Aplicar e interpretar modelo de regresión múltiple
Aplicar rgresión lineal en los datos de FIFA con la variable dependiene Value y varias variables independientes
Cargar librerías Cargar los datos FIFA Definir variables dependiente Value e independientes varias Limpiar conjuntos datos Crear datos entrenamiento y validación Crear el modelo de regresión múltiple y=b0+b1x1+b2x2+b3x3+…..bkxk Interpretar el modelo Predecir con el conjunto de datos de validación Interpretar el caso. 180-200 palabras
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(caret) # Para particionar datos
## Warning: package 'caret' was built under R version 4.0.3
## Loading required package: lattice
library(knitr) # # install.packages ("knitr")
datos.FIFA <- read.csv('C:/Users/Blue/Documents/fifa.csv', encoding = "UTF-8")
datos <- select(datos.FIFA, Value, Age, Overall, Potential,
Wage, Special, International.Reputation,Weak.Foot,
Skill.Moves, Jersey.Number, Height,
Weight, Crossing, Finishing, HeadingAccuracy,
ShortPassing, Volleys, Dribbling, Curve,
FKAccuracy, LongPassing, BallControl, Acceleration,
SprintSpeed, Agility, Reactions, Balance, ShotPower,
Jumping, Stamina, Strength,LongShots, Aggression,
Interceptions, Positioning, Vision,
Penalties, Composure, Marking, StandingTackle,
SlidingTackle)
kable(head(datos, 10), caption = "Datos de FIFA con variables numéricas (primeros diez)", row.names = 1:nrow(datos))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| Value | Age | Overall | Potential | Wage | Special | International.Reputation | Weak.Foot | Skill.Moves | Jersey.Number | Height | Weight | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | €110.5M | 31 | 94 | 94 | €565K | 2202 | 5 | 4 | 4 | 10 | 5’7 | 159lbs | 84 | 95 | 70 | 90 | 86 | 97 | 93 | 94 | 87 | 96 | 91 | 86 | 91 | 95 | 95 | 85 | 68 | 72 | 59 | 94 | 48 | 22 | 94 | 94 | 75 | 96 | 33 | 28 | 26 |
| 2 | €77M | 33 | 94 | 94 | €405K | 2228 | 5 | 4 | 5 | 7 | 6’2 | 183lbs | 84 | 94 | 89 | 81 | 87 | 88 | 81 | 76 | 77 | 94 | 89 | 91 | 87 | 96 | 70 | 95 | 95 | 88 | 79 | 93 | 63 | 29 | 95 | 82 | 85 | 95 | 28 | 31 | 23 |
| 3 | €118.5M | 26 | 92 | 93 | €290K | 2143 | 5 | 5 | 5 | 10 | 5’9 | 150lbs | 79 | 87 | 62 | 84 | 84 | 96 | 88 | 87 | 78 | 95 | 94 | 90 | 96 | 94 | 84 | 80 | 61 | 81 | 49 | 82 | 56 | 36 | 89 | 87 | 81 | 94 | 27 | 24 | 33 |
| 4 | €72M | 27 | 91 | 93 | €260K | 1471 | 4 | 3 | 1 | 1 | 6’4 | 168lbs | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 |
| 5 | €102M | 27 | 91 | 92 | €355K | 2281 | 4 | 5 | 4 | 7 | 5’11 | 154lbs | 93 | 82 | 55 | 92 | 82 | 86 | 85 | 83 | 91 | 91 | 78 | 76 | 79 | 91 | 77 | 91 | 63 | 90 | 75 | 91 | 76 | 61 | 87 | 94 | 79 | 88 | 68 | 58 | 51 |
| 6 | €93M | 27 | 91 | 91 | €340K | 2142 | 4 | 4 | 4 | 10 | 5’8 | 163lbs | 81 | 84 | 61 | 89 | 80 | 95 | 83 | 79 | 83 | 94 | 94 | 88 | 95 | 90 | 94 | 82 | 56 | 83 | 66 | 80 | 54 | 41 | 87 | 89 | 86 | 91 | 34 | 27 | 22 |
| 7 | €67M | 32 | 91 | 91 | €420K | 2280 | 4 | 4 | 4 | 10 | 5’8 | 146lbs | 86 | 72 | 55 | 93 | 76 | 90 | 85 | 78 | 88 | 93 | 80 | 72 | 93 | 90 | 94 | 79 | 68 | 89 | 58 | 82 | 62 | 83 | 79 | 92 | 82 | 84 | 60 | 76 | 73 |
| 8 | €80M | 31 | 91 | 91 | €455K | 2346 | 5 | 4 | 3 | 9 | 6’0 | 190lbs | 77 | 93 | 77 | 82 | 88 | 87 | 86 | 84 | 64 | 90 | 86 | 75 | 82 | 92 | 83 | 86 | 69 | 90 | 83 | 85 | 87 | 41 | 92 | 84 | 85 | 85 | 62 | 45 | 38 |
| 9 | €51M | 32 | 91 | 91 | €380K | 2201 | 4 | 3 | 3 | 15 | 6’0 | 181lbs | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 |
| 10 | €68M | 25 | 90 | 93 | €94K | 1331 | 3 | 3 | 1 | 1 | 6’2 | 192lbs | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 |
kable(tail(datos, 10), caption = "Datos de FIFA con variables numéricas sólamente (últimos diez)")
