.33 | 20.907402 |
42305.34 | 13.716141 |
42305.35 | 17.905301 |
42305.35 | 20.654838 |
42305.36 | 7.000298 |
42305.39 | 10.060531 |
42305.42 | 29.130492 |
42305.42 | 18.134867 |
42305.43 | 31.447032 |
42305.43 | 6.563567 |
42305.44 | 26.086201 |
42305.46 | 24.154133 |
42305.48 | 24.041464 |
42305.49 | 21.026494 |
42305.50 | 4.561947 |
42305.51 | 9.129867 |
42305.51 | 18.894904 |
42305.53 | 13.386346 |
42305.54 | 23.991109 |
42305.54 | 10.017909 |
42305.55 | 11.151724 |
42305.56 | 13.999829 |
42305.57 | 16.601620 |
42305.57 | 32.986999 |
42305.57 | 21.432970 |
42305.58 | 31.913805 |
42305.58 | 10.665391 |
42305.59 | 22.652867 |
42305.60 | 13.863613 |
42305.60 | 27.361023 |
42305.62 | 22.984681 |
42305.62 | 10.894598 |
42305.64 | 33.211245 |
42305.66 | 22.432778 |
42305.67 | 24.169848 |
42305.68 | 31.478411 |
42305.69 | 7.055754 |
42305.70 | 22.505285 |
42305.71 | 11.695966 |
42305.71 | 25.050275 |
42305.73 | 16.620632 |
42305.73 | 27.097737 |
42305.75 | 28.453893 |
42305.75 | 24.909666 |
42305.75 | 19.052430 |
42305.77 | 17.453295 |
42305.78 | 10.787874 |
42305.78 | 26.564290 |
42305.79 | 17.332550 |
42305.80 | 6.906457 |
42305.81 | 28.445885 |
42305.82 | 18.751925 |
42305.82 | 25.112732 |
42305.83 | 5.455784 |
42305.86 | 26.858954 |
42305.89 | 20.756232 |
42305.91 | 27.514802 |
42305.91 | 8.121486 |
42305.92 | 32.430137 |
42305.93 | 7.281897 |
42305.93 | 35.140642 |
42305.94 | 9.679448 |
42305.95 | 26.069281 |
42305.96 | 22.208754 |
42305.98 | 14.436499 |
42305.98 | 14.407442 |
42305.99 | 32.351417 |
42305.99 | 25.337102 |
42305.99 | 34.405532 |
42306.01 | 5.629219 |
42306.01 | 8.838351 |
42306.01 | 36.416772 |
42306.02 | 31.404891 |
42306.04 | 10.104051 |
42306.05 | 26.652639 |
42306.06 | 31.607533 |
42306.07 | 14.057883 |
42306.08 | 14.669973 |
42306.10 | 10.860818 |
42306.13 | 19.707401 |
42306.13 | 12.767893 |
42306.14 | 11.406741 |
42306.16 | 6.829391 |
42306.18 | 18.626982 |
42306.19 | 25.249255 |
42306.19 | 20.066181 |
42306.21 | 32.633243 |
42306.21 | 19.815994 |
42306.23 | 7.393302 |
42306.23 | 30.079256 |
42306.25 | 11.413076 |
42306.27 | 11.697902 |
42306.28 | 31.190372 |
42306.30 | 20.639450 |
42306.32 | 18.345175 |
42306.32 | 13.468384 |
42306.33 | 23.132393 |
42306.33 | 25.347282 |
42306.34 | 9.159853 |
42306.34 | 20.831257 |
42306.37 | 20.813047 |
42306.37 | 11.684935 |
42306.37 | 16.810542 |
42306.38 | 20.083183 |
42306.38 | 9.500212 |
42306.39 | 22.865692 |
42306.39 | 11.315027 |
42306.39 | 10.933767 |
42306.41 | 12.687895 |
42306.42 | 12.946125 |
42306.43 | 8.493317 |
42306.44 | 14.026298 |
42306.44 | 17.014097 |
42306.47 | 36.140930 |
42306.47 | 26.717343 |
42306.49 | 13.078063 |
42306.49 | 19.879271 |
42306.49 | 22.017664 |
42306.49 | 15.966344 |
42306.52 | 26.322878 |
42306.53 | 10.881309 |
42306.54 | 36.767167 |
42306.54 | 18.178581 |
42306.54 | 22.243434 |
42306.56 | 27.443501 |
42306.57 | 7.416418 |
42306.59 | 35.314750 |
42306.59 | 26.102493 |
42306.60 | 26.995712 |
42306.61 | 26.171102 |
42306.62 | 26.393210 |
42306.63 | 6.113279 |
42306.63 | 33.321112 |
42306.64 | 3.437277 |
42306.65 | 15.568660 |
42306.68 | 12.626890 |
42306.68 | 23.726236 |
42306.68 | 8.220824 |
42306.69 | 33.722738 |
42306.73 | 17.737118 |
42306.74 | 27.586605 |
42306.75 | 28.581947 |
42306.76 | 33.395729 |
42306.76 | 15.354501 |
42306.76 | 23.929336 |
42306.76 | 5.771780 |
42306.78 | 4.210084 |
42306.79 | 34.201755 |
42306.79 | 18.118718 |
42306.81 | 11.838202 |
42306.81 | 28.055038 |
42306.82 | 38.824234 |
42306.85 | 20.183617 |
42306.86 | 20.252920 |
42306.87 | 24.079136 |
42306.88 | 20.675881 |
42306.90 | 18.581834 |
42306.90 | 3.005562 |
42306.91 | 17.446180 |
42306.92 | 17.692749 |
42306.92 | 20.881251 |
42306.95 | 21.112933 |
42306.97 | 22.773156 |
42306.99 | 10.671286 |
42307.00 | 27.385016 |
42307.00 | 21.039398 |
42307.01 | 29.351822 |
42307.02 | 26.714346 |
42307.04 | 33.461080 |
42307.06 | 15.763921 |
42307.07 | 22.893475 |
42307.10 | 14.913339 |
42307.10 | 16.881445 |
42307.10 | 21.306120 |
42307.10 | 11.068579 |
42307.11 | 23.510960 |
42307.12 | 12.426567 |
42307.12 | 9.803671 |
42307.12 | 13.601980 |
42307.13 | 15.308122 |
42307.14 | 12.293308 |
42307.15 | 25.187776 |
42307.16 | 25.200361 |
42307.17 | 26.050907 |
42307.17 | 16.041492 |
42307.18 | 9.716074 |
42307.18 | 22.032446 |
42307.19 | 32.175466 |
42307.20 | 8.824220 |
42307.21 | 16.416996 |
42307.23 | 26.741802 |
42307.27 | 28.653171 |
42307.30 | 17.616891 |
42307.30 | 32.165879 |
42307.30 | 15.814351 |
42307.31 | 13.982874 |
42307.31 | 13.229002 |
42307.35 | 25.821707 |
42307.35 | 20.103947 |
42307.36 | 19.840905 |
42307.36 | 15.154233 |
42307.36 | 15.319994 |
42307.37 | 12.452035 |
42307.38 | 21.674978 |
42307.38 | 16.542822 |
42307.39 | 15.016618 |
42307.39 | 21.003799 |
42307.39 | 27.280290 |
42307.40 | 15.816813 |
42307.40 | 14.185396 |
42307.41 | 20.210829 |
42307.41 | 18.266201 |
42307.41 | 7.572945 |
42307.42 | 24.242163 |
42307.43 | 30.221902 |
42307.43 | 1.067303 |
42307.44 | 24.181480 |
42307.44 | 12.343618 |
42307.44 | 21.241147 |
42307.45 | 23.494210 |
42307.46 | 17.914192 |
42307.46 | 9.712991 |
42307.47 | 36.835152 |
42307.47 | 5.656043 |
42307.48 | 7.624941 |
42307.48 | 22.043926 |
42307.48 | 34.058479 |
42307.49 | 21.477600 |
42307.50 | 37.726762 |
42307.51 | 25.376942 |
42307.52 | 31.833041 |
42307.52 | 8.491811 |
42307.52 | 27.584047 |
42307.53 | 7.759069 |
42307.58 | 30.206207 |
42307.59 | 29.868823 |
42307.59 | 28.068979 |
42307.60 | 15.586651 |
42307.61 | 19.258297 |
42307.62 | 27.053775 |
42307.62 | 17.235405 |
42307.63 | 31.068870 |
42307.67 | 38.387732 |
42307.68 | 16.287305 |
42307.68 | 33.737380 |
42307.69 | 12.794018 |
42307.71 | 21.554267 |
42307.71 | 31.123454 |
42307.71 | 22.472866 |
42307.74 | 19.109189 |
42307.75 | 8.965514 |
42307.76 | 14.538760 |
42307.76 | 6.618785 |
42307.78 | 19.410505 |
42307.78 | 24.581237 |
42307.80 | 19.913452 |
42307.81 | 14.319365 |
42307.82 | 21.950001 |
42307.82 | 29.379711 |
42307.83 | 9.750124 |
42307.83 | 19.004112 |
42307.85 | 37.591036 |
42307.86 | 28.464328 |
42307.87 | 15.015707 |
42307.87 | 22.333341 |
42307.88 | 27.741250 |
42307.88 | 11.640426 |
42307.89 | 15.135784 |
42307.89 | 22.123494 |
42307.89 | 17.915621 |
42307.91 | 23.954026 |
42307.93 | 4.021746 |
42307.93 | 9.613415 |
42307.96 | 13.133139 |
42307.96 | 4.952637 |
42307.97 | 26.474205 |
42308.01 | 4.421879 |
42308.01 | 18.253691 |
42308.03 | 14.486119 |
42308.04 | 31.484788 |
42308.05 | 12.772337 |
42308.07 | 16.364104 |
42308.07 | 35.450027 |
42308.08 | 38.479671 |
42308.08 | 27.325173 |
42308.08 | 12.840285 |
42308.08 | 20.807145 |
42308.12 | 16.369698 |
42308.12 | 28.855674 |
42308.14 | 27.944654 |
42308.15 | 27.446450 |
42308.18 | 21.081974 |
42308.19 | 24.238055 |
42308.21 | 14.049404 |
42308.25 | 26.559184 |
42308.25 | 25.242968 |
42308.25 | 34.891026 |
42308.26 | 30.599200 |
42308.27 | 17.366746 |
42308.28 | 23.821349 |
42308.29 | 11.251934 |
42308.30 | 25.670211 |
42308.31 | 33.436930 |
42308.33 | 36.082648 |
42308.35 | 10.927193 |
42308.36 | 8.277269 |
42308.37 | 15.415538 |
42308.39 | 32.181583 |
42308.41 | 2.719154 |
42308.41 | 21.170975 |
42308.42 | 19.835044 |
42308.44 | 35.782245 |
42308.45 | 20.585977 |
42308.46 | 18.806353 |
42308.47 | 24.836634 |
42308.47 | 19.806278 |
42308.49 | 30.785157 |
42308.49 | 8.282494 |
42308.52 | 19.724971 |
42308.54 | 20.268650 |
42308.54 | 22.278925 |
42308.54 | 12.367646 |
42308.55 | 24.372004 |
42308.58 | 20.621253 |
42308.58 | 14.751192 |
42308.58 | 10.408624 |
42308.60 | 31.945120 |
42308.63 | 8.037941 |
42308.63 | 26.541515 |
42308.65 | 13.908973 |
42308.66 | 14.737002 |
42308.66 | 28.771564 |
42308.68 | 24.554983 |
42308.69 | 15.011016 |
42308.70 | 24.000616 |
42308.73 | 27.589842 |
42308.73 | 35.713119 |
42308.73 | 19.495046 |
42308.74 | 21.303044 |
42308.75 | 21.031095 |
42308.78 | 12.594886 |
42308.78 | 15.807672 |
42308.79 | 9.259209 |
42308.79 | 16.782744 |
42308.79 | 14.815882 |
42308.79 | 11.636250 |
42308.80 | 24.213435 |
42308.81 | 14.486916 |
42308.81 | 32.728819 |
42308.81 | 15.302234 |
42308.81 | 7.959237 |
42308.82 | 31.369263 |
42308.84 | 7.349745 |
42308.85 | 15.010710 |
42308.85 | 27.262566 |
42308.85 | 20.517552 |
42308.86 | 20.452720 |
42308.88 | 27.389651 |
42308.92 | 11.400498 |
42308.93 | 12.396629 |
42308.93 | 11.774302 |
42308.96 | 27.606285 |
42308.97 | 28.467733 |
42308.98 | 31.244255 |
42308.99 | 14.237196 |
42308.99 | 11.719533 |
42309.00 | 15.847017 |
42309.00 | 7.076831 |
42309.02 | 23.650243 |
42309.03 | 30.891522 |
42309.03 | 23.070343 |
42309.05 | 16.925815 |
42309.06 | 26.975276 |
42309.06 | 10.376045 |
42309.07 | 25.214665 |
42309.09 | 14.022721 |
42309.11 | 29.029274 |
42309.14 | 12.817853 |
42309.15 | 27.137068 |
42309.16 | 13.715517 |
42309.17 | 11.133035 |
42309.21 | 22.610985 |
42309.25 | 24.388115 |
42309.26 | 21.684017 |
42309.26 | 4.294392 |
42309.30 | 29.918730 |
42309.32 | 19.281998 |
42309.33 | 19.495424 |
