pacman::p_load(foreign)
dta <- read.dta("bodyfat.dta",
convert.dates = TRUE,
convert.factors = TRUE,
missing.type = FALSE,
convert.underscore = FALSE,
warn.missing.labels = TRUE)
str(dta)
## 'data.frame': 2273 obs. of 4 variables:
## $ id : num 1 1 1 2 2 2 3 3 3 4 ...
## $ sex : Factor w/ 2 levels "female","male": 2 2 2 1 1 1 1 1 1 1 ...
## $ age : num 11 13 15 11 13 15 11 13 15 11 ...
## $ bodyfat: num 4 6.2 10.5 8.1 10.4 ...
## - attr(*, "datalabel")= chr ""
## - attr(*, "time.stamp")= chr "21 May 2011 13:30"
## - attr(*, "formats")= chr [1:4] "%9.0g" "%9.0g" "%9.0g" "%9.0g"
## - attr(*, "types")= int [1:4] 254 254 254 254
## - attr(*, "val.labels")= chr [1:4] "" "labsex" "" ""
## - attr(*, "var.labels")= chr [1:4] "group(u)" "" "" ""
## - attr(*, "version")= int 8
## - attr(*, "label.table")=List of 1
## ..$ labsex: Named int [1:2] 1 2
## .. ..- attr(*, "names")= chr [1:2] "female" "male"
head (dta)
## id sex age bodyfat
## 1 1 male 11 4.0
## 2 1 male 13 6.2
## 3 1 male 15 10.5
## 4 2 female 11 8.1
## 5 2 female 13 10.4
## 6 2 female 15 15.2
library(ggplot2)
ggplot(dta, aes(age, bodyfat,
group = id,
color = id)) +
geom_point()+
stat_summary(fun = mean, geom = "line") +
#stat_summary(fun = mean, geom = "point") +
#stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.3) +
#scale_shape_manual(values = c(1, 2)) +
facet_wrap( ~ sex)+
labs(x = "Age (in years)",
y = "Body fat (in %)") +
theme(legend.justification = c(1, 1),
legend.position = c(1, 1),
legend.background = element_rect(fill = "white",color = "black"))
pacman::p_load(dplyr, furniture)
dta %>%
dplyr::group_by(sex) %>%
dplyr::select(starts_with("bodyfat")) %>%
furniture::table1(digits=2, total=FALSE, test=F, output="html")
## Adding missing grouping variables: `sex`
## Using dplyr::group_by() groups: sex
female | male | |
---|---|---|
n = 1045 | n = 1228 | |
bodyfat | ||
10.04 (2.56) | 8.84 (2.49) |