Libraries

library(ggplot2)

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble  3.0.3     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## v purrr   0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(anesr)

library(coefplot)
## Warning: package 'coefplot' was built under R version 4.0.3

Data

data("timeseries_2016")

anes16 <- timeseries_2016 

TV <- anes16 %>% select(V161364, V161365, V161366, V161367, V161368, V161369, V161370, V161371, V161372, V161373, V161374, V161375, V161376, V161377, V161378, V161379, V161380, V161381, V161382, V161383, V161384, V161385, V161386, V161387, V161388, V161389, V161390, V161391, V161392, V161393, V161394, V161395, V161396, V161397, V161398, V161399, V161400, V161401, V161402, V161403, V161404, V161405, V161406, V161407, V161408, V161409, V161410, V161411)

Dontknowshit <- anes16 %>% select(V161363f)

Did_You_Vote <- anes16 %>% select(V162034)

TV_Cleaned <- read.csv("C:/Users/Owner/Downloads/TV Cleaned - Sheet1.csv")

Data Grouped

Traditional_Political_News_Programs <- TV %>% select(V161364, V161367, V161380, V161384, V161388, V161390, V161396, V161399, V161405)

Entertainment_or_Opinion_Political_News_Programs <- TV %>% select(V161365, V161370, V161371, V161372, V161375, V161379, V161381, V161382, V161386,V161391, V161393, V161400, V161403, V161404, V161409)

Entertainment_Programs_that_are_Expressly_Political <- TV %>% select(V161385, V161389, V161402, V161406,V161411)

Entertainment_Programs_that_are_not_Expressly_Political_but_Focus_on_a_salient_Political_issue <- TV %>% select(V161366, V161368, V161374, V161377, V161387, V161392, V161397, V161401)

Entertainment_Programs_with_little_to_No_Political_Content <- TV %>% select(V161369, V161373, V161376, V161378, V161383, V161394, V161395, V161398, V161407, V161410)

Data Viewed

View(anes16)

view(TV)

view(Dontknowshit)

View(Did_You_Vote)

View(TV_Cleaned)

view(Traditional_Political_News_Programs)

view(Entertainment_or_Opinion_Political_News_Programs)

view(Entertainment_Programs_that_are_Expressly_Political)

view(Entertainment_Programs_that_are_not_Expressly_Political_but_Focus_on_a_salient_Political_issue)

view(Entertainment_Programs_with_little_to_No_Political_Content)

Regression for Traditional_Political_News_Programs

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Traditional_Political_News_Programs_Moded <- lm(vote ~  V161364 + V161367 + V161380 + V161384 + V161388 +  V161390 +  V161396 + V161399 + V161405 , data = anes_clean)

summary(Traditional_Political_News_Programs_Moded)
## 
## Call:
## lm(formula = vote ~ V161364 + V161367 + V161380 + V161384 + V161388 + 
##     V161390 + V161396 + V161399 + V161405, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99364  0.01337  0.01342  0.01594  0.03208 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.986583   0.003268 301.883   <2e-16 ***
## V161364     -0.012439   0.007091  -1.754   0.0795 .  
## V161367     -0.002355   0.007031  -0.335   0.7376    
## V161380     -0.001338   0.006321  -0.212   0.8324    
## V161384      0.007274   0.008920   0.816   0.4149    
## V161388     -0.001901   0.008307  -0.229   0.8190    
## V161390      0.000247   0.006390   0.039   0.9692    
## V161396     -0.002527   0.006639  -0.381   0.7035    
## V161399      0.009162   0.006599   1.388   0.1652    
## V161405      0.001988   0.007596   0.262   0.7935    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1191 on 2425 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.002155,   Adjusted R-squared:  -0.001549 
## F-statistic: 0.5818 on 9 and 2425 DF,  p-value: 0.8131
coefplot::coefplot(Traditional_Political_News_Programs_Moded)