42309.34 | 1.335991 |
42309.34 | 10.920037 |
42309.34 | 19.664501 |
42309.37 | 28.550303 |
42309.43 | 18.399540 |
42309.45 | 12.924725 |
42309.46 | 17.521240 |
42309.46 | 26.317390 |
42309.48 | 26.056817 |
42309.48 | 29.616021 |
42309.53 | 17.746786 |
42309.53 | 7.546854 |
42309.53 | 26.363689 |
42309.54 | 14.737645 |
42309.54 | 29.287755 |
42309.54 | 31.996311 |
42309.54 | 26.981273 |
42309.55 | 16.575896 |
42309.56 | 16.491862 |
42309.57 | 15.705421 |
42309.60 | 17.704946 |
42309.60 | 26.155266 |
42309.60 | 29.694279 |
42309.60 | 24.455547 |
42309.62 | 22.425873 |
42309.63 | 33.004309 |
42309.63 | 4.385275 |
42309.63 | 16.915401 |
42309.64 | 17.247719 |
42309.66 | 25.548663 |
42309.67 | 19.692654 |
42309.69 | 22.548459 |
42309.69 | 18.674775 |
42309.69 | 16.977700 |
42309.70 | 18.870444 |
42309.71 | 24.984427 |
42309.71 | 26.191839 |
42309.76 | 10.336158 |
42309.77 | 28.240343 |
42309.78 | 21.630708 |
42309.80 | 13.690378 |
42309.81 | 21.142271 |
42309.82 | 20.366756 |
42309.82 | 20.311729 |
42309.83 | 19.103980 |
42309.84 | 5.537197 |
42309.84 | 15.865447 |
42309.84 | 10.568377 |
42309.87 | 21.558668 |
42309.87 | 18.989392 |
42309.88 | 10.241452 |
42309.91 | 28.110783 |
42309.92 | 13.848839 |
42309.92 | 21.507690 |
42309.92 | 15.281430 |
42309.92 | 26.336684 |
42309.93 | 29.064266 |
42309.96 | 22.844104 |
42309.98 | 16.218705 |
42309.98 | 21.211707 |
# Dataset2
waterdata2 <- readxl::read_excel("Waterflow_Pipe2.xlsx", skip=0)
colnames(waterdata2) <- c("DateTimeNbr","WaterFlow")
waterdata2 %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DateTimeNbr | WaterFlow |
---|---|
42300.04 | 18.810791 |
42300.08 | 43.087025 |
42300.12 | 37.987705 |
42300.17 | 36.120379 |
42300.21 | 31.851259 |
42300.25 | 28.238090 |
42300.29 | 9.863582 |
42300.33 | 26.679610 |
42300.38 | 55.773785 |
42300.42 | 54.156889 |
42300.46 | 68.374904 |
42300.50 | 55.710359 |
42300.54 | 56.968260 |
42300.58 | 17.206276 |
42300.62 | 35.093275 |
42300.67 | 44.424928 |
42300.71 | 57.322408 |
42300.75 | 37.344924 |
42300.79 | 11.483011 |
42300.83 | 32.117940 |
42300.88 | 49.081861 |
42300.92 | 49.133546 |
42300.96 | 42.064648 |
42301.00 | 58.380027 |
42301.04 | 53.408031 |
42301.08 | 42.332775 |
42301.12 | 45.922190 |
42301.17 | 32.741215 |
42301.21 | 47.879252 |
42301.25 | 47.460516 |
42301.29 | 52.264966 |
42301.33 | 35.389582 |
42301.38 | 14.435578 |
42301.42 | 45.038179 |
42301.46 | 38.896592 |
42301.50 | 39.991833 |
42301.54 | 56.883595 |
42301.58 | 62.728660 |
42301.62 | 67.382484 |
42301.67 | 29.645108 |
42301.71 | 51.586668 |
42301.75 | 61.987103 |
42301.79 | 46.394571 |
42301.83 | 32.838673 |
42301.88 | 53.416554 |
42301.92 | 70.723677 |
42301.96 | 21.570847 |
42302.00 | 66.762107 |
42302.04 | 36.322123 |
42302.08 | 45.114342 |
42302.12 | 53.473562 |
42302.17 | 27.209341 |
42302.21 | 44.193703 |
42302.25 | 59.296910 |
42302.29 | 42.253496 |
42302.33 | 44.747970 |
42302.38 | 50.182502 |
42302.42 | 32.303380 |
42302.46 | 44.413697 |
42302.50 | 42.844556 |
42302.54 | 56.282628 |
42302.58 | 54.936958 |
42302.62 | 20.406510 |
42302.67 | 60.954459 |
42302.71 | 55.811767 |
42302.75 | 68.008012 |
42302.79 | 20.964754 |
42302.83 | 50.112292 |
42302.88 | 24.172808 |
42302.92 | 17.131600 |
42302.96 | 41.938311 |
42303.00 | 70.376636 |
42303.04 | 34.387617 |
42303.08 | 30.377663 |
42303.12 | 41.567192 |
42303.17 | 72.172881 |
42303.21 | 45.745729 |
42303.25 | 42.294146 |
42303.29 | 28.883164 |
42303.33 | 55.506566 |
42303.38 | 19.228599 |
42303.42 | 39.454913 |
42303.46 | 28.521848 |
42303.50 | 22.614615 |
42303.54 | 8.513215 |
42303.58 | 38.228365 |
42303.62 | 23.388172 |
42303.67 | 59.546335 |
42303.71 | 20.342739 |
42303.75 | 40.198573 |
42303.79 | 42.636429 |
42303.83 | 40.250584 |
42303.88 | 33.603564 |
42303.92 | 33.921165 |
42303.96 | 6.574838 |
42304.00 | 68.451384 |
42304.04 | 14.722223 |
42304.08 | 40.885201 |
42304.12 | 37.432232 |
42304.17 | 22.449903 |
42304.21 | 49.813460 |
42304.25 | 38.930568 |
42304.29 | 22.183581 |
42304.33 | 17.156385 |
42304.38 | 55.683814 |
42304.42 | 4.681630 |
42304.46 | 30.998919 |
42304.50 | 11.136842 |
42304.54 | 30.650987 |
42304.58 | 56.688098 |
42304.62 | 32.445492 |
42304.67 | 41.242405 |
42304.71 | 44.380749 |
42304.75 | 55.343373 |
42304.79 | 14.175375 |
42304.83 | 51.636056 |
42304.88 | 49.038738 |
42304.92 | 33.515478 |
42304.96 | 35.479944 |
42305.00 | 54.753657 |
42305.04 | 42.308140 |
42305.08 | 30.650448 |
42305.12 | 38.951353 |
42305.17 | 23.330517 |
42305.21 | 26.130716 |
42305.25 | 68.184102 |
42305.29 | 17.891049 |
42305.33 | 7.689945 |
42305.38 | 34.479795 |
42305.42 | 5.768535 |
42305.46 | 55.996156 |
42305.50 | 52.156262 |
42305.54 | 48.276526 |
42305.58 | 29.068677 |
42305.62 | 51.055828 |
42305.67 | 50.142903 |
42305.71 | 35.699715 |
42305.75 | 41.009140 |
42305.79 | 70.126446 |
42305.83 | 22.225432 |
42305.88 | 54.659647 |
42305.92 | 50.467770 |
42305.96 | 35.307784 |
42306.00 | 44.072312 |
42306.04 | 36.433573 |
42306.08 | 65.174990 |
42306.12 | 39.027232 |
42306.17 | 21.882484 |
42306.21 | 16.475724 |
42306.25 | 29.737078 |
42306.29 | 44.677987 |
42306.33 | 9.726528 |
42306.38 | 32.252834 |
42306.42 | 36.463706 |
42306.46 | 18.570584 |
42306.50 | 47.179197 |
42306.54 | 16.814399 |
42306.58 | 21.411535 |
42306.62 | 78.303208 |
42306.67 | 37.809087 |
42306.71 | 46.143853 |
42306.75 | 58.575561 |
42306.79 | 10.668517 |
42306.83 | 40.423676 |
42306.88 | 42.632654 |
42306.92 | 17.024037 |
42306.96 | 38.288825 |
42307.00 | 61.935956 |
42307.04 | 16.267685 |
42307.08 | 50.454336 |
42307.12 | 64.303302 |
42307.17 | 36.859830 |
42307.21 | 19.045695 |
42307.25 | 51.206781 |
42307.29 | 43.157475 |
42307.33 | 66.533505 |
42307.38 | 46.407488 |
42307.42 | 31.593622 |
42307.46 | 32.880155 |
42307.50 | 32.330595 |
42307.54 | 44.101568 |
42307.58 | 30.998232 |
42307.62 | 69.575830 |
42307.67 | 28.656834 |
42307.71 | 40.347359 |
42307.75 | 73.769908 |
42307.79 | 30.711824 |
42307.83 | 39.900346 |
42307.88 | 41.396253 |
42307.92 | 14.918891 |
42307.96 | 48.476683 |
42308.00 | 54.804861 |
42308.04 | 74.841654 |
42308.08 | 31.581531 |
42308.12 | 60.288192 |
42308.17 | 22.568788 |
42308.21 | 42.800695 |
42308.25 | 41.309206 |
42308.29 | 14.657249 |
42308.33 | 35.299757 |
42308.38 | 23.238057 |
42308.42 | 36.344364 |
42308.46 | 34.088694 |
42308.50 | 41.491756 |
42308.54 | 42.307821 |
42308.58 | 46.513619 |
42308.62 | 59.169215 |
42308.67 | 49.514779 |
42308.71 | 9.835715 |
42308.75 | 30.380895 |
42308.79 | 40.075967 |
42308.83 | 53.075152 |
42308.88 | 26.581510 |
42308.92 | 37.963427 |
42308.96 | 67.098804 |
42309.00 | 9.541255 |
42309.04 | 50.560327 |
42309.08 | 48.675529 |
42309.12 | 50.790777 |
42309.17 | 39.647840 |
42309.21 | 71.594723 |
42309.25 | 45.642905 |
42309.29 | 22.403748 |
42309.33 | 42.583314 |
42309.38 | 48.973803 |
42309.42 | 36.391814 |
42309.46 | 39.451300 |
42309.50 | 48.231945 |
42309.54 | 23.238733 |
42309.58 | 29.103701 |
42309.62 | 24.890495 |
42309.67 | 39.501753 |
42309.71 | 3.553891 |
42309.75 | 41.188599 |
42309.79 | 41.303353 |
42309.83 | 17.858629 |
42309.88 | 28.382995 |
42309.92 | 51.696846 |
42309.96 | 60.225725 |
42310.00 | 18.710074 |
42310.04 | 69.677403 |
42310.08 | 70.643756 |
42310.12 | 32.130700 |
42310.17 | 43.286488 |
42310.21 | 46.519110 |
42310.25 | 49.418788 |
42310.29 | 22.603133 |
42310.33 | 17.204039 |
42310.38 | 36.098841 |
42310.42 | 37.426039 |
42310.46 | 68.958258 |
42310.50 | 56.355300 |
42310.54 | 27.421826 |
42310.58 | 21.977013 |
42310.62 | 31.650012 |
42310.67 | 19.103725 |
42310.71 | 40.573976 |
42310.75 | 34.139365 |
42310.79 | 31.604146 |
42310.83 | 53.455162 |
42310.88 | 50.932862 |
42310.92 | 21.382117 |
42310.96 | 28.707991 |
42311.00 | 28.266119 |
42311.04 | 56.643025 |
42311.08 | 65.491297 |
42311.12 | 45.264900 |
42311.17 | 32.083226 |
42311.21 | 20.034940 |
42311.25 | 59.361131 |
42311.29 | 63.062853 |
42311.33 | 36.311024 |
42311.38 | 28.786016 |
42311.42 | 41.529467 |
42311.46 | 15.911946 |
42311.50 | 50.859685 |
42311.54 | 43.005399 |
42311.58 | 34.650963 |
42311.62 | 53.490976 |
42311.67 | 30.670295 |
42311.71 | 11.915951 |
42311.75 | 24.722517 |
42311.79 | 38.936218 |
42311.83 | 35.450478 |
42311.88 | 45.970258 |
42311.92 | 56.407256 |
42311.96 | 49.554872 |
42312.00 | 48.358182 |
42312.04 | 16.816164 |
42312.08 | 19.084841 |
42312.12 | 49.944728 |
42312.17 | 21.617885 |
42312.21 | 26.981540 |
42312.25 | 51.754010 |
42312.29 | 35.729160 |
42312.33 | 71.273732 |
42312.38 | 28.418581 |
42312.42 | 16.964691 |
42312.46 | 47.892948 |
42312.50 | 50.257181 |
42312.54 | 48.595430 |
42312.58 | 49.996359 |
42312.62 | 48.920110 |
42312.67 | 68.161543 |
42312.71 | 30.529780 |
42312.75 | 55.694453 |
42312.79 | 47.145238 |
42312.83 | 50.778857 |
42312.88 | 47.658571 |
42312.92 | 26.331098 |
42312.96 | 67.761091 |
42313.00 | 51.085154 |
42313.04 | 41.117956 |
42313.08 | 9.068800 |
42313.12 | 61.260012 |