| Value | Age | Overall | Potential | Wage | Special | International.Reputation | Weak.Foot | Skill.Moves | Jersey.Number | Height | Weight | Crossing | Finishing | HeadingAccuracy | ShortPassing | Volleys | Dribbling | Curve | FKAccuracy | LongPassing | BallControl | Acceleration | SprintSpeed | Agility | Reactions | Balance | ShotPower | Jumping | Stamina | Strength | LongShots | Aggression | Interceptions | Positioning | Vision | Penalties | Composure | Marking | StandingTackle | SlidingTackle | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 18198 | €60K | 18 | 47 | 61 | €1K | 1362 | 1 | 3 | 2 | 14 | 5’10 | 141lbs | 44 | 44 | 36 | 53 | 43 | 50 | 48 | 46 | 52 | 51 | 68 | 62 | 58 | 41 | 62 | 50 | 55 | 50 | 38 | 37 | 37 | 28 | 39 | 48 | 49 | 52 | 41 | 47 | 38 |
| 18199 | €60K | 18 | 47 | 70 | €1K | 792 | 1 | 2 | 1 | 22 | 5’11 | 154lbs | 14 | 8 | 14 | 19 | 8 | 10 | 13 | 10 | 21 | 11 | 18 | 24 | 22 | 36 | 47 | 26 | 56 | 20 | 38 | 5 | 25 | 6 | 5 | 37 | 14 | 34 | 15 | 11 | 13 |
| 18200 | €70K | 18 | 47 | 69 | €1K | 1303 | 1 | 3 | 2 | 65 | 5’6 | 150lbs | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 |
| 18201 | €60K | 18 | 47 | 62 | €1K | 1203 | 1 | 2 | 2 | 21 | 5’9 | 157lbs | 28 | 47 | 47 | 42 | 37 | 39 | 32 | 25 | 30 | 41 | 65 | 48 | 64 | 54 | 80 | 44 | 77 | 31 | 31 | 51 | 26 | 16 | 46 | 37 | 58 | 50 | 15 | 17 | 14 |
| 18202 | €60K | 18 | 47 | 68 | €1K | 1098 | 1 | 3 | 2 | 29 | 6’1 | 168lbs | 22 | 23 | 45 | 25 | 27 | 21 | 21 | 27 | 27 | 32 | 52 | 52 | 39 | 43 | 48 | 39 | 74 | 39 | 52 | 16 | 44 | 45 | 20 | 31 | 38 | 43 | 44 | 47 | 53 |
| 18203 | €60K | 19 | 47 | 65 | €1K | 1307 | 1 | 2 | 2 | 22 | 5’9 | 134lbs | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 |
| 18204 | €60K | 19 | 47 | 63 | €1K | 1098 | 1 | 2 | 2 | 21 | 6’3 | 170lbs | 23 | 52 | 52 | 43 | 36 | 39 | 32 | 20 | 25 | 40 | 41 | 39 | 38 | 40 | 52 | 41 | 47 | 43 | 67 | 42 | 47 | 16 | 46 | 33 | 43 | 42 | 22 | 15 | 19 |
| 18205 | €60K | 16 | 47 | 67 | €1K | 1189 | 1 | 3 | 2 | 33 | 5’8 | 148lbs | 25 | 40 | 46 | 38 | 38 | 45 | 38 | 27 | 28 | 44 | 70 | 69 | 50 | 47 | 58 | 45 | 60 | 55 | 32 | 45 | 32 | 15 | 48 | 43 | 55 | 41 | 32 | 13 | 11 |
| 18206 | €60K | 17 | 47 | 66 | €1K | 1228 | 1 | 3 | 2 | 34 | 5’10 | 154lbs | 44 | 50 | 39 | 42 | 40 | 51 | 34 | 32 | 32 | 52 | 61 | 60 | 52 | 21 | 71 | 64 | 42 | 40 | 48 | 34 | 33 | 22 | 44 | 47 | 50 | 46 | 20 | 25 | 27 |
| 18207 | €60K | 16 | 46 | 66 | €1K | 1321 | 1 | 3 | 2 | 33 | 5’10 | 176lbs | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 |
paste ("La variable dependiente y es : Value")
## [1] "La variable dependiente y es : Value"
paste ("Las variables independientes X1, X2, X3 ... Xn, son todas las demás: ")
## [1] "Las variables independientes X1, X2, X3 ... Xn, son todas las demás: "
¿Cuáles variables es necesario limpiar? que puede ser: transformar, quitar, modificar, homogeneizar, ajustar, escalar, entre otras cosas. Transformar y agregar nuevas variables: Value a valor numérico y poner valor Wage a valor numérico y poner salario Height a metros y dejar en altura Weight a kilogramos y dejar en peso Dejar todos los nombres en minúsculas para su mejor trato Verificar y observar los datos limpios Se utiliza las funciones preparadas para realizar limpieza en los datos festatura(), flbskgs(), fcleanValue(), y la nueva fnames.minusculas() del archivo misfunciones.r La función se puede llamar localmente o del servicio github
source('C:/Users/Blue/Documents/fff.r')
Value a valor numérico y poner valor
datos <- datos %>%
mutate(valor = ifelse (substr(Value, nchar(Value), nchar(Value)) == 'M', fcleanValue(Value) * 1000000, fcleanValue(Value) * 1000)) %>%
filter(valor > 0)
Wage a valor numérico y poner salario
datos <- datos %>%
mutate(salario = ifelse (substr(Wage, nchar(Wage), nchar(Wage)) == 'M', fcleanValue(Wage) * 1000000, fcleanValue(Wage) * 1000)) %>%
filter(salario > 0)
Height a kilogramos y dejar en altura
datos <- mutate(datos, estatura = festatura(Height))
Weight a metros y dejar en peso