Regression for Entertainment_or_Opinion_Political_News_Programs

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Entertainment_or_Opinion_Political_News_Programs_Moded <- lm(vote ~ V161365 + V161370 + V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + V161409 , data = anes_clean)

summary(Entertainment_or_Opinion_Political_News_Programs_Moded)
## 
## Call:
## lm(formula = vote ~ V161365 + V161370 + V161371 + V161372 + V161375 + 
##     V161379 + V161381 + V161382 + V161386 + V161391 + V161393 + 
##     V161400 + V161403 + V161404 + V161409, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99369  0.00854  0.01552  0.01718  0.04461 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9844826  0.0034057 289.068   <2e-16 ***
## V161365      0.0127831  0.0147687   0.866    0.387    
## V161370      0.0054379  0.0098830   0.550    0.582    
## V161371     -0.0125862  0.0078813  -1.597    0.110    
## V161372     -0.0057542  0.0100814  -0.571    0.568    
## V161375     -0.0057823  0.0165750  -0.349    0.727    
## V161379      0.0090828  0.0063908   1.421    0.155    
## V161381      0.0041697  0.0074241   0.562    0.574    
## V161382     -0.0040115  0.0066486  -0.603    0.546    
## V161386     -0.0069851  0.0111631  -0.626    0.532    
## V161391     -0.0018431  0.0107007  -0.172    0.863    
## V161393      0.0090539  0.0104436   0.867    0.386    
## V161400     -0.0067384  0.0061025  -1.104    0.270    
## V161403      0.0083804  0.0116256   0.721    0.471    
## V161404     -0.0007724  0.0133486  -0.058    0.954    
## V161409      0.0091393  0.0089746   1.018    0.309    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1191 on 2419 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.004775,   Adjusted R-squared:  -0.001396 
## F-statistic: 0.7738 on 15 and 2419 DF,  p-value: 0.7082
coefplot::coefplot(Entertainment_or_Opinion_Political_News_Programs_Moded)

### Regression for Entertainment_Programs_that_are_Expressly_Political ###

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Entertainment_Programs_that_are_Expressly_Political_Moded <- lm(vote ~  V161385 + V161389 + V161402 + V161406 + V161411 , data = anes_clean)

summary(Entertainment_Programs_that_are_Expressly_Political_Moded)
## 
## Call:
## lm(formula = vote ~ V161385 + V161389 + V161402 + V161406 + V161411, 
##     data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99986  0.01329  0.01329  0.01329  0.06162 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.986710   0.002832 348.365   <2e-16 ***
## V161385     -0.005068   0.008554  -0.592    0.554    
## V161389     -0.008679   0.007210  -1.204    0.229    
## V161402     -0.002713   0.007849  -0.346    0.730    
## V161406      0.013153   0.008509   1.546    0.122    
## V161411     -0.034586   0.027535  -1.256    0.209    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.119 on 2429 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.002584,   Adjusted R-squared:  0.0005305 
## F-statistic: 1.258 on 5 and 2429 DF,  p-value: 0.2792
coefplot::coefplot(Entertainment_Programs_that_are_Expressly_Political_Moded)

Regresion for Entertainment_Programs_that_are_not_Expressly_Political_but_Focus_on_a_salient_Political_issue

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Entertainment_Programs_that_are_not_Expressly_Political_but_Focus_on_a_salient_Political_issue_Moded <- lm(vote ~ V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + V161397 + V161401, data = anes_clean)