42313.17 | 20.384767 |
42313.21 | 23.371558 |
42313.25 | 54.130721 |
42313.29 | 47.173422 |
42313.33 | 17.330480 |
42313.38 | 27.900997 |
42313.42 | 60.693928 |
42313.46 | 55.750439 |
42313.50 | 31.980729 |
42313.54 | 46.026815 |
42313.58 | 51.486720 |
42313.62 | 35.083882 |
42313.67 | 29.222731 |
42313.71 | 38.054577 |
42313.75 | 32.803461 |
42313.79 | 34.590651 |
42313.83 | 7.041455 |
42313.88 | 43.879486 |
42313.92 | 54.260075 |
42313.96 | 49.607998 |
42314.00 | 51.166843 |
42314.04 | 60.332261 |
42314.08 | 54.000615 |
42314.12 | 48.402953 |
42314.17 | 71.293996 |
42314.21 | 25.864377 |
42314.25 | 43.534985 |
42314.29 | 10.294754 |
42314.33 | 27.211552 |
42314.38 | 68.771180 |
42314.42 | 40.635575 |
42314.46 | 48.547279 |
42314.50 | 51.211695 |
42314.54 | 62.323132 |
42314.58 | 36.042205 |
42314.62 | 65.867425 |
42314.67 | 43.091257 |
42314.71 | 49.999283 |
42314.75 | 42.753244 |
42314.79 | 43.280302 |
42314.83 | 12.215143 |
42314.88 | 30.790950 |
42314.92 | 43.146264 |
42314.96 | 24.862962 |
42315.00 | 60.419541 |
42315.04 | 2.829191 |
42315.08 | 41.358591 |
42315.12 | 32.518025 |
42315.17 | 32.936246 |
42315.21 | 53.903692 |
42315.25 | 54.349240 |
42315.29 | 48.667338 |
42315.33 | 43.697246 |
42315.38 | 64.391019 |
42315.42 | 54.642566 |
42315.46 | 31.579795 |
42315.50 | 10.697792 |
42315.54 | 69.408304 |
42315.58 | 57.739228 |
42315.62 | 54.043036 |
42315.67 | 21.378107 |
42315.71 | 68.557246 |
42315.75 | 49.990255 |
42315.79 | 60.870852 |
42315.83 | 15.231194 |
42315.88 | 35.271872 |
42315.92 | 47.834724 |
42315.96 | 39.042589 |
42316.00 | 31.282543 |
42316.04 | 34.318646 |
42316.08 | 45.695737 |
42316.12 | 34.761724 |
42316.17 | 41.324282 |
42316.21 | 22.815585 |
42316.25 | 63.250742 |
42316.29 | 13.839852 |
42316.33 | 46.006283 |
42316.38 | 44.493733 |
42316.42 | 63.378401 |
42316.46 | 42.817629 |
42316.50 | 45.072082 |
42316.54 | 46.040137 |
42316.58 | 11.573340 |
42316.62 | 39.922730 |
42316.67 | 40.153338 |
42316.71 | 63.037254 |
42316.75 | 48.776710 |
42316.79 | 53.306946 |
42316.83 | 41.484211 |
42316.88 | 45.348702 |
42316.92 | 54.969466 |
42316.96 | 47.595072 |
42317.00 | 40.591619 |
42317.04 | 43.363619 |
42317.08 | 65.789153 |
42317.12 | 29.012179 |
42317.17 | 38.944844 |
42317.21 | 26.349575 |
42317.25 | 33.638500 |
42317.29 | 8.524681 |
42317.33 | 7.047517 |
42317.38 | 71.864778 |
42317.42 | 33.775195 |
42317.46 | 34.524480 |
42317.50 | 13.277970 |
42317.54 | 20.951475 |
42317.58 | 42.715256 |
42317.62 | 51.101163 |
42317.67 | 8.718182 |
42317.71 | 23.884311 |
42317.75 | 44.208632 |
42317.79 | 47.094925 |
42317.83 | 25.140574 |
42317.88 | 33.723718 |
42317.92 | 23.366525 |
42317.96 | 41.851025 |
42318.00 | 28.565955 |
42318.04 | 49.010418 |
42318.08 | 76.953288 |
42318.12 | 33.641144 |
42318.17 | 61.127699 |
42318.21 | 61.822340 |
42318.25 | 22.690029 |
42318.29 | 52.496753 |
42318.33 | 26.962412 |
42318.38 | 55.912366 |
42318.42 | 38.827366 |
42318.46 | 51.170992 |
42318.50 | 38.982250 |
42318.54 | 36.403632 |
42318.58 | 45.511136 |
42318.62 | 35.450764 |
42318.67 | 12.781466 |
42318.71 | 34.596144 |
42318.75 | 19.863000 |
42318.79 | 61.422724 |
42318.83 | 37.871542 |
42318.88 | 44.714030 |
42318.92 | 52.438546 |
42318.96 | 21.870034 |
42319.00 | 42.775527 |
42319.04 | 37.075660 |
42319.08 | 55.922491 |
42319.12 | 21.725370 |
42319.17 | 27.383226 |
42319.21 | 26.474453 |
42319.25 | 24.992206 |
42319.29 | 29.420236 |
42319.33 | 18.593189 |
42319.38 | 19.401002 |
42319.42 | 30.797664 |
42319.46 | 53.005290 |
42319.50 | 29.785165 |
42319.54 | 48.478284 |
42319.58 | 41.000063 |
42319.62 | 55.985426 |
42319.67 | 23.593107 |
42319.71 | 16.929397 |
42319.75 | 26.105809 |
42319.79 | 27.278099 |
42319.83 | 35.966696 |
42319.88 | 62.321017 |
42319.92 | 22.551005 |
42319.96 | 32.326498 |
42320.00 | 36.768426 |
42320.04 | 16.655779 |
42320.08 | 50.903035 |
42320.12 | 32.744233 |
42320.17 | 43.446611 |
42320.21 | 12.872882 |
42320.25 | 43.626821 |
42320.29 | 17.932564 |
42320.33 | 46.430782 |
42320.38 | 47.555630 |
42320.42 | 23.164628 |
42320.46 | 36.320166 |
42320.50 | 41.829277 |
42320.54 | 65.063811 |
42320.58 | 53.996669 |
42320.62 | 53.065490 |
42320.67 | 36.048012 |
42320.71 | 23.164822 |
42320.75 | 38.652909 |
42320.79 | 48.085267 |
42320.83 | 39.547030 |
42320.88 | 36.281582 |
42320.92 | 22.304580 |
42320.96 | 39.054497 |
42321.00 | 62.456375 |
42321.04 | 21.058794 |
42321.08 | 24.986703 |
42321.12 | 47.340037 |
42321.17 | 42.103710 |
42321.21 | 46.277421 |
42321.25 | 41.346360 |
42321.29 | 8.198421 |
42321.33 | 49.820480 |
42321.38 | 52.630520 |
42321.42 | 14.320846 |
42321.46 | 29.429210 |
42321.50 | 46.610070 |
42321.54 | 27.718158 |
42321.58 | 43.646591 |
42321.62 | 58.249277 |
42321.67 | 37.955810 |
42321.71 | 53.167141 |
42321.75 | 17.003180 |
42321.79 | 36.987767 |
42321.83 | 69.421289 |
42321.88 | 42.282380 |
42321.92 | 60.299183 |
42321.96 | 77.388036 |
42322.00 | 38.187514 |
42322.04 | 73.920364 |
42322.08 | 23.427619 |
42322.12 | 74.049763 |
42322.17 | 71.025842 |
42322.21 | 36.310935 |
42322.25 | 69.727846 |
42322.29 | 47.318911 |
42322.33 | 54.552009 |
42322.38 | 22.047066 |
42322.42 | 33.286940 |
42322.46 | 44.805901 |
42322.50 | 30.968865 |
42322.54 | 32.250332 |
42322.58 | 60.449541 |
42322.62 | 17.006485 |
42322.67 | 42.845801 |
42322.71 | 47.528852 |
42322.75 | 39.715687 |
42322.79 | 23.905351 |
42322.83 | 60.468321 |
42322.88 | 16.016156 |
42322.92 | 24.913911 |
42322.96 | 52.127222 |
42323.00 | 31.771907 |
42323.04 | 33.992850 |
42323.08 | 12.282765 |
42323.12 | 50.596037 |
42323.17 | 31.542007 |
42323.21 | 20.514348 |
42323.25 | 27.990267 |
42323.29 | 70.663541 |
42323.33 | 44.674916 |
42323.38 | 22.821463 |
42323.42 | 28.171757 |
42323.46 | 38.060556 |
42323.50 | 28.251189 |
42323.54 | 20.650803 |
42323.58 | 42.038281 |
42323.62 | 33.657499 |
42323.67 | 24.628537 |
42323.71 | 62.740169 |
42323.75 | 37.227280 |
42323.79 | 66.834372 |
42323.83 | 54.885094 |
42323.88 | 38.741754 |
42323.92 | 52.565861 |
42323.96 | 42.011579 |
42324.00 | 1.884618 |
42324.04 | 33.697009 |
42324.08 | 35.136376 |
42324.12 | 52.342981 |
42324.17 | 56.699116 |
42324.21 | 55.563435 |
42324.25 | 45.758364 |
42324.29 | 50.659673 |
42324.33 | 40.169564 |
42324.38 | 24.979220 |
42324.42 | 47.796589 |
42324.46 | 35.726957 |
42324.50 | 54.028989 |
42324.54 | 45.341975 |
42324.58 | 48.476311 |
42324.62 | 33.640512 |
42324.67 | 30.864809 |
42324.71 | 20.844211 |
42324.75 | 19.803964 |
42324.79 | 36.264543 |
42324.83 | 31.291821 |
42324.88 | 10.358942 |
42324.92 | 31.271942 |
42324.96 | 39.143974 |
42325.00 | 40.599863 |
42325.04 | 4.404232 |
42325.08 | 60.532204 |
42325.12 | 42.654711 |
42325.17 | 11.865801 |
42325.21 | 22.798883 |
42325.25 | 32.524959 |
42325.29 | 65.957563 |
42325.33 | 26.382528 |
42325.38 | 33.062656 |
42325.42 | 18.365385 |
42325.46 | 59.433134 |
42325.50 | 38.719453 |
42325.54 | 70.619444 |
42325.58 | 51.069993 |
42325.62 | 29.489031 |
42325.67 | 15.808655 |
42325.71 | 39.223626 |
42325.75 | 47.080228 |
42325.79 | 41.980568 |
42325.83 | 61.214361 |
42325.88 | 23.836742 |
42325.92 | 35.213413 |
42325.96 | 66.174825 |
42326.00 | 11.472738 |
42326.04 | 40.944768 |
42326.08 | 73.297982 |
42326.12 | 21.705112 |
42326.17 | 13.445279 |
42326.21 | 33.855644 |
42326.25 | 38.425269 |
42326.29 | 7.564169 |
42326.33 | 20.792792 |
42326.38 | 47.126813 |
42326.42 | 38.557200 |
42326.46 | 30.619750 |
42326.50 | 27.548411 |
42326.54 | 34.697505 |
42326.58 | 36.676699 |
42326.62 | 30.025806 |
42326.67 | 44.290001 |
42326.71 | 31.476714 |
42326.75 | 16.554329 |
42326.79 | 28.467637 |
42326.83 | 60.756805 |
42326.88 | 53.156311 |
42326.92 | 43.736182 |
42326.96 | 44.678285 |
42327.00 | 32.500159 |
42327.04 | 53.096718 |
42327.08 | 50.450171 |
42327.12 | 20.671851 |
42327.17 | 48.500930 |
42327.21 | 55.872094 |
42327.25 | 16.955515 |
42327.29 | 47.782032 |
42327.33 | 64.182162 |
42327.38 | 19.123758 |
42327.42 | 26.630040 |
42327.46 | 24.693264 |
42327.50 | 14.882576 |
42327.54 | 54.702633 |
42327.58 | 28.045472 |
42327.62 | 44.237443 |
42327.67 | 53.989477 |
42327.71 | 44.208531 |
42327.75 | 44.145634 |
42327.79 | 40.174149 |
42327.83 | 75.699763 |
42327.88 | 33.688595 |
42327.92 | 60.315099 |
42327.96 | 37.811607 |
42328.00 | 62.216296 |
42328.04 | 21.923579 |
42328.08 | 50.856824 |
42328.12 | 9.506527 |
42328.17 | 39.037833 |
42328.21 | 47.392675 |
42328.25 | 39.774791 |
42328.29 | 48.835634 |
42328.33 | 46.283958 |
42328.38 | 48.833873 |
42328.42 | 41.321219 |
42328.46 | 49.126166 |
42328.50 | 26.070307 |
42328.54 | 37.334013 |
42328.58 | 44.013403 |
42328.62 | 63.076857 |
42328.67 | 44.009289 |
42328.71 | 53.765517 |
42328.75 | 6.907394 |
42328.79 | 51.625765 |
42328.83 | 64.845969 |
42328.88 | 23.791188 |
42328.92 | 41.551253 |
42328.96 | 45.032033 |
42329.00 | 30.722590 |
42329.04 | 37.643845 |
42329.08 | 33.978619 |
42329.12 | 59.975566 |
42329.17 | 24.821922 |
42329.21 | 24.426441 |
