Word 1
w1 <- df %>% filter(w1_perc!=0)
library(ggplot2)
p<-ggplot(w1, aes(x=factor(Category, levels=c("Geography & Language",
"Race & Ethnicity", "Otherness","Negative",
"Neutral", "Positive", "Culture",
"Others & Unsure")),
y = w1_perc, fill=Country)) + geom_bar(stat="identity", position=position_dodge())
p + labs(title="Word 1") +
xlab("Category") + ylab("Normalized Percentage") +
coord_flip()

Word 2
w2 <- df %>% filter(w2_perc!=0)
library(ggplot2)
p<-ggplot(w2, aes(x=factor(Category, levels=c("Geography & Language",
"Race & Ethnicity",
"Otherness","Negative",
"Neutral", "Positive",
"Culture",
"Others & Unsure")),
y = w2_perc, fill=Country)) + geom_bar(stat="identity", position=position_dodge())
p + labs(title="Word 2") +
xlab("Category") + ylab("Normalized Percentage") +
coord_flip()

Word 3
w3 <- df %>% filter(w3_perc!=0)
library(ggplot2)
p<-ggplot(w3, aes(x=factor(Category, levels=c("Geography & Language",
"Race & Ethnicity",
"Otherness","Negative",
"Neutral", "Positive",
"Culture",
"Others & Unsure")),
y = w3_perc, fill=Country)) + geom_bar(stat="identity", position=position_dodge())
p + labs(title="Word 3") +
xlab("Category") + ylab("Normalized Percentage") +
coord_flip()

Word 4
w4 <- df %>% filter(w4_perc!=0)
library(ggplot2)
p<-ggplot(w4, aes(x=factor(Category, levels=c("Geography & Language",
"Race & Ethnicity",
"Otherness","Negative",
"Neutral", "Positive",
"Culture",
"Others & Unsure")),
y = w4_perc, fill=Country)) + geom_bar(stat="identity", position=position_dodge())
p + labs(title="Word 4") +
xlab("Category") + ylab("Normalized Percentage") +
coord_flip()

Word 5
w5 <- df %>% filter(w5_perc!=0)
library(ggplot2)
p<-ggplot(w3, aes(x=factor(Category, levels=c("Geography & Language",
"Race & Ethnicity",
"Otherness","Negative",
"Neutral", "Positive",
"Culture",
"Others & Unsure")),
y = w3_perc, fill=Country)) + geom_bar(stat="identity", position=position_dodge())
p + labs(title="Word 5") +
xlab("Category") + ylab("Normalized Percentage") +
coord_flip()