datos <- mutate(datos, pesokgs = flbskgs(Weight))
Dejar todos los nombres en minúsculas para su mejor trato
datos <- fnames.minusculas(datos)
Quitar variables que no nos interesan porque son character
datos <- select(datos, -value, -wage, -height, -weight)
Verificar y observar los datos limpios Los primeros y últimos 10 registros Están las variabes creadas a final Los nombres de las variables están en minúsculas
kable(head(datos, 10), caption = "Datos de FIFA con variables numéricas (primeros diez)", row.names = 1:nrow(datos))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 31 | 94 | 94 | 2202 | 5 | 4 | 4 | 10 | 84 | 95 | 70 | 90 | 86 | 97 | 93 | 94 | 87 | 96 | 91 | 86 | 91 | 95 | 95 | 85 | 68 | 72 | 59 | 94 | 48 | 22 | 94 | 94 | 75 | 96 | 33 | 28 | 26 | 110500000 | 565000 | 1.70 | 72.12 |
| 2 | 33 | 94 | 94 | 2228 | 5 | 4 | 5 | 7 | 84 | 94 | 89 | 81 | 87 | 88 | 81 | 76 | 77 | 94 | 89 | 91 | 87 | 96 | 70 | 95 | 95 | 88 | 79 | 93 | 63 | 29 | 95 | 82 | 85 | 95 | 28 | 31 | 23 | 77000000 | 405000 | 1.88 | 83.01 |
| 3 | 26 | 92 | 93 | 2143 | 5 | 5 | 5 | 10 | 79 | 87 | 62 | 84 | 84 | 96 | 88 | 87 | 78 | 95 | 94 | 90 | 96 | 94 | 84 | 80 | 61 | 81 | 49 | 82 | 56 | 36 | 89 | 87 | 81 | 94 | 27 | 24 | 33 | 118500000 | 290000 | 1.75 | 68.04 |
| 4 | 27 | 91 | 93 | 1471 | 4 | 3 | 1 | 1 | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 | 72000000 | 260000 | 1.93 | 76.20 |
| 5 | 27 | 91 | 92 | 2281 | 4 | 5 | 4 | 7 | 93 | 82 | 55 | 92 | 82 | 86 | 85 | 83 | 91 | 91 | 78 | 76 | 79 | 91 | 77 | 91 | 63 | 90 | 75 | 91 | 76 | 61 | 87 | 94 | 79 | 88 | 68 | 58 | 51 | 102000000 | 355000 | 1.80 | 69.85 |
| 6 | 27 | 91 | 91 | 2142 | 4 | 4 | 4 | 10 | 81 | 84 | 61 | 89 | 80 | 95 | 83 | 79 | 83 | 94 | 94 | 88 | 95 | 90 | 94 | 82 | 56 | 83 | 66 | 80 | 54 | 41 | 87 | 89 | 86 | 91 | 34 | 27 | 22 | 93000000 | 340000 | 1.73 | 73.94 |
| 7 | 32 | 91 | 91 | 2280 | 4 | 4 | 4 | 10 | 86 | 72 | 55 | 93 | 76 | 90 | 85 | 78 | 88 | 93 | 80 | 72 | 93 | 90 | 94 | 79 | 68 | 89 | 58 | 82 | 62 | 83 | 79 | 92 | 82 | 84 | 60 | 76 | 73 | 67000000 | 420000 | 1.73 | 66.22 |
| 8 | 31 | 91 | 91 | 2346 | 5 | 4 | 3 | 9 | 77 | 93 | 77 | 82 | 88 | 87 | 86 | 84 | 64 | 90 | 86 | 75 | 82 | 92 | 83 | 86 | 69 | 90 | 83 | 85 | 87 | 41 | 92 | 84 | 85 | 85 | 62 | 45 | 38 | 80000000 | 455000 | 1.83 | 86.18 |
| 9 | 32 | 91 | 91 | 2201 | 4 | 3 | 3 | 15 | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 | 51000000 | 380000 | 1.83 | 82.10 |
| 10 | 25 | 90 | 93 | 1331 | 3 | 3 | 1 | 1 | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 | 68000000 | 94000 | 1.88 | 87.09 |
kable(tail(datos, 10), caption = "Datos de FIFA con variables numéricas sólamente (últimos diez)", row.names = 1:nrow(datos))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 17946 | 18 | 47 | 61 | 1362 | 1 | 3 | 2 | 14 | 44 | 44 | 36 | 53 | 43 | 50 | 48 | 46 | 52 | 51 | 68 | 62 | 58 | 41 | 62 | 50 | 55 | 50 | 38 | 37 | 37 | 28 | 39 | 48 | 49 | 52 | 41 | 47 | 38 | 60000 | 1000 | 1.78 | 63.96 |
| 17947 | 18 | 47 | 70 | 792 | 1 | 2 | 1 | 22 | 14 | 8 | 14 | 19 | 8 | 10 | 13 | 10 | 21 | 11 | 18 | 24 | 22 | 36 | 47 | 26 | 56 | 20 | 38 | 5 | 25 | 6 | 5 | 37 | 14 | 34 | 15 | 11 | 13 | 60000 | 1000 | 1.80 | 69.85 |
| 17948 | 18 | 47 | 69 | 1303 | 1 | 3 | 2 | 65 | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 | 70000 | 1000 | 1.68 | 68.04 |
| 17949 | 18 | 47 | 62 | 1203 | 1 | 2 | 2 | 21 | 28 | 47 | 47 | 42 | 37 | 39 | 32 | 25 | 30 | 41 | 65 | 48 | 64 | 54 | 80 | 44 | 77 | 31 | 31 | 51 | 26 | 16 | 46 | 37 | 58 | 50 | 15 | 17 | 14 | 60000 | 1000 | 1.75 | 71.21 |
| 17950 | 18 | 47 | 68 | 1098 | 1 | 3 | 2 | 29 | 22 | 23 | 45 | 25 | 27 | 21 | 21 | 27 | 27 | 32 | 52 | 52 | 39 | 43 | 48 | 39 | 74 | 39 | 52 | 16 | 44 | 45 | 20 | 31 | 38 | 43 | 44 | 47 | 53 | 60000 | 1000 | 1.85 | 76.20 |
| 17951 | 19 | 47 | 65 | 1307 | 1 | 2 | 2 | 22 | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 | 60000 | 1000 | 1.75 | 60.78 |