42329.25 | 58.768110 |
42329.29 | 47.487387 |
42329.33 | 41.046481 |
42329.38 | 32.077990 |
42329.42 | 61.332384 |
42329.46 | 33.779878 |
42329.50 | 68.860907 |
42329.54 | 28.228687 |
42329.58 | 41.392049 |
42329.62 | 55.493874 |
42329.67 | 41.741668 |
42329.71 | 54.743921 |
42329.75 | 51.711642 |
42329.79 | 21.725879 |
42329.83 | 45.572460 |
42329.88 | 29.984989 |
42329.92 | 31.946214 |
42329.96 | 74.120935 |
42330.00 | 39.799580 |
42330.04 | 28.923704 |
42330.08 | 34.125230 |
42330.12 | 47.261910 |
42330.17 | 31.905987 |
42330.21 | 53.219995 |
42330.25 | 26.944213 |
42330.29 | 54.151730 |
42330.33 | 31.557127 |
42330.38 | 47.108037 |
42330.42 | 16.939418 |
42330.46 | 56.867922 |
42330.50 | 56.924140 |
42330.54 | 7.143941 |
42330.58 | 49.925868 |
42330.62 | 58.971000 |
42330.67 | 34.281085 |
42330.71 | 42.682790 |
42330.75 | 36.855911 |
42330.79 | 22.575510 |
42330.83 | 43.106407 |
42330.88 | 57.423548 |
42330.92 | 60.982311 |
42330.96 | 19.184503 |
42331.00 | 27.031110 |
42331.04 | 24.985017 |
42331.08 | 41.859799 |
42331.12 | 7.230717 |
42331.17 | 24.225717 |
42331.21 | 46.453707 |
42331.25 | 51.230189 |
42331.29 | 44.442608 |
42331.33 | 49.115951 |
42331.38 | 32.865960 |
42331.42 | 23.082460 |
42331.46 | 34.718627 |
42331.50 | 66.163243 |
42331.54 | 68.177732 |
42331.58 | 42.731288 |
42331.62 | 65.160220 |
42331.67 | 18.855938 |
42331.71 | 28.938320 |
42331.75 | 4.388469 |
42331.79 | 44.976017 |
42331.83 | 35.722734 |
42331.88 | 45.347123 |
42331.92 | 22.781328 |
42331.96 | 43.114767 |
42332.00 | 24.184121 |
42332.04 | 43.356235 |
42332.08 | 35.089344 |
42332.12 | 42.129951 |
42332.17 | 65.064061 |
42332.21 | 31.054652 |
42332.25 | 43.142107 |
42332.29 | 33.909621 |
42332.33 | 25.199164 |
42332.38 | 26.900095 |
42332.42 | 54.820399 |
42332.46 | 36.714245 |
42332.50 | 58.612063 |
42332.54 | 48.918951 |
42332.58 | 55.173613 |
42332.62 | 34.770766 |
42332.67 | 4.595560 |
42332.71 | 17.717682 |
42332.75 | 63.682387 |
42332.79 | 16.459204 |
42332.83 | 39.174167 |
42332.88 | 5.544962 |
42332.92 | 51.408889 |
42332.96 | 71.206396 |
42333.00 | 20.604607 |
42333.04 | 45.903558 |
42333.08 | 47.996068 |
42333.12 | 51.515777 |
42333.17 | 27.643937 |
42333.21 | 19.950425 |
42333.25 | 42.934676 |
42333.29 | 33.758964 |
42333.33 | 60.198257 |
42333.38 | 64.822648 |
42333.42 | 26.160919 |
42333.46 | 44.729294 |
42333.50 | 28.503025 |
42333.54 | 75.771776 |
42333.58 | 27.112065 |
42333.62 | 49.403191 |
42333.67 | 38.397854 |
42333.71 | 38.091870 |
42333.75 | 43.485536 |
42333.79 | 13.170863 |
42333.83 | 52.137698 |
42333.88 | 43.204897 |
42333.92 | 37.660492 |
42333.96 | 31.197636 |
42334.00 | 34.074007 |
42334.04 | 64.403364 |
42334.08 | 61.575249 |
42334.12 | 32.426134 |
42334.17 | 30.168290 |
42334.21 | 37.227840 |
42334.25 | 18.700339 |
42334.29 | 27.573602 |
42334.33 | 48.217705 |
42334.38 | 45.173003 |
42334.42 | 18.890009 |
42334.46 | 27.141646 |
42334.50 | 14.635885 |
42334.54 | 30.364299 |
42334.58 | 8.753475 |
42334.62 | 18.768489 |
42334.67 | 39.735482 |
42334.71 | 13.730282 |
42334.75 | 44.824872 |
42334.79 | 39.809994 |
42334.83 | 28.565875 |
42334.88 | 43.661477 |
42334.92 | 55.906271 |
42334.96 | 31.129181 |
42335.00 | 19.962453 |
42335.04 | 42.683700 |
42335.08 | 59.089857 |
42335.12 | 23.640381 |
42335.17 | 26.785668 |
42335.21 | 40.640046 |
42335.25 | 35.918847 |
42335.29 | 48.929382 |
42335.33 | 25.118402 |
42335.38 | 34.981362 |
42335.42 | 8.636697 |
42335.46 | 59.959267 |
42335.50 | 18.643766 |
42335.54 | 17.155756 |
42335.58 | 5.500306 |
42335.62 | 14.505197 |
42335.67 | 24.883430 |
42335.71 | 54.744878 |
42335.75 | 55.735616 |
42335.79 | 32.256413 |
42335.83 | 38.956010 |
42335.88 | 60.020956 |
42335.92 | 69.425402 |
42335.96 | 8.688084 |
42336.00 | 42.970294 |
42336.04 | 27.727545 |
42336.08 | 38.962854 |
42336.12 | 13.365612 |
42336.17 | 31.819558 |
42336.21 | 33.103063 |
42336.25 | 30.924940 |
42336.29 | 26.308201 |
42336.33 | 9.565704 |
42336.38 | 13.830709 |
42336.42 | 48.527078 |
42336.46 | 29.341300 |
42336.50 | 56.402469 |
42336.54 | 24.985439 |
42336.58 | 36.644183 |
42336.62 | 26.098598 |
42336.67 | 24.020212 |
42336.71 | 50.831756 |
42336.75 | 56.770995 |
42336.79 | 47.023474 |
42336.83 | 59.280305 |
42336.88 | 37.453182 |
42336.92 | 72.102666 |
42336.96 | 30.348483 |
42337.00 | 53.805047 |
42337.04 | 22.456437 |
42337.08 | 60.534383 |
42337.12 | 16.088490 |
42337.17 | 36.382437 |
42337.21 | 59.246121 |
42337.25 | 45.077214 |
42337.29 | 45.120941 |
42337.33 | 38.232433 |
42337.38 | 19.465618 |
42337.42 | 38.230367 |
42337.46 | 18.690932 |
42337.50 | 20.769636 |
42337.54 | 61.135055 |
42337.58 | 27.915517 |
42337.62 | 30.520160 |
42337.67 | 28.824846 |
42337.71 | 69.571855 |
42337.75 | 37.361398 |
42337.79 | 38.282275 |
42337.83 | 46.356586 |
42337.88 | 24.056497 |
42337.92 | 53.198139 |
42337.96 | 35.252730 |
42338.00 | 43.607553 |
42338.04 | 60.174882 |
42338.08 | 17.935532 |
42338.12 | 68.517692 |
42338.17 | 29.962754 |
42338.21 | 61.862104 |
42338.25 | 20.989968 |
42338.29 | 60.410201 |
42338.33 | 59.574523 |
42338.38 | 56.018735 |
42338.42 | 24.071468 |
42338.46 | 49.377007 |
42338.50 | 38.429695 |
42338.54 | 26.261928 |
42338.58 | 66.245234 |
42338.62 | 32.917481 |
42338.67 | 25.103363 |
42338.71 | 27.791581 |
42338.75 | 46.185805 |
42338.79 | 33.197581 |
42338.83 | 45.298259 |
42338.88 | 15.820063 |
42338.92 | 19.494634 |
42338.96 | 39.350548 |
42339.00 | 39.319314 |
42339.04 | 2.474597 |
42339.08 | 41.595853 |
42339.12 | 15.030481 |
42339.17 | 71.055191 |
42339.21 | 52.047501 |
42339.25 | 72.879618 |
42339.29 | 37.068471 |
42339.33 | 34.298235 |
42339.38 | 41.579046 |
42339.42 | 40.660273 |
42339.46 | 61.635744 |
42339.50 | 43.405853 |
42339.54 | 18.588931 |
42339.58 | 47.898820 |
42339.62 | 33.526542 |
42339.67 | 53.297195 |
42339.71 | 29.570191 |
42339.75 | 18.813022 |
42339.79 | 32.032767 |
42339.83 | 43.580802 |
42339.88 | 29.927978 |
42339.92 | 65.725895 |
42339.96 | 14.997650 |
42340.00 | 21.467634 |
42340.04 | 35.542969 |
42340.08 | 67.452311 |
42340.12 | 57.589935 |
42340.17 | 35.194673 |
42340.21 | 46.114270 |
42340.25 | 35.049139 |
42340.29 | 34.855851 |
42340.33 | 31.369865 |
42340.38 | 43.440536 |
42340.42 | 5.292336 |
42340.46 | 15.588859 |
42340.50 | 45.724622 |
42340.54 | 46.292510 |
42340.58 | 38.483379 |
42340.62 | 51.287088 |
42340.67 | 35.419347 |
42340.71 | 38.717686 |
42340.75 | 53.184185 |
42340.79 | 66.245006 |
42340.83 | 40.550695 |
42340.88 | 57.073648 |
42340.92 | 49.285885 |
42340.96 | 22.874043 |
42341.00 | 46.236585 |
42341.04 | 77.101826 |
42341.08 | 49.775351 |
42341.12 | 71.134530 |
42341.17 | 58.448860 |
42341.21 | 58.534300 |
42341.25 | 28.555859 |
42341.29 | 39.062662 |
42341.33 | 16.662519 |
42341.38 | 27.000278 |
42341.42 | 44.246493 |
42341.46 | 72.966772 |
42341.50 | 31.483105 |
42341.54 | 66.816731 |
42341.58 | 42.936656 |
42341.62 | 33.401326 |
42341.67 | 66.681471 |
In order to use the two datasets together, the readings for pipeline1 must be converted to - - Separate date & hour components of readings - Convert hour to hour-ending to match pipeline2 - Get average reading for each date & hour - Convert back to DateTime and drop separate date/hour columns
waterdata1$DateTime <- as.POSIXct(waterdata1$DateTimeNbr*(60*60*24),origin="1899-12-30", tz="GMT")
waterdata1 <- waterdata1 %>% mutate(DATE = date(DateTime),HOUR = hour(DateTime) + 1) %>%
group_by(DATE, HOUR) %>% summarise(WaterFlow = mean(WaterFlow)) %>%
ungroup() %>% mutate(DateTime = ymd_h(paste(DATE, HOUR))) %>%
select(DateTime, WaterFlow)
## `summarise()` regrouping output by 'DATE' (override with `.groups` argument)
waterdata2 <- waterdata2 %>% mutate(DateTime = round(as.POSIXct(DateTimeNbr*(60*60*24),origin="1899-12-30", tz="GMT"),"hours")) %>% select(DateTime, WaterFlow)
Now, I have joined the two datasets together and converted to a time series object -
# create df with both observations for each hour
waterdata <- full_join(waterdata1, waterdata2, by = "DateTime", suffix = c("_1", "_2")) %>%
mutate(WaterFlow_1 = ifelse(is.na(WaterFlow_1), 0, WaterFlow_1)) %>%
mutate(WaterFlow = WaterFlow_1 + WaterFlow_2) %>%
select(DateTime, WaterFlow)
waterdata %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="300px")
DateTime | WaterFlow |
---|---|
2015-10-23 01:00:00 | 44.913587 |
2015-10-23 02:00:00 | 61.939045 |
2015-10-23 03:00:00 | 53.146275 |
2015-10-23 04:00:00 | 59.199235 |
2015-10-23 05:00:00 | 47.333452 |
2015-10-23 06:00:00 | 50.963484 |
2015-10-23 07:00:00 | 30.453456 |
2015-10-23 08:00:00 | 45.046642 |
2015-10-23 09:00:00 | 76.565484 |
2015-10-23 10:00:00 | 75.375644 |
2015-10-23 11:00:00 | 85.001352 |
2015-10-23 12:00:00 | 77.798197 |
2015-10-23 13:00:00 | 77.304770 |
2015-10-23 14:00:00 | 33.435304 |
2015-10-23 15:00:00 | 60.143067 |
2015-10-23 16:00:00 | 67.079317 |
2015-10-23 17:00:00 | 84.877133 |
2015-10-23 18:00:00 | 50.851054 |
2015-10-23 19:00:00 | 32.179716 |