summary(Entertainment_Programs_that_are_not_Expressly_Political_but_Focus_on_a_salient_Political_issue_Moded)
## 
## Call:
## lm(formula = vote ~ V161366 + V161368 + V161374 + V161377 + V161387 + 
##     V161392 + V161397 + V161401, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99446  0.01280  0.01386  0.01386  0.03445 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9861353  0.0030713 321.086   <2e-16 ***
## V161366      0.0018543  0.0077608   0.239    0.811    
## V161368      0.0035524  0.0066885   0.531    0.595    
## V161374     -0.0005336  0.0068255  -0.078    0.938    
## V161377     -0.0126453  0.0096551  -1.310    0.190    
## V161387     -0.0073094  0.0074620  -0.980    0.327    
## V161392      0.0029080  0.0133304   0.218    0.827    
## V161397      0.0047738  0.0075976   0.628    0.530    
## V161401     -0.0019518  0.0093668  -0.208    0.835    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1192 on 2426 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.001344,   Adjusted R-squared:  -0.001949 
## F-statistic: 0.4082 on 8 and 2426 DF,  p-value: 0.9165
coefplot::coefplot(Entertainment_Programs_that_are_not_Expressly_Political_but_Focus_on_a_salient_Political_issue_Moded)

Regresion for Entertainment_Programs_with_little_to_No_Political_Content

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Entertainment_Programs_with_little_to_No_Political_Content_moded <- lm(vote ~ V161369 + V161373 + V161376 + V161378 + V161383 + V161394 + V161395 + V161398 + V161407 + V161410, data = anes_clean)

summary(Entertainment_Programs_with_little_to_No_Political_Content_moded)
## 
## Call:
## lm(formula = vote ~ V161369 + V161373 + V161376 + V161378 + V161383 + 
##     V161394 + V161395 + V161398 + V161407 + V161410, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99609  0.00850  0.01377  0.01630  0.07174 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9837021  0.0036483 269.633  < 2e-16 ***
## V161369     -0.0072088  0.0092191  -0.782 0.434326    
## V161373      0.0038131  0.0066968   0.569 0.569138    
## V161376      0.0025625  0.0051517   0.497 0.618948    
## V161378     -0.0043359  0.0105797  -0.410 0.681967    
## V161383     -0.0040557  0.0070671  -0.574 0.566098    
## V161394     -0.0037746  0.0065956  -0.572 0.567172    
## V161395      0.0090040  0.0064880   1.388 0.165327    
## V161398     -0.0438926  0.0130457  -3.365 0.000779 ***
## V161407      0.0077932  0.0056309   1.384 0.166485    
## V161410      0.0008238  0.0065487   0.126 0.899903    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1189 on 2424 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.007062,   Adjusted R-squared:  0.002966 
## F-statistic: 1.724 on 10 and 2424 DF,  p-value: 0.06991
coefplot::coefplot(Entertainment_Programs_with_little_to_No_Political_Content_moded)

Regression for All Variables

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))


All_Variables_Moded <- lm(vote ~ V161364 + V161367 + V161380 + V161384 + V161388 +  V161390 +  V161396 + V161399 + V161405 + V161365 + V161370 + V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + V161409 + V161385 + V161389 + V161402 + V161406 + V161411 + V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + V161397 + V161401 + V161369 + V161373 + V161376 + V161378 + V161383 + V161394 + V161395 + V161398 + V161407 + V161410, data = anes_clean)

