\(\geq 100\).
\(\geq 110\).
\(\geq 120\).
Answers to Part 1:
# Define the mean, variance, and standard_deviation variables that will be used in all 3 calculations.
mean <- 0
variance <- 365 * 0.25
standard_deviation <- sqrt(variance)
answer_a <- pnorm(100 - 100, mean, standard_deviation, lower.tail = FALSE)
paste('The probability that Y365 ≥ 100 is', answer_a)
## [1] "The probability that Y365 ≥ 100 is 0.5"
Answer: 0.5
answer_b <- pnorm(110 - 100, mean, standard_deviation, lower.tail = FALSE)
paste('The probability that Y365 ≥ 110 is', answer_b)
## [1] "The probability that Y365 ≥ 110 is 0.147584879761555"
Answer: 0.147584879761555
answer_c <- pnorm(120 - 100, mean, standard_deviation, lower.tail = FALSE)
paste('The probability that Y365 ≥ 120 is', answer_c)
## [1] "The probability that Y365 ≥ 120 is 0.0181435485458444"
Answer: 0.0181435485458444
Answer to question 2:
Binomial function: \(b(x, n, p) = \frac{n!}{x!(n-x)!}p^xq^{n-x}\) with \(q=1-p\).
Moment Generating function: \[Mx(t)=\sum_{x=0}^{n} e^{xt} \frac{n!}{x!(n-x)!}p^xq^{n-x} = \sum_{x=0}^{n} (pe^t)^x \frac{n!}{x!(n-x)!}q^{n-x} = (q+pe^t)^n\]
Derivative function: \(\frac{dM(t)}{dt} = pe^t n(q+pe^t)^{n-1}\)
Variance:
Evaluate \(t = 0\):
\(E(x) = np(q+p)^{n-1} = np\)
\(E(x^2) = np(q + p)^{n−2}(q + np) = np(q + np) \therefore V = E(x^2) - (E(x))^2 = np(q + np) - (np)^2 = np(q+np) - n^2p^2 = npq\)
Answer to question 3:
Moment Generating function:
\[Mx(t) = \int_{-\infty}^\infty e^{tx}fx(x)dx = \int_0^\infty e^{tx}\lambda e^{-\lambda x}dx = \lambda \int_0^\infty e^{(t - \lambda)x}dx = \frac{\lambda}{t- \lambda}\]
Find the 1st and 2nd moments: \(E(x) = \frac{\lambda}{(t- \lambda)^2}|_{t=0} = \frac{1}{\lambda}\)
Variance: \(V = E(x^2) = \frac{2\lambda}{(t- \lambda)^3}|_{t=0} = \frac{2}{\lambda^2}\)