2015-10-23 20:00:00 | 51.323004 |
2015-10-23 21:00:00 | 69.854272 |
2015-10-23 22:00:00 | 64.226059 |
2015-10-23 23:00:00 | 60.754026 |
2015-10-24 00:00:00 | 78.936585 |
2015-10-24 01:00:00 | 67.728550 |
2015-10-24 02:00:00 | 60.410369 |
2015-10-24 03:00:00 | 74.352764 |
2015-10-24 04:00:00 | 51.297994 |
2015-10-24 05:00:00 | 74.440559 |
2015-10-24 06:00:00 | 67.717533 |
2015-10-24 07:00:00 | 69.119660 |
2015-10-24 08:00:00 | 61.369718 |
2015-10-24 09:00:00 | 33.100503 |
2015-10-24 10:00:00 | 71.722499 |
2015-10-24 11:00:00 | 48.754761 |
2015-10-24 12:00:00 | 53.565474 |
2015-10-24 13:00:00 | 71.160189 |
2015-10-24 14:00:00 | 79.889938 |
2015-10-24 15:00:00 | 79.227245 |
2015-10-24 16:00:00 | 43.333733 |
2015-10-24 17:00:00 | 71.814457 |
2015-10-24 18:00:00 | 77.291741 |
2015-10-24 19:00:00 | 62.655845 |
2015-10-24 20:00:00 | 55.611404 |
2015-10-24 21:00:00 | 72.157100 |
2015-10-24 22:00:00 | 86.106605 |
2015-10-24 23:00:00 | 40.611043 |
2015-10-25 00:00:00 | 80.704487 |
2015-10-25 01:00:00 | 60.833827 |
2015-10-25 02:00:00 | 68.508260 |
2015-10-25 03:00:00 | 76.796333 |
2015-10-25 04:00:00 | 45.899307 |
2015-10-25 05:00:00 | 63.981689 |
2015-10-25 06:00:00 | 83.291955 |
2015-10-25 07:00:00 | 59.127044 |
2015-10-25 08:00:00 | 59.835947 |
2015-10-25 09:00:00 | 76.036122 |
2015-10-25 10:00:00 | 57.815561 |
2015-10-25 11:00:00 | 60.237266 |
2015-10-25 12:00:00 | 60.734361 |
2015-10-25 13:00:00 | 77.455250 |
2015-10-25 14:00:00 | 75.811548 |
2015-10-25 15:00:00 | 40.876445 |
2015-10-25 16:00:00 | 81.056366 |
2015-10-25 17:00:00 | 69.088860 |
2015-10-25 18:00:00 | 97.982368 |
2015-10-25 19:00:00 | 44.859779 |
2015-10-25 20:00:00 | 64.793522 |
2015-10-25 21:00:00 | 36.393138 |
2015-10-25 22:00:00 | 36.035442 |
2015-10-25 23:00:00 | 61.172974 |
2015-10-26 00:00:00 | 90.128783 |
2015-10-26 01:00:00 | 59.978722 |
2015-10-26 02:00:00 | 51.838174 |
2015-10-26 03:00:00 | 61.708271 |
2015-10-26 04:00:00 | 85.435500 |
2015-10-26 05:00:00 | 60.967194 |
2015-10-26 06:00:00 | 57.025956 |
2015-10-26 07:00:00 | 47.530751 |
2015-10-26 08:00:00 | 73.834294 |
2015-10-26 09:00:00 | 45.541056 |
2015-10-26 10:00:00 | 60.242044 |
2015-10-26 11:00:00 | 46.003931 |
2015-10-26 12:00:00 | 39.598331 |
2015-10-26 13:00:00 | 30.103218 |
2015-10-26 14:00:00 | 55.476486 |
2015-10-26 15:00:00 | 41.884060 |
2015-10-26 16:00:00 | 79.630356 |
2015-10-26 17:00:00 | 43.319021 |
2015-10-26 18:00:00 | 59.978169 |
2015-10-26 19:00:00 | 63.490688 |
2015-10-26 20:00:00 | 65.405400 |
2015-10-26 21:00:00 | 45.702978 |
2015-10-26 22:00:00 | 52.443374 |
2015-10-26 23:00:00 | 30.368000 |
2015-10-27 00:00:00 | 90.434675 |
2015-10-27 01:00:00 | 33.569063 |
2015-10-27 02:00:00 | 64.741111 |
2015-10-27 03:00:00 | 60.745175 |
2015-10-27 04:00:00 | 40.558862 |
2015-10-27 05:00:00 | 74.921669 |
2015-10-27 06:00:00 | 54.531095 |
2015-10-27 07:00:00 | 39.797211 |
2015-10-27 08:00:00 | 36.160630 |
2015-10-27 09:00:00 | 69.383589 |
2015-10-27 10:00:00 | 18.010664 |
2015-10-27 11:00:00 | 46.219085 |
2015-10-27 12:00:00 | 34.842914 |
2015-10-27 13:00:00 | 53.375684 |
2015-10-27 14:00:00 | 76.009184 |
2015-10-27 15:00:00 | 53.658201 |
2015-10-27 16:00:00 | 64.920602 |
2015-10-27 17:00:00 | 70.311094 |
2015-10-27 19:00:00 | 33.244571 |
2015-10-27 20:00:00 | 71.845024 |
2015-10-27 21:00:00 | 70.239627 |
2015-10-27 22:00:00 | 52.819041 |
2015-10-27 23:00:00 | 45.773119 |
2015-10-28 00:00:00 | 68.205262 |
2015-10-28 02:00:00 | 54.795891 |
2015-10-28 03:00:00 | 63.724657 |
2015-10-28 04:00:00 | 38.574063 |
2015-10-28 05:00:00 | 52.376021 |
2015-10-28 06:00:00 | 86.912476 |
2015-10-28 07:00:00 | 34.940857 |
2015-10-28 08:00:00 | 24.949979 |
2015-10-28 09:00:00 | 49.298940 |
2015-10-28 10:00:00 | 25.364046 |
2015-10-28 11:00:00 | 76.554073 |
2015-10-28 12:00:00 | 70.602271 |
2015-10-28 13:00:00 | 63.360553 |
2015-10-28 14:00:00 | 48.890440 |
2015-10-28 15:00:00 | 70.607185 |
2015-10-28 16:00:00 | 76.747527 |
2015-10-28 17:00:00 | 53.883569 |
2015-10-28 18:00:00 | 63.932021 |
2015-10-28 19:00:00 | 90.777018 |
2015-10-28 20:00:00 | 39.159989 |
2015-10-28 21:00:00 | 81.518601 |
2015-10-28 22:00:00 | 69.265276 |
2015-10-28 23:00:00 | 57.428065 |
2015-10-29 00:00:00 | 67.930103 |
2015-10-29 01:00:00 | 54.912230 |
2015-10-29 02:00:00 | 86.921997 |
2015-10-29 03:00:00 | 49.888050 |
2015-10-29 04:00:00 | 34.560341 |
2015-10-29 05:00:00 | 40.619639 |
2015-10-29 06:00:00 | 46.912486 |
2015-10-29 07:00:00 | 66.122124 |
2015-10-29 08:00:00 | 29.913065 |
2015-10-29 09:00:00 | 48.112761 |
2015-10-29 10:00:00 | 51.028002 |
2015-10-29 11:00:00 | 31.690544 |
2015-10-29 12:00:00 | 69.479133 |
2015-10-29 13:00:00 | 39.693073 |
2015-10-29 14:00:00 | 38.841494 |
2015-10-29 15:00:00 | 106.498661 |
2015-10-29 16:00:00 | 52.419169 |
2015-10-29 17:00:00 | 65.718025 |
2015-10-29 18:00:00 | 83.210785 |
2015-10-29 19:00:00 | 27.200803 |
2015-10-29 20:00:00 | 66.631265 |
2015-10-29 21:00:00 | 64.137879 |
2015-10-29 22:00:00 | 32.504478 |
2015-10-29 23:00:00 | 59.285917 |
2015-10-30 00:00:00 | 82.212442 |
2015-10-30 01:00:00 | 43.909347 |
2015-10-30 02:00:00 | 69.783034 |
2015-10-30 03:00:00 | 79.742385 |
2015-10-30 04:00:00 | 56.357222 |
2015-10-30 05:00:00 | 38.185796 |
2015-10-30 06:00:00 | 72.786180 |
2015-10-30 07:00:00 | 71.810647 |
2015-10-30 08:00:00 | 85.095304 |
2015-10-30 09:00:00 | 64.522958 |
2015-10-30 10:00:00 | 49.350691 |
2015-10-30 11:00:00 | 52.421844 |
2015-10-30 12:00:00 | 53.780605 |
2015-10-30 13:00:00 | 64.310550 |
2015-10-30 14:00:00 | 61.204439 |
2015-10-30 15:00:00 | 92.421152 |
2015-10-30 16:00:00 | 59.725705 |
2015-10-30 17:00:00 | 65.648968 |
2015-10-30 18:00:00 | 97.334852 |
2015-10-30 19:00:00 | 45.534784 |
2015-10-30 20:00:00 | 58.953140 |
2015-10-30 21:00:00 | 67.247357 |
2015-10-30 22:00:00 | 34.670658 |
2015-10-30 23:00:00 | 57.399450 |
2015-10-31 00:00:00 | 70.518282 |
2015-10-31 01:00:00 | 92.003273 |
2015-10-31 02:00:00 | 55.453464 |
2015-10-31 03:00:00 | 82.299031 |
2015-10-31 04:00:00 | 50.264340 |
2015-10-31 05:00:00 | 65.460709 |
2015-10-31 06:00:00 | 61.613500 |
2015-10-31 07:00:00 | 38.519453 |
2015-10-31 08:00:00 | 67.029686 |
2015-10-31 09:00:00 | 34.778057 |
2015-10-31 10:00:00 | 55.034934 |
2015-10-31 11:00:00 | 59.489782 |
2015-10-31 12:00:00 | 61.995140 |
2015-10-31 13:00:00 | 62.304632 |
2015-10-31 14:00:00 | 65.391823 |
2015-10-31 15:00:00 | 80.346087 |
2015-10-31 16:00:00 | 67.914178 |
2015-10-31 17:00:00 | 31.024587 |
2015-10-31 18:00:00 | 55.407324 |
2015-10-31 19:00:00 | 53.558740 |
2015-10-31 20:00:00 | 74.085136 |
2015-10-31 21:00:00 | 44.700169 |
2015-10-31 22:00:00 | 65.353078 |
2015-10-31 23:00:00 | 82.893232 |
2015-11-01 00:00:00 | 29.844402 |
2015-11-01 01:00:00 | 71.732562 |
2015-11-01 02:00:00 | 68.548480 |
2015-11-01 03:00:00 | 72.316774 |
2015-11-01 04:00:00 | 57.537986 |
2015-11-01 05:00:00 | 88.466733 |
2015-11-01 07:00:00 | 39.192589 |
2015-11-01 08:00:00 | 65.482031 |
2015-11-01 09:00:00 | 64.091511 |
2015-11-01 11:00:00 | 55.113433 |
2015-11-01 12:00:00 | 73.109812 |
2015-11-01 13:00:00 | 39.837476 |
2015-11-01 14:00:00 | 51.943454 |
2015-11-01 15:00:00 | 48.977677 |
2015-11-01 16:00:00 | 58.922026 |
2015-11-01 17:00:00 | 23.845301 |
2015-11-01 18:00:00 | 67.380438 |
2015-11-01 19:00:00 | 61.372422 |
2015-11-01 20:00:00 | 36.736413 |
2015-11-01 21:00:00 | 43.653505 |
2015-11-01 22:00:00 | 70.872964 |
2015-11-01 23:00:00 | 81.433507 |
2015-11-02 00:00:00 | 38.801579 |
2015-10-27 18:00:00 | 55.343373 |
2015-10-28 01:00:00 | 42.308140 |
2015-11-01 06:00:00 | 45.642905 |
2015-11-01 10:00:00 | 36.391814 |
2015-11-02 01:00:00 | 69.677403 |
2015-11-02 02:00:00 | 70.643756 |
2015-11-02 03:00:00 | 32.130700 |
2015-11-02 04:00:00 | 43.286488 |
2015-11-02 05:00:00 | 46.519110 |
2015-11-02 06:00:00 | 49.418788 |
2015-11-02 07:00:00 | 22.603133 |
2015-11-02 08:00:00 | 17.204039 |
2015-11-02 09:00:00 | 36.098841 |
2015-11-02 10:00:00 | 37.426039 |
2015-11-02 11:00:00 | 68.958258 |
2015-11-02 12:00:00 | 56.355300 |
2015-11-02 13:00:00 | 27.421826 |
2015-11-02 14:00:00 | 21.977013 |
2015-11-02 15:00:00 | 31.650012 |
2015-11-02 16:00:00 | 19.103725 |
2015-11-02 17:00:00 | 40.573976 |
2015-11-02 18:00:00 | 34.139365 |
2015-11-02 19:00:00 | 31.604146 |
2015-11-02 20:00:00 | 53.455162 |
2015-11-02 21:00:00 | 50.932862 |
2015-11-02 22:00:00 | 21.382117 |
2015-11-02 23:00:00 | 28.707991 |
2015-11-03 00:00:00 | 28.266119 |
2015-11-03 01:00:00 | 56.643025 |
2015-11-03 02:00:00 | 65.491297 |
2015-11-03 03:00:00 | 45.264900 |
2015-11-03 04:00:00 | 32.083226 |
2015-11-03 05:00:00 | 20.034940 |
2015-11-03 06:00:00 | 59.361131 |
2015-11-03 07:00:00 | 63.062853 |
2015-11-03 08:00:00 | 36.311024 |
2015-11-03 09:00:00 | 28.786016 |
2015-11-03 10:00:00 | 41.529467 |
2015-11-03 11:00:00 | 15.911946 |
2015-11-03 12:00:00 | 50.859685 |
2015-11-03 13:00:00 | 43.005399 |
2015-11-03 14:00:00 | 34.650963 |
2015-11-03 15:00:00 | 53.490976 |