| 17952 | 19 | 47 | 63 | 1098 | 1 | 2 | 2 | 21 | 23 | 52 | 52 | 43 | 36 | 39 | 32 | 20 | 25 | 40 | 41 | 39 | 38 | 40 | 52 | 41 | 47 | 43 | 67 | 42 | 47 | 16 | 46 | 33 | 43 | 42 | 22 | 15 | 19 | 60000 | 1000 | 1.91 | 77.11 |
| 17953 | 16 | 47 | 67 | 1189 | 1 | 3 | 2 | 33 | 25 | 40 | 46 | 38 | 38 | 45 | 38 | 27 | 28 | 44 | 70 | 69 | 50 | 47 | 58 | 45 | 60 | 55 | 32 | 45 | 32 | 15 | 48 | 43 | 55 | 41 | 32 | 13 | 11 | 60000 | 1000 | 1.73 | 67.13 |
| 17954 | 17 | 47 | 66 | 1228 | 1 | 3 | 2 | 34 | 44 | 50 | 39 | 42 | 40 | 51 | 34 | 32 | 32 | 52 | 61 | 60 | 52 | 21 | 71 | 64 | 42 | 40 | 48 | 34 | 33 | 22 | 44 | 47 | 50 | 46 | 20 | 25 | 27 | 60000 | 1000 | 1.78 | 69.85 |
| 17955 | 16 | 46 | 66 | 1321 | 1 | 3 | 2 | 33 | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 | 60000 | 1000 | 1.78 | 79.83 |
70 % datos de entrenamiento 30 % datos de validación
set.seed(2020)
entrena <- createDataPartition(y = datos$overall, p = 0.7, list = FALSE, times = 1)
# Datos entrenamiento
datos.entrenamiento <- datos[entrena, ] # [renglones, columna]
# Datos validación
datos.validacion <- datos[-entrena, ]
kable(head(datos.entrenamiento, 10), caption = "Datos de entrenamiento (primeros diez)", row.names = 1:nrow(datos.entrenamiento))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 31 | 94 | 94 | 2202 | 5 | 4 | 4 | 10 | 84 | 95 | 70 | 90 | 86 | 97 | 93 | 94 | 87 | 96 | 91 | 86 | 91 | 95 | 95 | 85 | 68 | 72 | 59 | 94 | 48 | 22 | 94 | 94 | 75 | 96 | 33 | 28 | 26 | 110500000 | 565000 | 1.70 | 72.12 |
| 2 | 33 | 94 | 94 | 2228 | 5 | 4 | 5 | 7 | 84 | 94 | 89 | 81 | 87 | 88 | 81 | 76 | 77 | 94 | 89 | 91 | 87 | 96 | 70 | 95 | 95 | 88 | 79 | 93 | 63 | 29 | 95 | 82 | 85 | 95 | 28 | 31 | 23 | 77000000 | 405000 | 1.88 | 83.01 |
| 3 | 26 | 92 | 93 | 2143 | 5 | 5 | 5 | 10 | 79 | 87 | 62 | 84 | 84 | 96 | 88 | 87 | 78 | 95 | 94 | 90 | 96 | 94 | 84 | 80 | 61 | 81 | 49 | 82 | 56 | 36 | 89 | 87 | 81 | 94 | 27 | 24 | 33 | 118500000 | 290000 | 1.75 | 68.04 |
| 5 | 27 | 91 | 92 | 2281 | 4 | 5 | 4 | 7 | 93 | 82 | 55 | 92 | 82 | 86 | 85 | 83 | 91 | 91 | 78 | 76 | 79 | 91 | 77 | 91 | 63 | 90 | 75 | 91 | 76 | 61 | 87 | 94 | 79 | 88 | 68 | 58 | 51 | 102000000 | 355000 | 1.80 | 69.85 |
| 6 | 27 | 91 | 91 | 2142 | 4 | 4 | 4 | 10 | 81 | 84 | 61 | 89 | 80 | 95 | 83 | 79 | 83 | 94 | 94 | 88 | 95 | 90 | 94 | 82 | 56 | 83 | 66 | 80 | 54 | 41 | 87 | 89 | 86 | 91 | 34 | 27 | 22 | 93000000 | 340000 | 1.73 | 73.94 |
| 7 | 32 | 91 | 91 | 2280 | 4 | 4 | 4 | 10 | 86 | 72 | 55 | 93 | 76 | 90 | 85 | 78 | 88 | 93 | 80 | 72 | 93 | 90 | 94 | 79 | 68 | 89 | 58 | 82 | 62 | 83 | 79 | 92 | 82 | 84 | 60 | 76 | 73 | 67000000 | 420000 | 1.73 | 66.22 |
| 8 | 31 | 91 | 91 | 2346 | 5 | 4 | 3 | 9 | 77 | 93 | 77 | 82 | 88 | 87 | 86 | 84 | 64 | 90 | 86 | 75 | 82 | 92 | 83 | 86 | 69 | 90 | 83 | 85 | 87 | 41 | 92 | 84 | 85 | 85 | 62 | 45 | 38 | 80000000 | 455000 | 1.83 | 86.18 |
| 11 | 29 | 90 | 90 | 2152 | 4 | 4 | 4 | 9 | 62 | 91 | 85 | 83 | 89 | 85 | 77 | 86 | 65 | 89 | 77 | 78 | 78 | 90 | 78 | 88 | 84 | 78 | 84 | 84 | 80 | 39 | 91 | 77 | 88 | 86 | 34 | 42 | 19 | 77000000 | 205000 | 1.83 | 79.83 |
| 12 | 28 | 90 | 90 | 2190 | 4 | 5 | 3 | 8 | 88 | 76 | 54 | 92 | 82 | 81 | 86 | 84 | 93 | 90 | 64 | 62 | 70 | 89 | 71 | 87 | 30 | 75 | 73 | 92 | 60 | 82 | 79 | 86 | 73 | 85 | 72 | 79 | 69 | 76500000 | 355000 | 1.83 | 76.20 |
| 14 | 32 | 90 | 90 | 2115 | 4 | 2 | 4 | 21 | 84 | 76 | 54 | 93 | 82 | 89 | 82 | 77 | 87 | 94 | 70 | 64 | 92 | 90 | 90 | 72 | 64 | 78 | 52 | 75 | 57 | 50 | 89 | 92 | 75 | 93 | 59 | 53 | 29 | 60000000 | 285000 | 1.73 | 67.13 |
kable(head(datos.validacion, 10), caption = "Datos de validación (primeros diez)", row.names = 1:nrow(datos.entrenamiento))