summary(All_Variables_Moded)
## 
## Call:
## lm(formula = vote ~ V161364 + V161367 + V161380 + V161384 + V161388 + 
##     V161390 + V161396 + V161399 + V161405 + V161365 + V161370 + 
##     V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + 
##     V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + 
##     V161409 + V161385 + V161389 + V161402 + V161406 + V161411 + 
##     V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + 
##     V161397 + V161401 + V161369 + V161373 + V161376 + V161378 + 
##     V161383 + V161394 + V161395 + V161398 + V161407 + V161410, 
##     data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99739  0.00417  0.01429  0.02168  0.08244 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.837e-01  4.496e-03 218.795  < 2e-16 ***
## V161364     -1.306e-02  7.324e-03  -1.783  0.07465 .  
## V161367     -1.497e-04  7.440e-03  -0.020  0.98395    
## V161380      1.163e-04  6.473e-03   0.018  0.98566    
## V161384      5.296e-03  9.070e-03   0.584  0.55934    
## V161388     -4.116e-03  8.724e-03  -0.472  0.63707    
## V161390     -2.156e-03  6.687e-03  -0.322  0.74715    
## V161396     -5.631e-05  6.994e-03  -0.008  0.99358    
## V161399      7.049e-03  6.797e-03   1.037  0.29980    
## V161405      1.911e-03  7.753e-03   0.247  0.80530    
## V161365      1.194e-02  1.487e-02   0.803  0.42205    
## V161370      5.206e-03  9.974e-03   0.522  0.60174    
## V161371     -1.042e-02  8.599e-03  -1.212  0.22567    
## V161372     -6.338e-03  1.016e-02  -0.624  0.53294    
## V161375      3.455e-03  1.693e-02   0.204  0.83831    
## V161379      7.393e-03  6.882e-03   1.074  0.28285    
## V161381      5.088e-03  7.595e-03   0.670  0.50302    
## V161382     -3.997e-03  7.189e-03  -0.556  0.57826    
## V161386     -7.472e-03  1.146e-02  -0.652  0.51460    
## V161391     -9.164e-04  1.076e-02  -0.085  0.93217    
## V161393      1.091e-02  1.058e-02   1.031  0.30245    
## V161400     -5.555e-03  6.530e-03  -0.851  0.39499    
## V161403      8.345e-03  1.214e-02   0.687  0.49200    
## V161404     -2.016e-03  1.352e-02  -0.149  0.88146    
## V161409      1.021e-02  9.088e-03   1.124  0.26128    
## V161385     -6.816e-03  8.879e-03  -0.768  0.44276    
## V161389     -7.413e-03  7.558e-03  -0.981  0.32675    
## V161402     -1.697e-04  9.027e-03  -0.019  0.98500    
## V161406      1.786e-02  9.268e-03   1.927  0.05404 .  
## V161411     -3.949e-02  2.815e-02  -1.403  0.16070    
## V161366      5.510e-04  8.160e-03   0.068  0.94617    
## V161368      2.758e-03  6.876e-03   0.401  0.68842    
## V161374     -3.151e-03  6.975e-03  -0.452  0.65147    
## V161377     -1.235e-02  9.996e-03  -1.235  0.21678    
## V161387     -6.990e-03  7.788e-03  -0.898  0.36947    
## V161392      1.072e-02  1.387e-02   0.773  0.43956    
## V161397      3.113e-03  7.882e-03   0.395  0.69286    
## V161401     -2.619e-03  9.492e-03  -0.276  0.78266    
## V161369     -9.738e-03  9.973e-03  -0.976  0.32896    
## V161373      4.600e-03  6.866e-03   0.670  0.50294    
## V161376      1.853e-03  5.266e-03   0.352  0.72496    
## V161378     -2.878e-03  1.085e-02  -0.265  0.79084    
## V161383     -2.192e-03  7.339e-03  -0.299  0.76523    
## V161394     -1.641e-03  6.819e-03  -0.241  0.80980    
## V161395      7.957e-03  6.703e-03   1.187  0.23531    
## V161398     -3.979e-02  1.350e-02  -2.947  0.00324 ** 
## V161407      1.064e-02  5.864e-03   1.815  0.06971 .  
## V161410      1.786e-03  7.059e-03   0.253  0.80026    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1192 on 2387 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.0175, Adjusted R-squared:  -0.001846 
## F-statistic: 0.9046 on 47 and 2387 DF,  p-value: 0.6578
coefplot::coefplot (All_Variables_Moded)