2015-11-03 16:00:00 | 30.670295 |
2015-11-03 17:00:00 | 11.915951 |
2015-11-03 18:00:00 | 24.722517 |
2015-11-03 19:00:00 | 38.936218 |
2015-11-03 20:00:00 | 35.450478 |
2015-11-03 21:00:00 | 45.970258 |
2015-11-03 22:00:00 | 56.407256 |
2015-11-03 23:00:00 | 49.554872 |
2015-11-04 00:00:00 | 48.358182 |
2015-11-04 01:00:00 | 16.816164 |
2015-11-04 02:00:00 | 19.084841 |
2015-11-04 03:00:00 | 49.944728 |
2015-11-04 04:00:00 | 21.617885 |
2015-11-04 05:00:00 | 26.981540 |
2015-11-04 06:00:00 | 51.754010 |
2015-11-04 07:00:00 | 35.729160 |
2015-11-04 08:00:00 | 71.273732 |
2015-11-04 09:00:00 | 28.418581 |
2015-11-04 10:00:00 | 16.964691 |
2015-11-04 11:00:00 | 47.892948 |
2015-11-04 12:00:00 | 50.257181 |
2015-11-04 13:00:00 | 48.595430 |
2015-11-04 14:00:00 | 49.996359 |
2015-11-04 15:00:00 | 48.920110 |
2015-11-04 16:00:00 | 68.161543 |
2015-11-04 17:00:00 | 30.529780 |
2015-11-04 18:00:00 | 55.694453 |
2015-11-04 19:00:00 | 47.145238 |
2015-11-04 20:00:00 | 50.778857 |
2015-11-04 21:00:00 | 47.658571 |
2015-11-04 22:00:00 | 26.331098 |
2015-11-04 23:00:00 | 67.761091 |
2015-11-05 00:00:00 | 51.085154 |
2015-11-05 01:00:00 | 41.117956 |
2015-11-05 02:00:00 | 9.068800 |
2015-11-05 03:00:00 | 61.260012 |
2015-11-05 04:00:00 | 20.384767 |
2015-11-05 05:00:00 | 23.371558 |
2015-11-05 06:00:00 | 54.130721 |
2015-11-05 07:00:00 | 47.173422 |
2015-11-05 08:00:00 | 17.330480 |
2015-11-05 09:00:00 | 27.900997 |
2015-11-05 10:00:00 | 60.693928 |
2015-11-05 11:00:00 | 55.750439 |
2015-11-05 12:00:00 | 31.980729 |
2015-11-05 13:00:00 | 46.026815 |
2015-11-05 14:00:00 | 51.486720 |
2015-11-05 15:00:00 | 35.083882 |
2015-11-05 16:00:00 | 29.222731 |
2015-11-05 17:00:00 | 38.054577 |
2015-11-05 18:00:00 | 32.803461 |
2015-11-05 19:00:00 | 34.590651 |
2015-11-05 20:00:00 | 7.041455 |
2015-11-05 21:00:00 | 43.879486 |
2015-11-05 22:00:00 | 54.260075 |
2015-11-05 23:00:00 | 49.607998 |
2015-11-06 00:00:00 | 51.166843 |
2015-11-06 01:00:00 | 60.332261 |
2015-11-06 02:00:00 | 54.000615 |
2015-11-06 03:00:00 | 48.402953 |
2015-11-06 04:00:00 | 71.293996 |
2015-11-06 05:00:00 | 25.864377 |
2015-11-06 06:00:00 | 43.534985 |
2015-11-06 07:00:00 | 10.294754 |
2015-11-06 08:00:00 | 27.211552 |
2015-11-06 09:00:00 | 68.771180 |
2015-11-06 10:00:00 | 40.635575 |
2015-11-06 11:00:00 | 48.547279 |
2015-11-06 12:00:00 | 51.211695 |
2015-11-06 13:00:00 | 62.323132 |
2015-11-06 14:00:00 | 36.042205 |
2015-11-06 15:00:00 | 65.867425 |
2015-11-06 16:00:00 | 43.091257 |
2015-11-06 17:00:00 | 49.999283 |
2015-11-06 18:00:00 | 42.753244 |
2015-11-06 19:00:00 | 43.280302 |
2015-11-06 20:00:00 | 12.215143 |
2015-11-06 21:00:00 | 30.790950 |
2015-11-06 22:00:00 | 43.146264 |
2015-11-06 23:00:00 | 24.862962 |
2015-11-07 00:00:00 | 60.419541 |
2015-11-07 01:00:00 | 2.829191 |
2015-11-07 02:00:00 | 41.358591 |
2015-11-07 03:00:00 | 32.518025 |
2015-11-07 04:00:00 | 32.936246 |
2015-11-07 05:00:00 | 53.903692 |
2015-11-07 06:00:00 | 54.349240 |
2015-11-07 07:00:00 | 48.667338 |
2015-11-07 08:00:00 | 43.697246 |
2015-11-07 09:00:00 | 64.391019 |
2015-11-07 10:00:00 | 54.642566 |
2015-11-07 11:00:00 | 31.579795 |
2015-11-07 12:00:00 | 10.697792 |
2015-11-07 13:00:00 | 69.408304 |
2015-11-07 14:00:00 | 57.739228 |
2015-11-07 15:00:00 | 54.043036 |
2015-11-07 16:00:00 | 21.378107 |
2015-11-07 17:00:00 | 68.557246 |
2015-11-07 18:00:00 | 49.990255 |
2015-11-07 19:00:00 | 60.870852 |
2015-11-07 20:00:00 | 15.231194 |
2015-11-07 21:00:00 | 35.271872 |
2015-11-07 22:00:00 | 47.834724 |
2015-11-07 23:00:00 | 39.042589 |
2015-11-08 00:00:00 | 31.282543 |
2015-11-08 01:00:00 | 34.318646 |
2015-11-08 02:00:00 | 45.695737 |
2015-11-08 03:00:00 | 34.761724 |
2015-11-08 04:00:00 | 41.324282 |
2015-11-08 05:00:00 | 22.815585 |
2015-11-08 06:00:00 | 63.250742 |
2015-11-08 07:00:00 | 13.839852 |
2015-11-08 08:00:00 | 46.006283 |
2015-11-08 09:00:00 | 44.493733 |
2015-11-08 10:00:00 | 63.378401 |
2015-11-08 11:00:00 | 42.817629 |
2015-11-08 12:00:00 | 45.072082 |
2015-11-08 13:00:00 | 46.040137 |
2015-11-08 14:00:00 | 11.573340 |
2015-11-08 15:00:00 | 39.922730 |
2015-11-08 16:00:00 | 40.153338 |
2015-11-08 17:00:00 | 63.037254 |
2015-11-08 18:00:00 | 48.776710 |
2015-11-08 19:00:00 | 53.306946 |
2015-11-08 20:00:00 | 41.484211 |
2015-11-08 21:00:00 | 45.348702 |
2015-11-08 22:00:00 | 54.969466 |
2015-11-08 23:00:00 | 47.595072 |
2015-11-09 00:00:00 | 40.591619 |
2015-11-09 01:00:00 | 43.363619 |
2015-11-09 02:00:00 | 65.789153 |
2015-11-09 03:00:00 | 29.012179 |
2015-11-09 04:00:00 | 38.944844 |
2015-11-09 05:00:00 | 26.349575 |
2015-11-09 06:00:00 | 33.638500 |
2015-11-09 07:00:00 | 8.524681 |
2015-11-09 08:00:00 | 7.047517 |
2015-11-09 09:00:00 | 71.864778 |
2015-11-09 10:00:00 | 33.775195 |
2015-11-09 11:00:00 | 34.524480 |
2015-11-09 12:00:00 | 13.277970 |
2015-11-09 13:00:00 | 20.951475 |
2015-11-09 14:00:00 | 42.715256 |
2015-11-09 15:00:00 | 51.101163 |
2015-11-09 16:00:00 | 8.718182 |
2015-11-09 17:00:00 | 23.884311 |
2015-11-09 18:00:00 | 44.208632 |
2015-11-09 19:00:00 | 47.094925 |
2015-11-09 20:00:00 | 25.140574 |
2015-11-09 21:00:00 | 33.723718 |
2015-11-09 22:00:00 | 23.366525 |
2015-11-09 23:00:00 | 41.851025 |
2015-11-10 00:00:00 | 28.565955 |
2015-11-10 01:00:00 | 49.010418 |
2015-11-10 02:00:00 | 76.953288 |
2015-11-10 03:00:00 | 33.641144 |
2015-11-10 04:00:00 | 61.127699 |
2015-11-10 05:00:00 | 61.822340 |
2015-11-10 06:00:00 | 22.690029 |
2015-11-10 07:00:00 | 52.496753 |
2015-11-10 08:00:00 | 26.962412 |
2015-11-10 09:00:00 | 55.912366 |
2015-11-10 10:00:00 | 38.827366 |
2015-11-10 11:00:00 | 51.170992 |
2015-11-10 12:00:00 | 38.982250 |
2015-11-10 13:00:00 | 36.403632 |
2015-11-10 14:00:00 | 45.511136 |
2015-11-10 15:00:00 | 35.450764 |
2015-11-10 16:00:00 | 12.781466 |
2015-11-10 17:00:00 | 34.596144 |
2015-11-10 18:00:00 | 19.863000 |
2015-11-10 19:00:00 | 61.422724 |
2015-11-10 20:00:00 | 37.871542 |
2015-11-10 21:00:00 | 44.714030 |
2015-11-10 22:00:00 | 52.438546 |
2015-11-10 23:00:00 | 21.870034 |
2015-11-11 00:00:00 | 42.775527 |
2015-11-11 01:00:00 | 37.075660 |
2015-11-11 02:00:00 | 55.922491 |
2015-11-11 03:00:00 | 21.725370 |
2015-11-11 04:00:00 | 27.383226 |
2015-11-11 05:00:00 | 26.474453 |
2015-11-11 06:00:00 | 24.992206 |
2015-11-11 07:00:00 | 29.420236 |
2015-11-11 08:00:00 | 18.593189 |
2015-11-11 09:00:00 | 19.401002 |
2015-11-11 10:00:00 | 30.797664 |
2015-11-11 11:00:00 | 53.005290 |
2015-11-11 12:00:00 | 29.785165 |
2015-11-11 13:00:00 | 48.478284 |
2015-11-11 14:00:00 | 41.000063 |
2015-11-11 15:00:00 | 55.985426 |
2015-11-11 16:00:00 | 23.593107 |
2015-11-11 17:00:00 | 16.929397 |
2015-11-11 18:00:00 | 26.105809 |
2015-11-11 19:00:00 | 27.278099 |
2015-11-11 20:00:00 | 35.966696 |
2015-11-11 21:00:00 | 62.321017 |
2015-11-11 22:00:00 | 22.551005 |
2015-11-11 23:00:00 | 32.326498 |
2015-11-12 00:00:00 | 36.768426 |
2015-11-12 01:00:00 | 16.655779 |
2015-11-12 02:00:00 | 50.903035 |
2015-11-12 03:00:00 | 32.744233 |
2015-11-12 04:00:00 | 43.446611 |
2015-11-12 05:00:00 | 12.872882 |
2015-11-12 06:00:00 | 43.626821 |
2015-11-12 07:00:00 | 17.932564 |
2015-11-12 08:00:00 | 46.430782 |
2015-11-12 09:00:00 | 47.555630 |
2015-11-12 10:00:00 | 23.164628 |
2015-11-12 11:00:00 | 36.320166 |
2015-11-12 12:00:00 | 41.829277 |
2015-11-12 13:00:00 | 65.063811 |
2015-11-12 14:00:00 | 53.996669 |
2015-11-12 15:00:00 | 53.065490 |
2015-11-12 16:00:00 | 36.048012 |
2015-11-12 17:00:00 | 23.164822 |
2015-11-12 18:00:00 | 38.652909 |
2015-11-12 19:00:00 | 48.085267 |
2015-11-12 20:00:00 | 39.547030 |
2015-11-12 21:00:00 | 36.281582 |
2015-11-12 22:00:00 | 22.304580 |
2015-11-12 23:00:00 | 39.054497 |
2015-11-13 00:00:00 | 62.456375 |
2015-11-13 01:00:00 | 21.058794 |
2015-11-13 02:00:00 | 24.986703 |
2015-11-13 03:00:00 | 47.340037 |
2015-11-13 04:00:00 | 42.103710 |
2015-11-13 05:00:00 | 46.277421 |
2015-11-13 06:00:00 | 41.346360 |
2015-11-13 07:00:00 | 8.198421 |
2015-11-13 08:00:00 | 49.820480 |
2015-11-13 09:00:00 | 52.630520 |
2015-11-13 10:00:00 | 14.320846 |
2015-11-13 11:00:00 | 29.429210 |
2015-11-13 12:00:00 | 46.610070 |
2015-11-13 13:00:00 | 27.718158 |
2015-11-13 14:00:00 | 43.646591 |
2015-11-13 15:00:00 | 58.249277 |
2015-11-13 16:00:00 | 37.955810 |
2015-11-13 17:00:00 | 53.167141 |
2015-11-13 18:00:00 | 17.003180 |
2015-11-13 19:00:00 | 36.987767 |
2015-11-13 20:00:00 | 69.421289 |
2015-11-13 21:00:00 | 42.282380 |
2015-11-13 22:00:00 | 60.299183 |
2015-11-13 23:00:00 | 77.388036 |
2015-11-14 00:00:00 | 38.187514 |
2015-11-14 01:00:00 | 73.920364 |
2015-11-14 02:00:00 | 23.427619 |
2015-11-14 03:00:00 | 74.049763 |
2015-11-14 04:00:00 | 71.025842 |
2015-11-14 05:00:00 | 36.310935 |
2015-11-14 06:00:00 | 69.727846 |
2015-11-14 07:00:00 | 47.318911 |
2015-11-14 08:00:00 | 54.552009 |
2015-11-14 09:00:00 | 22.047066 |
2015-11-14 10:00:00 | 33.286940 |
2015-11-14 11:00:00 | 44.805901 |
2015-11-14 12:00:00 | 30.968865 |