## Warning in if (is.na(row.names)) row.names = has_rownames(x): la condición tiene
## longitud > 1 y sólo el primer elemento será usado
## Warning in if (row.names) {: la condición tiene longitud > 1 y sólo el primer
## elemento será usado
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4 | 27 | 91 | 93 | 1471 | 4 | 3 | 1 | 1 | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 | 72000000 | 260000 | 1.93 | 76.20 |
| 9 | 32 | 91 | 91 | 2201 | 4 | 3 | 3 | 15 | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 | 51000000 | 380000 | 1.83 | 82.10 |
| 10 | 25 | 90 | 93 | 1331 | 3 | 3 | 1 | 1 | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 | 68000000 | 94000 | 1.88 | 87.09 |
| 13 | 32 | 90 | 90 | 1946 | 3 | 3 | 2 | 10 | 55 | 42 | 92 | 79 | 47 | 53 | 49 | 51 | 70 | 76 | 68 | 68 | 58 | 85 | 54 | 67 | 91 | 66 | 88 | 43 | 89 | 88 | 48 | 52 | 50 | 82 | 90 | 89 | 89 | 44000000 | 125000 | 1.88 | 78.02 |
| 16 | 24 | 89 | 94 | 2092 | 3 | 3 | 4 | 21 | 82 | 84 | 68 | 87 | 88 | 92 | 88 | 88 | 75 | 92 | 87 | 83 | 91 | 86 | 85 | 82 | 75 | 80 | 65 | 88 | 48 | 32 | 84 | 87 | 86 | 84 | 23 | 20 | 20 | 89000000 | 205000 | 1.78 | 74.84 |
| 22 | 31 | 89 | 89 | 2161 | 4 | 4 | 3 | 21 | 70 | 89 | 89 | 78 | 90 | 80 | 77 | 76 | 52 | 82 | 75 | 76 | 77 | 91 | 59 | 87 | 88 | 92 | 78 | 79 | 84 | 48 | 93 | 77 | 85 | 82 | 52 | 45 | 39 | 60000000 | 200000 | 1.85 | 77.11 |
| 23 | 32 | 89 | 89 | 1473 | 5 | 4 | 1 | 1 | 15 | 13 | 25 | 55 | 11 | 30 | 14 | 11 | 59 | 48 | 54 | 60 | 51 | 84 | 35 | 25 | 77 | 43 | 80 | 16 | 29 | 30 | 12 | 70 | 47 | 70 | 17 | 10 | 11 | 38000000 | 130000 | 1.93 | 92.08 |
| 25 | 33 | 89 | 89 | 1841 | 4 | 3 | 2 | 3 | 58 | 33 | 83 | 59 | 45 | 58 | 60 | 31 | 59 | 57 | 63 | 75 | 54 | 82 | 55 | 78 | 89 | 65 | 89 | 49 | 92 | 88 | 28 | 50 | 50 | 84 | 93 | 93 | 90 | 27000000 | 215000 | 1.88 | 84.82 |
| 30 | 27 | 88 | 88 | 2017 | 3 | 3 | 4 | 10 | 86 | 77 | 56 | 85 | 74 | 90 | 87 | 77 | 78 | 93 | 94 | 86 | 94 | 83 | 93 | 75 | 53 | 75 | 44 | 84 | 34 | 26 | 83 | 87 | 61 | 83 | 51 | 24 | 22 | 62000000 | 165000 | 1.63 | 58.97 |
| 31 | 26 | 88 | 91 | 2137 | 3 | 3 | 4 | 22 | 75 | 79 | 55 | 89 | 65 | 94 | 88 | 76 | 83 | 95 | 75 | 69 | 87 | 77 | 90 | 69 | 64 | 70 | 59 | 87 | 58 | 64 | 78 | 89 | 76 | 86 | 60 | 64 | 51 | 73500000 | 315000 | 1.75 | 78.93 |
y=b0+b1x1+b2x2+b3x3+…..bkxk
modelo <- lm(formula = valor ~ ., datos.entrenamiento)
summary(modelo)
##
## Call:
## lm(formula = valor ~ ., data = datos.entrenamiento)
##
## Residuals:
## Min 1Q Median 3Q Max
## -19161476 -832836 -60785 700651 56366387
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6237527.444 1293049.221 -4.824 0.00000142445759378
## age -260441.896 10830.032 -24.048 < 0.0000000000000002
## overall 263151.521 12324.511 21.352 < 0.0000000000000002
## potential -45061.430 9216.102 -4.889 0.00000102388538355
## special -4971.156 1050.494 -4.732 0.00000224521357859
## international.reputation 2096975.406 80512.189 26.045 < 0.0000000000000002
## weak.foot 64861.448 37182.465 1.744 0.081112
## skill.moves 227777.379 60540.118 3.762 0.000169
## jersey.number -5180.184 1478.922 -3.503 0.000462
## crossing -4564.702 3279.621 -1.392 0.163996
## finishing 19777.935 3898.800 5.073 0.00000039756985080
## headingaccuracy -3149.386 2946.924 -1.069 0.285224
## shortpassing -403.627 5483.003 -0.074 0.941319
## volleys 10266.460 3483.094 2.948 0.003209
## dribbling -4145.766 4894.856 -0.847 0.397031
## curve -914.425 3441.961 -0.266 0.790498
## fkaccuracy 19978.179 3058.942 6.531 0.00000000006782730
## longpassing 17968.651 4230.417 4.247 0.00002177436178140
## ballcontrol -23414.482 5821.108 -4.022 0.00005796128114699
## acceleration 7772.372 4605.084 1.688 0.091478
## sprintspeed -1521.284 4289.824 -0.355 0.722876
## agility -1031.663 3552.756 -0.290 0.771528
## reactions 34476.184 5330.003 6.468 0.00000000010278779
## balance 5856.472 3586.184 1.633 0.102480
## shotpower -9906.667 3540.906 -2.798 0.005153
## jumping 549.760 2690.688 0.204 0.838107
## stamina 22668.921 2876.934 