El diseño de parcelas divididas es desde el punto de vista del análisis estadístico similar al diseño de medidas repetidas de dos factores. El diseño consiste en bloques (o parcelas enteras) en los que se aplica un factor (el factor de parcelas completas) al azar. Dentro de cada parcela/bloque, se divide en unidades más pequeñas y los niveles del segundo factor se aplican aleatoriamente a las partes más pequeñas de toda la parcela. La clave es que la unidad experimental es diferente para cada factor.

Ejemplo de Avena

En este ejemplo, se plantan campos enteros con uno de los tres tipos de avena. Estas son las parcelas completas, de las cuales hay 18. Cada parcela se divide en cuatro parcelas divididas, a cada una se le asignó aleatoriamente uno de los cuatro niveles de nitrogeno.

sp.oats <- read.csv("C:/Users/yisus/Documents/Oats2.csv",sep = ";" )
sp.oats <- within(sp.oats, NitroF <- factor(Nitro))
head(sp.oats)
##   Observacion Replicar    Variedad Nitro Rendimiento NitroF
## 1           1        I     Victory   0.0         111      0
## 2           2        I     Victory   0.2         130    0.2
## 3           3        I     Victory   0.4         157    0.4
## 4           4        I     Victory   0.6         174    0.6
## 5           5        I Golden.rain   0.0         117      0
## 6           6        I Golden.rain   0.2         114    0.2
library(lattice) 
library(car)
## Warning: package 'car' was built under R version 4.0.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.0.3
library(agricolae)
## Warning: package 'agricolae' was built under R version 4.0.3
with(sp.oats, xyplot(Rendimiento ~ NitroF | Variedad))

with(sp.oats, xyplot(Rendimiento ~ NitroF | Variedad, group = Replicar))

with(sp.oats, xyplot(Rendimiento ~ NitroF | Variedad, group = Replicar, aspect = "xy", type = "o"))

with(sp.oats, xyplot(Rendimiento ~ NitroF | Variedad, group = Replicar, aspect = "xy", type = "a"))

Si se ignora el diseño experimental, se obtienen los siguientes resultados incorrectos. Teniendo en cuenta que el error df es mayor, lo que facilita la detección de diferencias que realmente no existen.

res.bad <- lm(Rendimiento ~ Variedad * NitroF, data = sp.oats)
anova(res.bad)
## Analysis of Variance Table
## 
## Response: Rendimiento
##                 Df  Sum Sq Mean Sq F value    Pr(>F)    
## Variedad         2  1786.4   893.2  1.7949    0.1750    
## NitroF           3 20020.5  6673.5 13.4108 8.367e-07 ***
## Variedad:NitroF  6   321.7    53.6  0.1078    0.9952    
## Residuals       60 29857.3   497.6                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

El factor “Variedad” solo tiene (18-1) df total para usar cuando se prueban las diferencias en la variedad. Por lo tanto, se necesita especificar correctamente el término de error para variedad. Cabe señalar que la forma del “Error(A:wholeplot)” puede cambiar dependiendo de la disposición de los datos. La clave es saber el df correcto para tener los resultados correctos.

res.good <- aov(Rendimiento ~ Variedad * NitroF + Error(Replicar:Variedad), data = sp.oats)
## Warning in aov(Rendimiento ~ Variedad * NitroF + Error(Replicar:Variedad), :
## Error() model is singular
summary(res.good)
## 
## Error: Replicar:Variedad
##           Df Sum Sq Mean Sq F value Pr(>F)
## Variedad   2   1786   893.2   0.612  0.555
## Residuals 15  21889  1459.2               
## 
## Error: Within
##                 Df Sum Sq Mean Sq F value   Pr(>F)    
## NitroF           3  20020    6673  37.686 2.46e-12 ***
## Variedad:NitroF  6    322      54   0.303    0.932    
## Residuals       45   7969     177                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Para verificar las suposiciones, no se necesita utilizar el termino error. Se puede agregar el término sin error, pero las pruebas F son incorrectas. Sin embargo, la verificación de suposiciones está bien.

