Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways.
library(caret)
library(dplyr)
library(rpart)
library(rpart.plot)
library(rattle)
library(randomForest)
library(corrplot)
# set the url for the download
urlTrain <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
urlValid <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
# download the datasets
training <- read.csv(url(urlTrain))
validation <- read.csv(url(urlValid))
training$classe <- as.factor(training$classe)
# create a partition with the training dataset
inTrain <- createDataPartition(y=training$classe,p=0.7,list=FALSE)
trainSet <- training[inTrain,]
testSet <- training[-inTrain,]
dim(trainSet)
## [1] 13737 160
dim(testSet)
## [1] 5885 160
# remove variables with near zero variance
NZV <- nearZeroVar(trainSet)
trainSet <- trainSet[,-NZV]
testSet <- testSet[,-NZV]
# remove variables that are mostly NA
allNA <- sapply(trainSet,function(x)mean(is.na(x)))>0.95
trainSet <- trainSet[,allNA==FALSE]
testSet <- testSet[,allNA==FALSE]
# remove identification only variables
trainSet <- trainSet[,-(1:5)]
testSet <- testSet[,-(1:5)]
dim(trainSet)
## [1] 13737 54
dim(testSet)
## [1] 5885 54
#library(corrplot)
corMatrix <- cor(trainSet[,-54])
corrplot(corMatrix,order="FPC",method="color",type="lower",tl.cex=0.8,tl.col=rgb(0,0,0))
# model fit
set.seed(123)
controlRF <- trainControl(method="cv",number=3,verboseIter=FALSE)
modFitRandForest <- train(classe~.,data=trainSet,method="rf",trControl=controlRF)
modFitRandForest$finalModel
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 27
##
## OOB estimate of error rate: 0.25%
## Confusion matrix:
## A B C D E class.error
## A 3905 1 0 0 0 0.0002560164
## B 5 2650 3 0 0 0.0030097818
## C 0 6 2390 0 0 0.0025041736
## D 0 0 11 2240 1 0.0053285968
## E 0 0 0 7 2518 0.0027722772
# prediction on test set
predRandForest <- predict(modFitRandForest,testSet)
confMatRandForest <- confusionMatrix(predRandForest,testSet$classe)
# plot matrix results
plot(confMatRandForest$table,col=confMatRandForest$byClass,
main=paste("Random Forest - Accuracy =",round(confMatRandForest$overall['Accuracy'],4)))
# model fit
set.seed(1234)
modFitDecTree <- rpart(classe~.,data=trainSet,method="class")
fancyRpartPlot(modFitDecTree)
# prediction on test data set
predDecTree <- predict(modFitDecTree,newdata=testSet,type="class")
confMatDecTree <- confusionMatrix(predDecTree,testSet$classe)
confMatDecTree
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1519 276 43 108 99
## B 44 600 44 23 97
## C 8 64 812 140 63
## D 85 134 57 641 129
## E 18 65 70 52 694
##
## Overall Statistics
##
## Accuracy : 0.7249
## 95% CI : (0.7133, 0.7363)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.6496
##
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9074 0.5268 0.7914 0.6649 0.6414
## Specificity 0.8751 0.9562 0.9434 0.9177 0.9573
## Pos Pred Value 0.7428 0.7426 0.7470 0.6128 0.7720
## Neg Pred Value 0.9596 0.8938 0.9554 0.9333 0.9222
## Prevalence 0.2845 0.1935 0.1743 0.1638 0.1839
## Detection Rate 0.2581 0.1020 0.1380 0.1089 0.1179
## Detection Prevalence 0.3475 0.1373 0.1847 0.1777 0.1528
## Balanced Accuracy 0.8912 0.7415 0.8674 0.7913 0.7994
# plot matrix results
plot(confMatDecTree$table,col=confMatDecTree$byClass,
main = paste("Decision Tree - Accuracy =",round(confMatDecTree$overall['Accuracy'], 4)))
# model fit
set.seed(12345)
controlGBM <- trainControl(method="repeatedcv",number=5,repeats=1)
modFitGBM <- train(classe~.,data=trainSet,method="gbm",trControl=controlGBM,verbose=F)
modFitGBM$finalModel
## A gradient boosted model with multinomial loss function.
## 150 iterations were performed.
## There were 53 predictors of which 53 had non-zero influence.
# prediction on test data set
predGBM <- predict(modFitGBM,newdata=testSet)
confMatGBM <- confusionMatrix(predGBM,testSet$classe)
confMatGBM
## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1663 7 0 3 0
## B 10 1115 9 2 4
## C 0 16 1013 11 5
## D 1 0 3 947 16
## E 0 1 1 1 1057
##
## Overall Statistics
##
## Accuracy : 0.9847
## 95% CI : (0.9812, 0.9877)
## No Information Rate : 0.2845
## P-Value [Acc > NIR] : < 2.2e-16
##
## Kappa : 0.9807
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
## Class: A Class: B Class: C Class: D Class: E
## Sensitivity 0.9934 0.9789 0.9873 0.9824 0.9769
## Specificity 0.9976 0.9947 0.9934 0.9959 0.9994
## Pos Pred Value 0.9940 0.9781 0.9694 0.9793 0.9972
## Neg Pred Value 0.9974 0.9949 0.9973 0.9965 0.9948
## Prevalence 0.2845 0.1935 0.1743 0.1638 0.1839
## Detection Rate 0.2826 0.1895 0.1721 0.1609 0.1796
## Detection Prevalence 0.2843 0.1937 0.1776 0.1643 0.1801
## Balanced Accuracy 0.9955 0.9868 0.9904 0.9892 0.9881
# plot matrix results
plot(confMatGBM$table,col=confMatGBM$byClass,
main=paste("GBM - Accuracy =",round(confMatGBM$overall['Accuracy'],4)))
# Applying the Selected Model to the Validation Data
predValidation <- predict(modFitRandForest,validation)
predValidation
## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E