7.880 0.00000000000000356
## strength 3944.760 3414.156 1.155 0.247943
## longshots 771.132 3840.908 0.201 0.840883
## aggression 3220.423 2690.702 1.197 0.231379
## interceptions -4011.602 3769.712 -1.064 0.287274
## positioning 9072.650 3724.818 2.436 0.014876
## vision 10036.751 3659.156 2.743 0.006098
## penalties -7407.033 3273.003 -2.263 0.023648
## composure 896.362 3767.794 0.238 0.811962
## marking 9743.854 2960.754 3.291 0.001001
## standingtackle 21022.779 5464.713 3.847 0.000120
## slidingtackle -19840.500 5183.721 -3.827 0.000130
## salario 160.301 1.456 110.081 < 0.0000000000000002
## estatura -1159502.240 664549.743 -1.745 0.081045
## pesokgs 1722.922 5678.866 0.303 0.761596
##
## (Intercept) ***
## age ***
## overall ***
## potential ***
## special ***
## international.reputation ***
## weak.foot .
## skill.moves ***
## jersey.number ***
## crossing
## finishing ***
## headingaccuracy
## shortpassing
## volleys **
## dribbling
## curve
## fkaccuracy ***
## longpassing ***
## ballcontrol ***
## acceleration .
## sprintspeed
## agility
## reactions ***
## balance
## shotpower **
## jumping
## stamina ***
## strength
## longshots
## aggression
## interceptions
## positioning *
## vision **
## penalties *
## composure
## marking **
## standingtackle ***
## slidingtackle ***
## salario ***
## estatura .
## pesokgs
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2527000 on 12504 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.8088, Adjusted R-squared: 0.8082
## F-statistic: 1323 on 40 and 12504 DF, p-value: < 0.00000000000000022
Elegir variables que el primer modelo no identifica como variables estadísticamente significativas (las que no tienen ***) para el valor económico del jugador
modelo2 <- lm(formula = valor ~ age + overall + potential + special + international.reputation + jersey.number + finishing + fkaccuracy + longpassing + ballcontrol + reactions + stamina + salario , datos.entrenamiento)
summary(modelo2)
##
## Call:
## lm(formula = valor ~ age + overall + potential + special + international.reputation +
## jersey.number + finishing + fkaccuracy + longpassing + ballcontrol +
## reactions + stamina + salario, data = datos.entrenamiento)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18997420 -824040 -75785 697276 56424654
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7857348.39 452119.77 -17.379 < 0.0000000000000002
## age -266566.73 10213.53 -26.099 < 0.0000000000000002
## overall 254603.39 10507.57 24.230 < 0.0000000000000002
## potential -44787.95 9087.82 -4.928 0.0000008398819053
## special -3549.32 372.39 -9.531 < 0.0000000000000002
## international.reputation 2102462.29 80084.70 26.253 < 0.0000000000000002
## jersey.number -5350.31 1478.81 -3.618 0.000298
## finishing 22222.02 2169.52 10.243 < 0.0000000000000002
## fkaccuracy 18559.56 2463.89 7.533 0.0000000000000531
## longpassing 16414.29 3085.71 5.319 0.0000001058745305
## ballcontrol -19753.30 4063.23 -4.861 0.0000011792807544
## reactions 36293.34 5005.88 7.250 0.0000000000004408
## stamina 22403.91 2712.00 8.261 < 0.0000000000000002
## salario 160.60 1.46 110.037 < 0.0000000000000002
##
## (Intercept) ***
## age ***
## overall ***
## potential ***
## special ***
## international.reputation ***
## jersey.number ***
## finishing ***
## fkaccuracy ***
## longpassing ***
## ballcontrol ***
## reactions ***
## stamina ***
## salario ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2538000 on 12531 degrees of freedom
## (25 observations deleted due to missingness)
## Multiple R-squared: 0.8068, Adjusted R-squared: 0.8066
## F-statistic: 4026 on 13 and 12531 DF, p-value: < 0.00000000000000022
El valor de Multiple R-square de aproximadamente 80% y Adjusted R-square de aproximadamente 80% representan que tanto representan todas las variables al valor económico del jugador.
