library(tidyverse)
library(ggplot2)
library(ggpubr)
library(plyr)
library(magick)
library(png)
library(EBImage)
library(lme4)
library(lmerTest)
setwd("/Users/adambarnas/Box/MetaAwareness/data/")
Rensink_RTs_likelihood_no_NA <- read_csv("Rensink_RTs_likelihood_no_NA.csv")
Ma_RTs_likelihood_no_NA <- read_csv("Ma_RTs_likelihood_no_NA.csv")
Wolfe1_RTs_likelihood_no_NA <- read_csv("Wolfe1_RTs_likelihood_no_NA.csv")
tbl_all <- rbind(Rensink_RTs_likelihood_no_NA, Ma_RTs_likelihood_no_NA, Wolfe1_RTs_likelihood_no_NA)
tbl_all_subj_avg <- tbl_all %>%
group_by(workerId,image) %>%
dplyr::summarize(average = mean(likelihood_rating)) %>%
spread(image,average) %>%
mutate(subj_avg = rowMeans(.[-1], na.rm = TRUE))
mean(tbl_all_subj_avg$subj_avg)
## [1] 3.194087
fit0 <- lmer(detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image) + (1 | stim_set), data=tbl_all)
summary(fit0)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image) +
## (1 | stim_set)
## Data: tbl_all
##
## REML criterion at convergence: 10459.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.7638 -0.4079 -0.1171 0.1196 8.9564
##
## Random effects:
## Groups Name Variance Std.Dev.
## image (Intercept) 1.3459 1.160
## workerId (Intercept) 7.3509 2.711
## stim_set (Intercept) 0.7992 0.894
## Residual 20.2159 4.496
## Number of obs: 1746, groups: image, 227; workerId, 73; stim_set, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.24440 0.70803 3.23223 14.469 0.000476 ***
## likelihood_rating -0.29557 0.09915 1069.56265 -2.981 0.002937 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## liklhd_rtng -0.454
corr <- tbl_all %>%
group_by(image) %>%
dplyr::summarize(detection_rt = mean(detection_rt), likelihood_rating = mean(likelihood_rating))
corr %>%
ggscatter(y = "detection_rt", x = "likelihood_rating", ylab = "Change Detection RT (sec)", xlab = "Likelihood of Detecting Change", fill = "#f7a800", color = "#f7a800", add = "reg.line", cor.coef = TRUE, cor.coeff.args = list(method = "pearson", label.x = 1, label.y = 5, label.sep = "\n"), xlim = c(1, 5), ylim = c(0, 50))
Dropping image-116 (Wolfe1) from the analyses. Obvious outlier.
tbl_all_no_outlier <- tbl_all %>%
filter(image != "image-116")
fit1 <- lmer(detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image), data=tbl_all_no_outlier)
summary(fit1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: detection_rt ~ likelihood_rating + (1 | workerId) + (1 | image)
## Data: tbl_all_no_outlier
##
## REML criterion at convergence: 10414.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8025 -0.4157 -0.1179 0.1248 9.0539
##
## Random effects:
## Groups Name Variance Std.Dev.
## image (Intercept) 1.272 1.128
## workerId (Intercept) 7.614 2.759
## Residual 19.780 4.448
## Number of obs: 1745, groups: image, 226; workerId, 73
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 10.5461 0.4708 223.1123 22.400 < 2e-16 ***
## likelihood_rating -0.3314 0.0979 1084.1990 -3.385 0.000737 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## liklhd_rtng -0.664
corr %>%
filter(image!="image-116") %>%
ggscatter(y = "detection_rt", x = "likelihood_rating", ylab = "Change Detection RT (sec)", xlab = "Likelihood of Detecting Change", title = "N = 37", fill = "#f7a800", color = "#f7a800", add = "reg.line", cor.coef = TRUE, cor.coeff.args = list(method = "pearson", label.x = 1, label.y = 5, label.sep = "\n"), xlim = c(1, 5), ylim = c(0, 40))