2015-11-14 13:00:00 | 32.250332 |
2015-11-14 14:00:00 | 60.449541 |
2015-11-14 15:00:00 | 17.006485 |
2015-11-14 16:00:00 | 42.845801 |
2015-11-14 17:00:00 | 47.528852 |
2015-11-14 18:00:00 | 39.715687 |
2015-11-14 19:00:00 | 23.905351 |
2015-11-14 20:00:00 | 60.468321 |
2015-11-14 21:00:00 | 16.016156 |
2015-11-14 22:00:00 | 24.913911 |
2015-11-14 23:00:00 | 52.127222 |
2015-11-15 00:00:00 | 31.771907 |
2015-11-15 01:00:00 | 33.992850 |
2015-11-15 02:00:00 | 12.282765 |
2015-11-15 03:00:00 | 50.596037 |
2015-11-15 04:00:00 | 31.542007 |
2015-11-15 05:00:00 | 20.514348 |
2015-11-15 06:00:00 | 27.990267 |
2015-11-15 07:00:00 | 70.663541 |
2015-11-15 08:00:00 | 44.674916 |
2015-11-15 09:00:00 | 22.821463 |
2015-11-15 10:00:00 | 28.171757 |
2015-11-15 11:00:00 | 38.060556 |
2015-11-15 12:00:00 | 28.251189 |
2015-11-15 13:00:00 | 20.650803 |
2015-11-15 14:00:00 | 42.038281 |
2015-11-15 15:00:00 | 33.657499 |
2015-11-15 16:00:00 | 24.628537 |
2015-11-15 17:00:00 | 62.740169 |
2015-11-15 18:00:00 | 37.227280 |
2015-11-15 19:00:00 | 66.834372 |
2015-11-15 20:00:00 | 54.885094 |
2015-11-15 21:00:00 | 38.741754 |
2015-11-15 22:00:00 | 52.565861 |
2015-11-15 23:00:00 | 42.011579 |
2015-11-16 00:00:00 | 1.884618 |
2015-11-16 01:00:00 | 33.697009 |
2015-11-16 02:00:00 | 35.136376 |
2015-11-16 03:00:00 | 52.342981 |
2015-11-16 04:00:00 | 56.699116 |
2015-11-16 05:00:00 | 55.563435 |
2015-11-16 06:00:00 | 45.758364 |
2015-11-16 07:00:00 | 50.659673 |
2015-11-16 08:00:00 | 40.169564 |
2015-11-16 09:00:00 | 24.979220 |
2015-11-16 10:00:00 | 47.796589 |
2015-11-16 11:00:00 | 35.726957 |
2015-11-16 12:00:00 | 54.028989 |
2015-11-16 13:00:00 | 45.341975 |
2015-11-16 14:00:00 | 48.476311 |
2015-11-16 15:00:00 | 33.640512 |
2015-11-16 16:00:00 | 30.864809 |
2015-11-16 17:00:00 | 20.844211 |
2015-11-16 18:00:00 | 19.803964 |
2015-11-16 19:00:00 | 36.264543 |
2015-11-16 20:00:00 | 31.291821 |
2015-11-16 21:00:00 | 10.358942 |
2015-11-16 22:00:00 | 31.271942 |
2015-11-16 23:00:00 | 39.143974 |
2015-11-17 00:00:00 | 40.599863 |
2015-11-17 01:00:00 | 4.404232 |
2015-11-17 02:00:00 | 60.532204 |
2015-11-17 03:00:00 | 42.654711 |
2015-11-17 04:00:00 | 11.865801 |
2015-11-17 05:00:00 | 22.798883 |
2015-11-17 06:00:00 | 32.524959 |
2015-11-17 07:00:00 | 65.957563 |
2015-11-17 08:00:00 | 26.382528 |
2015-11-17 09:00:00 | 33.062656 |
2015-11-17 10:00:00 | 18.365385 |
2015-11-17 11:00:00 | 59.433134 |
2015-11-17 12:00:00 | 38.719453 |
2015-11-17 13:00:00 | 70.619444 |
2015-11-17 14:00:00 | 51.069993 |
2015-11-17 15:00:00 | 29.489031 |
2015-11-17 16:00:00 | 15.808655 |
2015-11-17 17:00:00 | 39.223626 |
2015-11-17 18:00:00 | 47.080228 |
2015-11-17 19:00:00 | 41.980568 |
2015-11-17 20:00:00 | 61.214361 |
2015-11-17 21:00:00 | 23.836742 |
2015-11-17 22:00:00 | 35.213413 |
2015-11-17 23:00:00 | 66.174825 |
2015-11-18 00:00:00 | 11.472738 |
2015-11-18 01:00:00 | 40.944768 |
2015-11-18 02:00:00 | 73.297982 |
2015-11-18 03:00:00 | 21.705112 |
2015-11-18 04:00:00 | 13.445279 |
2015-11-18 05:00:00 | 33.855644 |
2015-11-18 06:00:00 | 38.425269 |
2015-11-18 07:00:00 | 7.564169 |
2015-11-18 08:00:00 | 20.792792 |
2015-11-18 09:00:00 | 47.126813 |
2015-11-18 10:00:00 | 38.557200 |
2015-11-18 11:00:00 | 30.619750 |
2015-11-18 12:00:00 | 27.548411 |
2015-11-18 13:00:00 | 34.697505 |
2015-11-18 14:00:00 | 36.676699 |
2015-11-18 15:00:00 | 30.025806 |
2015-11-18 16:00:00 | 44.290001 |
2015-11-18 17:00:00 | 31.476714 |
2015-11-18 18:00:00 | 16.554329 |
2015-11-18 19:00:00 | 28.467637 |
2015-11-18 20:00:00 | 60.756805 |
2015-11-18 21:00:00 | 53.156311 |
2015-11-18 22:00:00 | 43.736182 |
2015-11-18 23:00:00 | 44.678285 |
2015-11-19 00:00:00 | 32.500159 |
2015-11-19 01:00:00 | 53.096718 |
2015-11-19 02:00:00 | 50.450171 |
2015-11-19 03:00:00 | 20.671851 |
2015-11-19 04:00:00 | 48.500930 |
2015-11-19 05:00:00 | 55.872094 |
2015-11-19 06:00:00 | 16.955515 |
2015-11-19 07:00:00 | 47.782032 |
2015-11-19 08:00:00 | 64.182162 |
2015-11-19 09:00:00 | 19.123758 |
2015-11-19 10:00:00 | 26.630040 |
2015-11-19 11:00:00 | 24.693264 |
2015-11-19 12:00:00 | 14.882576 |
2015-11-19 13:00:00 | 54.702633 |
2015-11-19 14:00:00 | 28.045472 |
2015-11-19 15:00:00 | 44.237443 |
2015-11-19 16:00:00 | 53.989477 |
2015-11-19 17:00:00 | 44.208531 |
2015-11-19 18:00:00 | 44.145634 |
2015-11-19 19:00:00 | 40.174149 |
2015-11-19 20:00:00 | 75.699763 |
2015-11-19 21:00:00 | 33.688595 |
2015-11-19 22:00:00 | 60.315099 |
2015-11-19 23:00:00 | 37.811607 |
2015-11-20 00:00:00 | 62.216296 |
2015-11-20 01:00:00 | 21.923579 |
2015-11-20 02:00:00 | 50.856824 |
2015-11-20 03:00:00 | 9.506527 |
2015-11-20 04:00:00 | 39.037833 |
2015-11-20 05:00:00 | 47.392675 |
2015-11-20 06:00:00 | 39.774791 |
2015-11-20 07:00:00 | 48.835634 |
2015-11-20 08:00:00 | 46.283958 |
2015-11-20 09:00:00 | 48.833873 |
2015-11-20 10:00:00 | 41.321219 |
2015-11-20 11:00:00 | 49.126166 |
2015-11-20 12:00:00 | 26.070307 |
2015-11-20 13:00:00 | 37.334013 |
2015-11-20 14:00:00 | 44.013403 |
2015-11-20 15:00:00 | 63.076857 |
2015-11-20 16:00:00 | 44.009289 |
2015-11-20 17:00:00 | 53.765517 |
2015-11-20 18:00:00 | 6.907394 |
2015-11-20 19:00:00 | 51.625765 |
2015-11-20 20:00:00 | 64.845969 |
2015-11-20 21:00:00 | 23.791188 |
2015-11-20 22:00:00 | 41.551253 |
2015-11-20 23:00:00 | 45.032033 |
2015-11-21 00:00:00 | 30.722590 |
2015-11-21 01:00:00 | 37.643845 |
2015-11-21 02:00:00 | 33.978619 |
2015-11-21 03:00:00 | 59.975566 |
2015-11-21 04:00:00 | 24.821922 |
2015-11-21 05:00:00 | 24.426441 |
2015-11-21 06:00:00 | 58.768110 |
2015-11-21 07:00:00 | 47.487387 |
2015-11-21 08:00:00 | 41.046481 |
2015-11-21 09:00:00 | 32.077990 |
2015-11-21 10:00:00 | 61.332384 |
2015-11-21 11:00:00 | 33.779878 |
2015-11-21 12:00:00 | 68.860907 |
2015-11-21 13:00:00 | 28.228687 |
2015-11-21 14:00:00 | 41.392049 |
2015-11-21 15:00:00 | 55.493874 |
2015-11-21 16:00:00 | 41.741668 |
2015-11-21 17:00:00 | 54.743921 |
2015-11-21 18:00:00 | 51.711642 |
2015-11-21 19:00:00 | 21.725879 |
2015-11-21 20:00:00 | 45.572460 |
2015-11-21 21:00:00 | 29.984989 |
2015-11-21 22:00:00 | 31.946214 |
2015-11-21 23:00:00 | 74.120935 |
2015-11-22 00:00:00 | 39.799580 |
2015-11-22 01:00:00 | 28.923704 |
2015-11-22 02:00:00 | 34.125230 |
2015-11-22 03:00:00 | 47.261910 |
2015-11-22 04:00:00 | 31.905987 |
2015-11-22 05:00:00 | 53.219995 |
2015-11-22 06:00:00 | 26.944213 |
2015-11-22 07:00:00 | 54.151730 |
2015-11-22 08:00:00 | 31.557127 |
2015-11-22 09:00:00 | 47.108037 |
2015-11-22 10:00:00 | 16.939418 |
2015-11-22 11:00:00 | 56.867922 |
2015-11-22 12:00:00 | 56.924140 |
2015-11-22 13:00:00 | 7.143941 |
2015-11-22 14:00:00 | 49.925868 |
2015-11-22 15:00:00 | 58.971000 |
2015-11-22 16:00:00 | 34.281085 |
2015-11-22 17:00:00 | 42.682790 |
2015-11-22 18:00:00 | 36.855911 |
2015-11-22 19:00:00 | 22.575510 |
2015-11-22 20:00:00 | 43.106407 |
2015-11-22 21:00:00 | 57.423548 |
2015-11-22 22:00:00 | 60.982311 |
2015-11-22 23:00:00 | 19.184503 |
2015-11-23 00:00:00 | 27.031110 |
2015-11-23 01:00:00 | 24.985017 |
2015-11-23 02:00:00 | 41.859799 |
2015-11-23 03:00:00 | 7.230717 |
2015-11-23 04:00:00 | 24.225717 |
2015-11-23 05:00:00 | 46.453707 |
2015-11-23 06:00:00 | 51.230189 |
2015-11-23 07:00:00 | 44.442608 |
2015-11-23 08:00:00 | 49.115951 |
2015-11-23 09:00:00 | 32.865960 |
2015-11-23 10:00:00 | 23.082460 |
2015-11-23 11:00:00 | 34.718627 |
2015-11-23 12:00:00 | 66.163243 |
2015-11-23 13:00:00 | 68.177732 |
2015-11-23 14:00:00 | 42.731288 |
2015-11-23 15:00:00 | 65.160220 |
2015-11-23 16:00:00 | 18.855938 |
2015-11-23 17:00:00 | 28.938320 |
2015-11-23 18:00:00 | 4.388469 |
2015-11-23 19:00:00 | 44.976017 |
2015-11-23 20:00:00 | 35.722734 |
2015-11-23 21:00:00 | 45.347123 |
2015-11-23 22:00:00 | 22.781328 |
2015-11-23 23:00:00 | 43.114767 |
2015-11-24 00:00:00 | 24.184121 |
2015-11-24 01:00:00 | 43.356235 |
2015-11-24 02:00:00 | 35.089344 |
2015-11-24 03:00:00 | 42.129951 |
2015-11-24 04:00:00 | 65.064061 |
2015-11-24 05:00:00 | 31.054652 |
2015-11-24 06:00:00 | 43.142107 |
2015-11-24 07:00:00 | 33.909621 |
2015-11-24 08:00:00 | 25.199164 |
2015-11-24 09:00:00 | 26.900095 |
2015-11-24 10:00:00 | 54.820399 |
2015-11-24 11:00:00 | 36.714245 |
2015-11-24 12:00:00 | 58.612063 |
2015-11-24 13:00:00 | 48.918951 |
2015-11-24 14:00:00 | 55.173613 |
2015-11-24 15:00:00 | 34.770766 |
2015-11-24 16:00:00 | 4.595560 |
2015-11-24 17:00:00 | 17.717682 |
2015-11-24 18:00:00 | 63.682387 |
2015-11-24 19:00:00 | 16.459204 |
2015-11-24 20:00:00 | 39.174167 |
2015-11-24 21:00:00 | 5.544962 |
2015-11-24 22:00:00 | 51.408889 |
2015-11-24 23:00:00 | 71.206396 |
2015-11-25 00:00:00 | 20.604607 |
2015-11-25 01:00:00 | 45.903558 |
2015-11-25 02:00:00 | 47.996068 |
2015-11-25 03:00:00 | 51.515777 |
2015-11-25 04:00:00 | 27.643937 |
2015-11-25 05:00:00 | 19.950425 |
2015-11-25 06:00:00 | 42.934676 |
2015-11-25 07:00:00 | 33.758964 |
2015-11-25 08:00:00 | 60.198257 |
2015-11-25 09:00:00 | 64.822648 |