Regression for All News Variables

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

All_News_Variables_Moded <- lm(vote ~ V161364 + V161367 + V161380 + V161384 + V161388 +  V161390 +  V161396 + V161399 + V161405 + V161365 + V161370 + V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + V161409 , data = anes_clean)

summary(All_News_Variables_Moded)
## 
## Call:
## lm(formula = vote ~ V161364 + V161367 + V161380 + V161384 + V161388 + 
##     V161390 + V161396 + V161399 + V161405 + V161365 + V161370 + 
##     V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + 
##     V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + 
##     V161409, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99794  0.00776  0.01492  0.01858  0.05064 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9850753  0.0036601 269.138   <2e-16 ***
## V161364     -0.0113200  0.0072041  -1.571    0.116    
## V161367     -0.0013263  0.0073184  -0.181    0.856    
## V161380     -0.0012069  0.0063777  -0.189    0.850    
## V161384      0.0065488  0.0090426   0.724    0.469    
## V161388     -0.0048599  0.0086830  -0.560    0.576    
## V161390     -0.0017818  0.0066364  -0.268    0.788    
## V161396      0.0002429  0.0069281   0.035    0.972    
## V161399      0.0081591  0.0067333   1.212    0.226    
## V161405      0.0010693  0.0077032   0.139    0.890    
## V161365      0.0125633  0.0148116   0.848    0.396    
## V161370      0.0043527  0.0099159   0.439    0.661    
## V161371     -0.0117902  0.0079714  -1.479    0.139    
## V161372     -0.0050377  0.0101146  -0.498    0.618    
## V161375     -0.0057581  0.0166785  -0.345    0.730    
## V161379      0.0092897  0.0067619   1.374    0.170    
## V161381      0.0050499  0.0075297   0.671    0.502    
## V161382     -0.0034332  0.0071227  -0.482    0.630    
## V161386     -0.0069849  0.0114380  -0.611    0.541    
## V161391     -0.0016429  0.0107312  -0.153    0.878    
## V161393      0.0092172  0.0105069   0.877    0.380    
## V161400     -0.0056829  0.0064161  -0.886    0.376    
## V161403      0.0084083  0.0118151   0.712    0.477    
## V161404     -0.0012704  0.0134388  -0.095    0.925    
## V161409      0.0096589  0.0090177   1.071    0.284    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1193 on 2410 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.006469,   Adjusted R-squared:  -0.003425 
## F-statistic: 0.6538 on 24 and 2410 DF,  p-value: 0.8982
coefplot::coefplot (All_News_Variables_Moded)

Regression for All Entertainment Variables

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

All_Entertainment_Variables_Moded <- lm(vote ~ V161385 + V161389 + V161402 + V161406 + V161411 + V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + V161397 + V161401 + V161369 + V161373 + V161376 + V161378 + V161383 + V161394 + V161395 + V161398 + V161407 + V161410 , data = anes_clean)

summary(All_Entertainment_Variables_Moded)
## 
## Call:
## lm(formula = vote ~ V161385 + V161389 + V161402 + V161406 + V161411 + 
##     V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + 
##     V161397 + V161401 + V161369 + V161373 + V161376 + V161378 + 
##     V161383 + V161394 + V161395 + V161398 + V161407 + V161410, 
##     data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99444  0.00715  0.01437  0.01888  0.07498 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9856348  0.0039748 247.969   <2e-16 ***
## V161385     -0.0056527  0.0087766  -0.644   0.5196    
## V161389     -0.0071094  0.0074729  -0.951   0.3415    
## V161402     -0.0007838  0.0088199  -0.089   0.9292    
## V161406      0.0157292  0.0091337   1.722   0.0852 .  
## V161411     -0.0337958  0.0277437  -1.218   0.2233    
## V161366      0.0013229  0.0080724   0.164   0.8698    
## V161368      0.0025716  0.0067847   0.379   0.7047    
## V161374     -0.0024921  0.0068864  -0.362   0.7175    
## V161377     -0.0139670  0.0098920  -1.412   0.1581    
## V161387     -0.0072958  0.0076092  -0.959   0.3377    
## V161392      0.0112850  0.0137750   0.819   0.4127    
## V161397      0.0023762  0.0078032   0.305   0.7608    
## V161401     -0.0022469  0.0094181  -0.239   0.8115    
## V161369     -0.0102135  0.0097630  -1.046   0.2956    
## V161373      0.0035528  0.0067833   0.524   0.6005    
## V161376      0.0025931  0.0051787   0.501   0.6166    
## V161378     -0.0040341  0.0107380  -0.376   0.7072    
## V161383     -0.0048105  0.0071766  -0.670   0.5027    
## V161394     -0.0035018  0.0066456  -0.527   0.5983    
## V161395      0.0081213  0.0065921   1.232   0.2181    
## V161398     -0.0433364  0.0132611  -3.268   0.0011 ** 
## V161407      0.0093973  0.0058114   1.617   0.1060    
## V161410      0.0008726  0.0066005   0.132   0.8948    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1189 on 2411 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.01127,    Adjusted R-squared:  0.001842 
## F-statistic: 1.195 on 23 and 2411 DF,  p-value: 0.2371
coefplot::coefplot(All_Entertainment_Variables_Moded)