res.good2 <- aov(Rendimiento ~ Variedad * NitroF + Replicar:Variedad, data = sp.oats)
summary(res.good2)
##                   Df Sum Sq Mean Sq F value   Pr(>F)    
## Variedad           2   1786     893   5.044   0.0106 *  
## NitroF             3  20020    6673  37.686 2.46e-12 ***
## Variedad:NitroF    6    322      54   0.303   0.9322    
## Variedad:Replicar 15  21889    1459   8.240 1.61e-08 ***
## Residuals         45   7969     177                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(res.good2, 1)

plot(res.good2, 2)

#plot(res.good2, 5) 
boxCox(res.good2)

Dado que la gráfica de boxCox esta bien, no es necesario realizar ninguna transformación. Aún se necesita identificar qué niveles de nitrógeno son diferentes.

HSD = with(sp.oats, HSD.test(Rendimiento, NitroF, DFerror = 45, MSerror = 117))

HSD
## $statistics
##   MSerror Df     Mean       CV      MSD
##       117 45 103.9722 10.40341 9.618527
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey NitroF   4         3.772697  0.05
## 
## $means
##     Rendimiento      std  r Min Max    Q25   Q50    Q75
## 0      79.38889 19.39417 18  53 117  63.25  72.0  94.25
## 0.2    98.88889 21.84407 18  64 140  83.75  95.0 112.50
## 0.4   114.22222 22.31738 18  81 161  97.75 115.0 124.75
## 0.6   123.38889 22.99908 18  86 174 106.25 121.5 139.00
## 
## $comparison
## NULL
## 
## $groups
##     Rendimiento groups
## 0.6   123.38889      a
## 0.4   114.22222      a
## 0.2    98.88889      b
## 0      79.38889      c
## 
## attr(,"class")
## [1] "group"
library(gplots)
## Warning: package 'gplots' was built under R version 4.0.3
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
plot.stuff <- with(sp.oats, HSD.test(Rendimiento, NitroF, DFerror = 45, MSerror = 117))

plot.stuff
## $statistics
##   MSerror Df     Mean       CV      MSD
##       117 45 103.9722 10.40341 9.618527
## 
## $parameters
##    test name.t ntr StudentizedRange alpha
##   Tukey NitroF   4         3.772697  0.05
## 
## $means
##     Rendimiento      std  r Min Max    Q25   Q50    Q75
## 0      79.38889 19.39417 18  53 117  63.25  72.0  94.25
## 0.2    98.88889 21.84407 18  64 140  83.75  95.0 112.50
## 0.4   114.22222 22.31738 18  81 161  97.75 115.0 124.75
## 0.6   123.38889 22.99908 18  86 174 106.25 121.5 139.00
## 
## $comparison
## NULL
## 
## $groups
##     Rendimiento groups
## 0.6   123.38889      a
## 0.4   114.22222      a
## 0.2    98.88889      b
## 0      79.38889      c
## 
## attr(,"class")
## [1] "group"
names(plot.stuff)
## [1] "statistics" "parameters" "means"      "comparison" "groups"
plot.stuff$means
##     Rendimiento      std  r Min Max    Q25   Q50    Q75
## 0      79.38889 19.39417 18  53 117  63.25  72.0  94.25
## 0.2    98.88889 21.84407 18  64 140  83.75  95.0 112.50
## 0.4   114.22222 22.31738 18  81 161  97.75 115.0 124.75
## 0.6   123.38889 22.99908 18  86 174 106.25 121.5 139.00
plot.stuff$groups
##     Rendimiento groups
## 0.6   123.38889      a
## 0.4   114.22222      a
## 0.2    98.88889      b
## 0      79.38889      c
barplot2(plot.stuff$means[,1])

# Agregar algunas etiquetas

barplot2(plot.stuff$means[, 1], names.arg = row.names(plot.stuff$means), xlab = "Nitrogeno", ylab = "Rendimiento por Acre" )

# Agregar algunas barras de error

mu.i <- plot.stuff$means[, 1]
se.i <- qt(1 - 0.05/2, 45) * plot.stuff$means[, 2]
bp <- barplot2(mu.i , names.arg = row.names(plot.stuff$means), xlab = "Nitrogeno", ylab = "Rendimiento por Acre", plot.ci = TRUE, ci.l = mu.i - se.i, ci.u = mu.i + se.i )