Los tres *** de las variables significan que estas variables son estadísticamente significativas para el valor económico del jugador.
modelo2 usar la funcion predict()
prediccion <- predict(object = modelo2, newdata = datos.validacion)
Crear un nuevo conjunto de datos con las predicciones para comparar con los datos de validación
new.datos.validacion <- mutate(datos.validacion, predicho = prediccion)
kable(head(new.datos.validacion, 10), caption = "Primeros diez registros con predicciones")
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | predicho |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 27 | 91 | 93 | 1471 | 4 | 3 | 1 | 1 | 17 | 13 | 21 | 50 | 13 | 18 | 21 | 19 | 51 | 42 | 57 | 58 | 60 | 90 | 43 | 31 | 67 | 43 | 64 | 12 | 38 | 30 | 12 | 68 | 40 | 68 | 15 | 21 | 13 | 72000000 | 260000 | 1.93 | 76.20 | 53767689 |
| 32 | 91 | 91 | 2201 | 4 | 3 | 3 | 15 | 66 | 60 | 91 | 78 | 66 | 63 | 74 | 72 | 77 | 84 | 76 | 75 | 78 | 85 | 66 | 79 | 93 | 84 | 83 | 59 | 88 | 90 | 60 | 63 | 75 | 82 | 87 | 92 | 91 | 51000000 | 380000 | 1.83 | 82.10 | 71493065 |
| 25 | 90 | 93 | 1331 | 3 | 3 | 1 | 1 | 13 | 11 | 15 | 29 | 13 | 12 | 13 | 14 | 26 | 16 | 43 | 60 | 67 | 86 | 49 | 22 | 76 | 41 | 78 | 12 | 34 | 19 | 11 | 70 | 11 | 70 | 27 | 12 | 18 | 68000000 | 94000 | 1.88 | 87.09 | 25556761 |
| 32 | 90 | 90 | 1946 | 3 | 3 | 2 | 10 | 55 | 42 | 92 | 79 | 47 | 53 | 49 | 51 | 70 | 76 | 68 | 68 | 58 | 85 | 54 | 67 | 91 | 66 | 88 | 43 | 89 | 88 | 48 | 52 | 50 | 82 | 90 | 89 | 89 | 44000000 | 125000 | 1.88 | 78.02 | 28009254 |
| 24 | 89 | 94 | 2092 | 3 | 3 | 4 | 21 | 82 | 84 | 68 | 87 | 88 | 92 | 88 | 88 | 75 | 92 | 87 | 83 | 91 | 86 | 85 | 82 | 75 | 80 | 65 | 88 | 48 | 32 | 84 | 87 | 86 | 84 | 23 | 20 | 20 | 89000000 | 205000 | 1.78 | 74.84 | 43715121 |
| 31 | 89 | 89 | 2161 | 4 | 4 | 3 | 21 | 70 | 89 | 89 | 78 | 90 | 80 | 77 | 76 | 52 | 82 | 75 | 76 | 77 | 91 | 59 | 87 | 88 | 92 | 78 | 79 | 84 | 48 | 93 | 77 | 85 | 82 | 52 | 45 | 39 | 60000000 | 200000 | 1.85 | 77.11 | 43286358 |
| 32 | 89 | 89 | 1473 | 5 | 4 | 1 | 1 | 15 | 13 | 25 | 55 | 11 | 30 | 14 | 11 | 59 | 48 | 54 | 60 | 51 | 84 | 35 | 25 | 77 | 43 | 80 | 16 | 29 | 30 | 12 | 70 | 47 | 70 | 17 | 10 | 11 | 38000000 | 130000 | 1.93 | 92.08 | 32968482 |
| 33 | 89 | 89 | 1841 | 4 | 3 | 2 | 3 | 58 | 33 | 83 | 59 | 45 | 58 | 60 | 31 | 59 | 57 | 63 | 75 | 54 | 82 | 55 | 78 | 89 | 65 | 89 | 49 | 92 | 88 | 28 | 50 | 50 | 84 | 93 | 93 | 90 | 27000000 | 215000 | 1.88 | 84.82 | 43991912 |
| 27 | 88 | 88 | 2017 | 3 | 3 | 4 | 10 | 86 | 77 | 56 | 85 | 74 | 90 | 87 | 77 | 78 | 93 | 94 | 86 | 94 | 83 | 93 | 75 | 53 | 75 | 44 | 84 | 34 | 26 | 83 | 87 | 61 | 83 | 51 | 24 | 22 | 62000000 | 165000 | 1.63 | 58.97 | 36279405 |
| 26 | 88 | 91 | 2137 | 3 | 3 | 4 | 22 | 75 | 79 | 55 | 89 | 65 | 94 | 88 | 76 | 83 | 95 | 75 | 69 | 87 | 77 | 90 | 69 | 64 | 70 | 59 | 87 | 58 | 64 | 78 | 89 | 76 | 86 | 60 | 64 | 51 | 73500000 | 315000 | 1.75 | 78.93 | 59750432 |
kable(tail(new.datos.validacion, 10), caption = "Ultimos diez registros con predicciones")
| age | overall | potential | special | international.reputation | weak.foot | skill.moves | jersey.number | crossing | finishing | headingaccuracy | shortpassing | volleys | dribbling | curve | fkaccuracy | longpassing | ballcontrol | acceleration | sprintspeed | agility | reactions | balance | shotpower | jumping | stamina | strength | longshots | aggression | interceptions | positioning | vision | penalties | composure | marking | standingtackle | slidingtackle | valor | salario | estatura | pesokgs | predicho | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5376 | 19 | 48 | 59 | 1152 | 1 | 3 | 2 | 28 | 28 | 23 | 45 | 27 | 24 | 25 | 21 | 26 | 29 | 28 | 63 | 50 | 47 | 42 | 76 | 35 | 65 | 49 | 49 | 21 | 45 | 46 | 25 | 29 | 37 | 43 | 42 | 54 | 54 | 40000 | 1000 | 1.73 | 72.12 | -1780511 |