2015-11-25 10:00:00 | 26.160919 |
2015-11-25 11:00:00 | 44.729294 |
2015-11-25 12:00:00 | 28.503025 |
2015-11-25 13:00:00 | 75.771776 |
2015-11-25 14:00:00 | 27.112065 |
2015-11-25 15:00:00 | 49.403191 |
2015-11-25 16:00:00 | 38.397854 |
2015-11-25 17:00:00 | 38.091870 |
2015-11-25 18:00:00 | 43.485536 |
2015-11-25 19:00:00 | 13.170863 |
2015-11-25 20:00:00 | 52.137698 |
2015-11-25 21:00:00 | 43.204897 |
2015-11-25 22:00:00 | 37.660492 |
2015-11-25 23:00:00 | 31.197636 |
2015-11-26 00:00:00 | 34.074007 |
2015-11-26 01:00:00 | 64.403364 |
2015-11-26 02:00:00 | 61.575249 |
2015-11-26 03:00:00 | 32.426134 |
2015-11-26 04:00:00 | 30.168290 |
2015-11-26 05:00:00 | 37.227840 |
2015-11-26 06:00:00 | 18.700339 |
2015-11-26 07:00:00 | 27.573602 |
2015-11-26 08:00:00 | 48.217705 |
2015-11-26 09:00:00 | 45.173003 |
2015-11-26 10:00:00 | 18.890009 |
2015-11-26 11:00:00 | 27.141646 |
2015-11-26 12:00:00 | 14.635885 |
2015-11-26 13:00:00 | 30.364299 |
2015-11-26 14:00:00 | 8.753475 |
2015-11-26 15:00:00 | 18.768489 |
2015-11-26 16:00:00 | 39.735482 |
2015-11-26 17:00:00 | 13.730282 |
2015-11-26 18:00:00 | 44.824872 |
2015-11-26 19:00:00 | 39.809994 |
2015-11-26 20:00:00 | 28.565875 |
2015-11-26 21:00:00 | 43.661477 |
2015-11-26 22:00:00 | 55.906271 |
2015-11-26 23:00:00 | 31.129181 |
2015-11-27 00:00:00 | 19.962453 |
2015-11-27 01:00:00 | 42.683700 |
2015-11-27 02:00:00 | 59.089857 |
2015-11-27 03:00:00 | 23.640381 |
2015-11-27 04:00:00 | 26.785668 |
2015-11-27 05:00:00 | 40.640046 |
2015-11-27 06:00:00 | 35.918847 |
2015-11-27 07:00:00 | 48.929382 |
2015-11-27 08:00:00 | 25.118402 |
2015-11-27 09:00:00 | 34.981362 |
2015-11-27 10:00:00 | 8.636697 |
2015-11-27 11:00:00 | 59.959267 |
2015-11-27 12:00:00 | 18.643766 |
2015-11-27 13:00:00 | 17.155756 |
2015-11-27 14:00:00 | 5.500306 |
2015-11-27 15:00:00 | 14.505197 |
2015-11-27 16:00:00 | 24.883430 |
2015-11-27 17:00:00 | 54.744878 |
2015-11-27 18:00:00 | 55.735616 |
2015-11-27 19:00:00 | 32.256413 |
2015-11-27 20:00:00 | 38.956010 |
2015-11-27 21:00:00 | 60.020956 |
2015-11-27 22:00:00 | 69.425402 |
2015-11-27 23:00:00 | 8.688084 |
2015-11-28 00:00:00 | 42.970294 |
2015-11-28 01:00:00 | 27.727545 |
2015-11-28 02:00:00 | 38.962854 |
2015-11-28 03:00:00 | 13.365612 |
2015-11-28 04:00:00 | 31.819558 |
2015-11-28 05:00:00 | 33.103063 |
2015-11-28 06:00:00 | 30.924940 |
2015-11-28 07:00:00 | 26.308201 |
2015-11-28 08:00:00 | 9.565704 |
2015-11-28 09:00:00 | 13.830709 |
2015-11-28 10:00:00 | 48.527078 |
2015-11-28 11:00:00 | 29.341300 |
2015-11-28 12:00:00 | 56.402469 |
2015-11-28 13:00:00 | 24.985439 |
2015-11-28 14:00:00 | 36.644183 |
2015-11-28 15:00:00 | 26.098598 |
2015-11-28 16:00:00 | 24.020212 |
2015-11-28 17:00:00 | 50.831756 |
2015-11-28 18:00:00 | 56.770995 |
2015-11-28 19:00:00 | 47.023474 |
2015-11-28 20:00:00 | 59.280305 |
2015-11-28 21:00:00 | 37.453182 |
2015-11-28 22:00:00 | 72.102666 |
2015-11-28 23:00:00 | 30.348483 |
2015-11-29 00:00:00 | 53.805047 |
2015-11-29 01:00:00 | 22.456437 |
2015-11-29 02:00:00 | 60.534383 |
2015-11-29 03:00:00 | 16.088490 |
2015-11-29 04:00:00 | 36.382437 |
2015-11-29 05:00:00 | 59.246121 |
2015-11-29 06:00:00 | 45.077214 |
2015-11-29 07:00:00 | 45.120941 |
2015-11-29 08:00:00 | 38.232433 |
2015-11-29 09:00:00 | 19.465618 |
2015-11-29 10:00:00 | 38.230367 |
2015-11-29 11:00:00 | 18.690932 |
2015-11-29 12:00:00 | 20.769636 |
2015-11-29 13:00:00 | 61.135055 |
2015-11-29 14:00:00 | 27.915517 |
2015-11-29 15:00:00 | 30.520160 |
2015-11-29 16:00:00 | 28.824846 |
2015-11-29 17:00:00 | 69.571855 |
2015-11-29 18:00:00 | 37.361398 |
2015-11-29 19:00:00 | 38.282275 |
2015-11-29 20:00:00 | 46.356586 |
2015-11-29 21:00:00 | 24.056497 |
2015-11-29 22:00:00 | 53.198139 |
2015-11-29 23:00:00 | 35.252730 |
2015-11-30 00:00:00 | 43.607553 |
2015-11-30 01:00:00 | 60.174882 |
2015-11-30 02:00:00 | 17.935532 |
2015-11-30 03:00:00 | 68.517692 |
2015-11-30 04:00:00 | 29.962754 |
2015-11-30 05:00:00 | 61.862104 |
2015-11-30 06:00:00 | 20.989968 |
2015-11-30 07:00:00 | 60.410201 |
2015-11-30 08:00:00 | 59.574523 |
2015-11-30 09:00:00 | 56.018735 |
2015-11-30 10:00:00 | 24.071468 |
2015-11-30 11:00:00 | 49.377007 |
2015-11-30 12:00:00 | 38.429695 |
2015-11-30 13:00:00 | 26.261928 |
2015-11-30 14:00:00 | 66.245234 |
2015-11-30 15:00:00 | 32.917481 |
2015-11-30 16:00:00 | 25.103363 |
2015-11-30 17:00:00 | 27.791581 |
2015-11-30 18:00:00 | 46.185805 |
2015-11-30 19:00:00 | 33.197581 |
2015-11-30 20:00:00 | 45.298259 |
2015-11-30 21:00:00 | 15.820063 |
2015-11-30 22:00:00 | 19.494634 |
2015-11-30 23:00:00 | 39.350548 |
2015-12-01 00:00:00 | 39.319314 |
2015-12-01 01:00:00 | 2.474597 |
2015-12-01 02:00:00 | 41.595853 |
2015-12-01 03:00:00 | 15.030481 |
2015-12-01 04:00:00 | 71.055191 |
2015-12-01 05:00:00 | 52.047501 |
2015-12-01 06:00:00 | 72.879618 |
2015-12-01 07:00:00 | 37.068471 |
2015-12-01 08:00:00 | 34.298235 |
2015-12-01 09:00:00 | 41.579046 |
2015-12-01 10:00:00 | 40.660273 |
2015-12-01 11:00:00 | 61.635744 |
2015-12-01 12:00:00 | 43.405853 |
2015-12-01 13:00:00 | 18.588931 |
2015-12-01 14:00:00 | 47.898820 |
2015-12-01 15:00:00 | 33.526542 |
2015-12-01 16:00:00 | 53.297195 |
2015-12-01 17:00:00 | 29.570191 |
2015-12-01 18:00:00 | 18.813022 |
2015-12-01 19:00:00 | 32.032767 |
2015-12-01 20:00:00 | 43.580802 |
2015-12-01 21:00:00 | 29.927978 |
2015-12-01 22:00:00 | 65.725895 |
2015-12-01 23:00:00 | 14.997650 |
2015-12-02 00:00:00 | 21.467634 |
2015-12-02 01:00:00 | 35.542969 |
2015-12-02 02:00:00 | 67.452311 |
2015-12-02 03:00:00 | 57.589935 |
2015-12-02 04:00:00 | 35.194673 |
2015-12-02 05:00:00 | 46.114270 |
2015-12-02 06:00:00 | 35.049139 |
2015-12-02 07:00:00 | 34.855851 |
2015-12-02 08:00:00 | 31.369865 |
2015-12-02 09:00:00 | 43.440536 |
2015-12-02 10:00:00 | 5.292336 |
2015-12-02 11:00:00 | 15.588859 |
2015-12-02 12:00:00 | 45.724622 |
2015-12-02 13:00:00 | 46.292510 |
2015-12-02 14:00:00 | 38.483379 |
2015-12-02 15:00:00 | 51.287088 |
2015-12-02 16:00:00 | 35.419347 |
2015-12-02 17:00:00 | 38.717686 |
2015-12-02 18:00:00 | 53.184185 |
2015-12-02 19:00:00 | 66.245006 |
2015-12-02 20:00:00 | 40.550695 |
2015-12-02 21:00:00 | 57.073648 |
2015-12-02 22:00:00 | 49.285885 |
2015-12-02 23:00:00 | 22.874043 |
2015-12-03 00:00:00 | 46.236585 |
2015-12-03 01:00:00 | 77.101826 |
2015-12-03 02:00:00 | 49.775351 |
2015-12-03 03:00:00 | 71.134530 |
2015-12-03 04:00:00 | 58.448860 |
2015-12-03 05:00:00 | 58.534300 |
2015-12-03 06:00:00 | 28.555859 |
2015-12-03 07:00:00 | 39.062662 |
2015-12-03 08:00:00 | 16.662519 |
2015-12-03 09:00:00 | 27.000278 |
2015-12-03 10:00:00 | 44.246493 |
2015-12-03 11:00:00 | 72.966772 |
2015-12-03 12:00:00 | 31.483105 |
2015-12-03 13:00:00 | 66.816731 |
2015-12-03 14:00:00 | 42.936656 |
2015-12-03 15:00:00 | 33.401326 |
2015-12-03 16:00:00 | 66.681471 |
waterdata_ts %>% ggtsdisplay(main = "Hourly waterflow Pipeline1 + Pipeline2"
,xlab = "Days"
,ylab = "Total waterflow")
From the initial plot data doesn’t look completely stationary even though absence of seasonality and constant variance are good signs. Hence I will perform Box Cox transformation and evaluate 1st order differencing needs to convert the data to stationary.
## [1] 1
water_lambda <- BoxCox.lambda(waterdata_ts)
cat("Box Cox Transformation factor lambda=",water_lambda)
## Box Cox Transformation factor lambda= 0.8353232
waterdata_ts %>% BoxCox(water_lambda) %>% diff() %>% ggtsdisplay(main = "Hourly Waterflow w/ Box Cox + Differencing"
,xlab = "Days"
,ylab = "Total Waterflow")
## Warning: Removed 1 rows containing missing values (geom_point).
With the Box Cox transformation and 1st order differencing applied, data does appear stationary. Hence we can apply non-season ARIMA with d=1. Also, since ACF and PACF plots both have largest spike at lag=1, so we can assume AR(1) (p=1) and MA(1) (q=1) etc. So we can use an ARIMA (1,1,1) model to forecast the waterflow for the upcoming week.
water_model_fit <- Arima(waterdata_ts, order = c(1, 1, 1), lambda = water_lambda)
autoplot(forecast(water_model_fit, h=7*24)) + theme(panel.background = element_blank()) +
xlab ("Days") +
ylab ("Total Waterflow")
accuracyDF <- data.frame(Model = "ARIMA (1,1,1)", accuracy(water_model_fit), row.names = NULL)
accuracyDF %>% kable() %>% kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>% scroll_box(width="100%",height="200px")
Model | ME | RMSE | MAE | MPE | MAPE | MASE | ACF1 |
---|---|---|---|---|---|---|---|
ARIMA (1,1,1) | 0.283184 | 16.38391 | 13.36601 | -27.89199 | 50.16992 | 0.3020555 | -0.0032977 |
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,1)
## Q* = 2.7066, df = 8, p-value = 0.9514
##
## Model df: 2. Total lags used: 10
From Ljung-Box test, the p-Value is 0.9514 which is sufficiently higher than 0.05. So it can be safe to reject the null hypothesis that residuals are not independent and hence the model meets the assumption and generate quality forecast.