# Agrupar

text(bp, 0, plot.stuff$groups[, 2], cex = 1, pos = 3)

# ¿Esto es correcto?

plot.stuff$groups
##     Rendimiento groups
## 0.6   123.38889      a
## 0.4   114.22222      a
## 0.2    98.88889      b
## 0      79.38889      c
order(plot.stuff$groups[, 1])
## [1] 4 3 2 1
plot.stuff$groups[order(plot.stuff$groups[, 1]), 2]
## [1] "c" "b" "a" "a"
# Esto es mejor

bp <- barplot2(mu.i, names.arg = rownames(plot.stuff$means), xlab = "Nitrogeno", ylab = "Rendimiento por Acre", plot.ci = TRUE, ci.l = mu.i - se.i, ci.u = mu.i +  se.i)

text(bp, 0, plot.stuff$groups[order(plot.stuff$groups[, 1]), 2], cex = 1, pos = 2)

# A veces es más facil hacerlo a mano

bp <- barplot2(mu.i, names.arg = rownames(plot.stuff$means), xlab = "Nitrogeno", ylab = "Rendimiento por Acre", plot.ci = TRUE, ci.l = mu.i - se.i, ci.u = mu.i +  se.i)
text(bp, 0, c("A", "B", "C", "C"), cex = 1, pos = 3)

DISEÑO DE PARCELAS DIVIDIDAS DE TRES FACTORES

En este experimento se desea medir los efectos de tres factores sobre la cantidad de glucógeno en el hígado. En el experimento hay 6 ratas (parcelas completas).

A cada rata, se le asignó al azar una de las tres dietas alimentarias (T1, T2 y T3).

De cada rata, se extrajo el hígado y se dividió en cuatro segmentos. Cada segmento se preparó utilizando uno de dos productos químicos diferentes (P1 y P2).

Finalmente, se midió el nivel de glucógeno de cada pedazo de hígado usando dos técnicas analíticas diferentes (A y B).

La unidad experimental de la dieta es la rata. La unidad experimental para la preparación química del hígado es una tira de hígado. La unidad experimental de la técnica analítica es un trozo de hígado. Todos son diferentes.

spp.rat <- read.csv("C:/Users/yisus/Downloads/split_split_rat.csv" , sep = "," )
spp.rat
##    glycogen food       rat prep method
## 1       127   T1      Remy   P1      A
## 2       126   T1      Remy   P1      B
## 3       127   T1      Remy   P2      A
## 4       121   T1      Remy   P2      B
## 5       124   T1      Remy   P1      A
## 6       125   T1      Remy   P1      B
## 7       132   T1      Remy   P2      A
## 8       138   T1      Remy   P2      B
## 9       146   T1 Templeton   P1      A
## 10      144   T1 Templeton   P1      B
## 11      136   T1 Templeton   P2      A
## 12      139   T1 Templeton   P2      B
## 13      156   T1 Templeton   P1      A
## 14      146   T1 Templeton   P1      B
## 15      134   T1 Templeton   P2      A
## 16      133   T1 Templeton   P2      B
## 17      157   T2  Scabbers   P1      A
## 18      145   T2  Scabbers   P1      B
## 19      154   T2  Scabbers   P2      A
## 20      142   T2  Scabbers   P2      B
## 21      147   T2  Scabbers   P1      A
## 22      153   T2  Scabbers   P1      B
## 23      155   T2  Scabbers   P2      A
## 24      157   T2  Scabbers   P2      B
## 25      151   T2  Splinter   P1      A
## 26      155   T2  Splinter   P1      B
## 27      147   T2  Splinter   P2      A
## 28      147   T2  Splinter   P2      B
## 29      162   T2  Splinter   P1      A
## 30      152   T2  Splinter   P1      B
## 31      145   T2  Splinter   P2      A
## 32      144   T2  Splinter   P2      B
## 33      130   T3 Nicodemus   P1      A
## 34      121   T3 Nicodemus   P1      B
## 35      134   T3 Nicodemus   P2      A
## 36      134   T3 Nicodemus   P2      B
## 37      131   T3 Nicodemus   P1      A
## 38      132   T3 Nicodemus   P1      B
## 39      128   T3 Nicodemus   P2      A
## 40      127   T3 Nicodemus   P2      B
## 41      134   T3     Rizzo   P1      A
## 42      136   T3     Rizzo   P1      B
## 43      135   T3     Rizzo   P2      A
## 44      134   T3     Rizzo   P2      B
## 45      130   T3     Rizzo   P1      A
## 46      123   T3     Rizzo   P1      B
## 47      136   T3     Rizzo   P2      A
## 48      133   T3     Rizzo   P2      B
p <- as.vector(spp.rat$prep)
m <- as.vector(spp.rat$method)
factor(m):factor(p)
##  [1] A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2
## [16] B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1
## [31] A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1 B:P1 A:P2 B:P2 A:P1
## [46] B:P1 A:P2 B:P2
## Levels: A:P1 A:P2 B:P1 B:P2
X_Y <- xyplot(spp.rat$glycogen ~ (factor(m):factor(p))| spp.rat$food, groups = spp.rat$rat , aspect = "xy")
with(spp.rat, X_Y)