| 5377 | 18 | 48 | 63 | 1370 | 1 | 3 | 3 | 24 | 38 | 34 | 49 | 54 | 34 | 49 | 33 | 37 | 50 | 41 | 67 | 61 | 61 | 46 | 59 | 50 | 56 | 64 | 55 | 35 | 52 | 39 | 46 | 45 | 36 | 44 | 44 | 40 | 41 | 60000 | 1000 | 1.85 | 73.03 | -1427709 |
| 5378 | 17 | 48 | 66 | 1296 | 1 | 2 | 2 | 32 | 45 | 46 | 46 | 38 | 27 | 46 | 28 | 24 | 34 | 38 | 61 | 57 | 56 | 47 | 66 | 39 | 59 | 60 | 48 | 33 | 53 | 46 | 43 | 37 | 33 | 38 | 43 | 49 | 45 | 50000 | 1000 | 1.80 | 60.78 | -1306960 |
| 5379 | 18 | 48 | 55 | 1368 | 1 | 3 | 2 | 33 | 33 | 24 | 42 | 54 | 33 | 44 | 34 | 36 | 50 | 47 | 61 | 57 | 57 | 44 | 58 | 47 | 64 | 59 | 66 | 31 | 53 | 49 | 35 | 46 | 37 | 42 | 47 | 49 | 53 | 40000 | 1000 | 1.85 | 81.19 | -1654365 |
| 5380 | 18 | 47 | 67 | 1285 | 1 | 3 | 2 | 32 | 32 | 32 | 45 | 48 | 31 | 41 | 32 | 43 | 47 | 37 | 53 | 55 | 31 | 47 | 61 | 41 | 54 | 61 | 55 | 34 | 44 | 44 | 51 | 54 | 34 | 46 | 35 | 44 | 47 | 60000 | 1000 | 1.75 | 79.83 | -1536809 |
| 5381 | 18 | 47 | 64 | 1191 | 1 | 2 | 2 | 4 | 36 | 25 | 40 | 27 | 27 | 46 | 31 | 25 | 23 | 29 | 64 | 58 | 55 | 54 | 81 | 22 | 56 | 54 | 40 | 22 | 48 | 49 | 35 | 30 | 32 | 32 | 41 | 48 | 48 | 50000 | 1000 | 1.73 | 66.22 | -1547318 |
| 5382 | 19 | 47 | 61 | 1333 | 1 | 3 | 2 | 26 | 31 | 28 | 40 | 53 | 31 | 46 | 39 | 37 | 48 | 48 | 58 | 58 | 60 | 48 | 79 | 42 | 63 | 35 | 51 | 30 | 55 | 44 | 28 | 51 | 44 | 35 | 41 | 44 | 54 | 60000 | 1000 | 1.70 | 66.22 | -2620240 |
| 5383 | 18 | 47 | 69 | 1303 | 1 | 3 | 2 | 65 | 31 | 31 | 41 | 51 | 26 | 46 | 35 | 31 | 55 | 47 | 60 | 63 | 53 | 46 | 55 | 49 | 57 | 42 | 43 | 30 | 53 | 49 | 35 | 40 | 36 | 40 | 48 | 49 | 49 | 70000 | 1000 | 1.68 | 68.04 | -2639956 |
| 5384 | 19 | 47 | 65 | 1307 | 1 | 2 | 2 | 22 | 34 | 38 | 40 | 49 | 25 | 42 | 30 | 34 | 45 | 43 | 54 | 57 | 60 | 49 | 76 | 43 | 55 | 40 | 47 | 38 | 46 | 46 | 39 | 52 | 43 | 45 | 40 | 48 | 47 | 60000 | 1000 | 1.75 | 60.78 | -2321330 |
| 5385 | 16 | 46 | 66 | 1321 | 1 | 3 | 2 | 33 | 41 | 34 | 46 | 48 | 30 | 43 | 40 | 34 | 44 | 51 | 57 | 55 | 55 | 51 | 63 | 43 | 62 | 47 | 60 | 32 | 56 | 42 | 34 | 49 | 33 | 43 | 40 | 43 | 50 | 60000 | 1000 | 1.78 | 79.83 | -1963480 |
¿Qué sucede si un jugador llamado ‘Ruben Pizarro’ tiene los siguientes atributos en tperminos de características y condiciones de fútbol: age = 25 overall = 70 potential = 70 special = 1500 international.reputation = 3 jersey.number = 7 finishing = 80 fkaccuracy = 70 longpassing = 60 ballcontrol = 70 reactions = 70 stamina = 80 salario = 205000 ¿Cuánto vale en el mercado según el modelo de regresión lineal múltiple?
nombre <- "Rubén Pizarro"
jugador <- data.frame(age = 25, overall = 70, potential = 70, special = 1500, international.reputation = 3, jersey.number = 7, finishing = 80, fkaccuracy = 70, longpassing = 60, ballcontrol = 70, reactions = 70, stamina = 80, salario = 205000)
nueva.prediccion <- predict(object = modelo2, newdata = jugador)
paste ("El jugador ", nombre, " debe tener un valor en el mercado de $", round(nueva.prediccion,2))
## [1] "El jugador Rubén Pizarro debe tener un valor en el mercado de $ 41046805.41"