Este es un diseño loco, pero sucede. EL tratamiento, la preparación y el método tienen diferente denominador MS para sus pruebas F

¿Y si lo hiciste mal?

fact.bad <- lm(glycogen ~ food * prep * method, data = spp.rat) 
anova(fact.bad)
## Analysis of Variance Table
## 
## Response: glycogen
##                  Df Sum Sq Mean Sq F value    Pr(>F)    
## food              2 3530.0 1765.02 32.2583 9.401e-09 ***
## prep              1   35.0   35.02  0.6401    0.4289    
## method            1   54.2   54.19  0.9904    0.3263    
## food:prep         2  133.3   66.65  1.2180    0.3077    
## food:method       2    5.4    2.69  0.0491    0.9521    
## prep:method       1   11.0   11.02  0.2014    0.6563    
## food:prep:method  2    5.3    2.65  0.0484    0.9529    
## Residuals        36 1969.7   54.72                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Primero, supongamos que se ignora el factor del método. Eso hace que este sea un diseño de parcelas divididas.

sp.res <- aov(glycogen ~ food * prep + Error(rat/food), data = spp.rat)
## Warning in aov(glycogen ~ food * prep + Error(rat/food), data = spp.rat):
## Error() model is singular
summary(sp.res)
## 
## Error: rat
##           Df Sum Sq Mean Sq F value Pr(>F)  
## food       2   3530  1765.0    6.22 0.0856 .
## Residuals  3    851   283.8                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Within
##           Df Sum Sq Mean Sq F value Pr(>F)
## prep       1   35.0   35.02   1.144  0.291
## food:prep  2  133.3   66.65   2.176  0.127
## Residuals 39 1194.3   30.62

Ahora agregue el método como una segunda división. por lo que ahora es un diseño de parcela dividida.

sp.res <- aov(glycogen ~ food * prep * method  + Error(rat/food:prep), data = spp.rat)
## Warning in aov(glycogen ~ food * prep * method + Error(rat/food:prep), data =
## spp.rat): Error() model is singular
summary(sp.res)
## 
## Error: rat
##           Df Sum Sq Mean Sq F value Pr(>F)  
## food       2   3530  1765.0    6.22 0.0856 .
## Residuals  3    851   283.8                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: rat:food:prep
##           Df Sum Sq Mean Sq F value Pr(>F)
## prep       1   35.0   35.02   0.269  0.640
## food:prep  2  133.3   66.65   0.513  0.643
## Residuals  3  390.1  130.02               
## 
## Error: Within
##                  Df Sum Sq Mean Sq F value Pr(>F)
## method            1   54.2   54.19   2.232  0.146
## food:method       2    5.4    2.69   0.111  0.896
## prep:method       1   11.0   11.02   0.454  0.506
## food:prep:method  2    5.3    2.65   0.109  0.897
## Residuals        30  728.4   24.28