Regression for Political Entertainment Variables

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Political_Entertainment_Variables_Moded <- lm(vote ~ V161385 + V161389 + V161402 + V161406 + V161411 + V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + V161397 + V161401, data = anes_clean)

summary(Political_Entertainment_Variables_Moded)
## 
## Call:
## lm(formula = vote ~ V161385 + V161389 + V161402 + V161406 + V161411 + 
##     V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + 
##     V161397 + V161401, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99491  0.01234  0.01234  0.01861  0.06562 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.9876602  0.0032895 300.249   <2e-16 ***
## V161385     -0.0067656  0.0086799  -0.779    0.436    
## V161389     -0.0098116  0.0073645  -1.332    0.183    
## V161402     -0.0005574  0.0088080  -0.063    0.950    
## V161406      0.0124736  0.0086497   1.442    0.149    
## V161411     -0.0348623  0.0276413  -1.261    0.207    
## V161366      0.0029841  0.0080002   0.373    0.709    
## V161368      0.0030166  0.0067365   0.448    0.654    
## V161374     -0.0010405  0.0068722  -0.151    0.880    
## V161377     -0.0130121  0.0098036  -1.327    0.185    
## V161387     -0.0082451  0.0074957  -1.100    0.271    
## V161392      0.0078130  0.0136681   0.572    0.568    
## V161397      0.0035749  0.0077804   0.459    0.646    
## V161401     -0.0022326  0.0094073  -0.237    0.812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1191 on 2421 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.004141,   Adjusted R-squared:  -0.001206 
## F-statistic: 0.7744 on 13 and 2421 DF,  p-value: 0.6883
coefplot::coefplot(Political_Entertainment_Variables_Moded)

Regression for All Political variables

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

All_Political_Variables_Moded <- lm(vote ~ V161364 + V161367 + V161380 + V161384 + V161388 +  V161390 +  V161396 + V161399 + V161405 + V161365 + V161370 + V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + V161409 + V161385 + V161389 + V161402 + V161406 + V161411 + V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + V161397 + V161401, data = anes_clean)

summary(All_Political_Variables_Moded)
## 
## Call:
## lm(formula = vote ~ V161364 + V161367 + V161380 + V161384 + V161388 + 
##     V161390 + V161396 + V161399 + V161405 + V161365 + V161370 + 
##     V161371 + V161372 + V161375 + V161379 + V161381 + V161382 + 
##     V161386 + V161391 + V161393 + V161400 + V161403 + V161404 + 
##     V161409 + V161385 + V161389 + V161402 + V161406 + V161411 + 
##     V161366 + V161368 + V161374 + V161377 + V161387 + V161392 + 
##     V161397 + V161401, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.00130  0.00620  0.01322  0.02143  0.06495 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.868e-01  4.112e-03 239.956   <2e-16 ***
## V161364     -1.246e-02  7.264e-03  -1.715   0.0865 .  
## V161367     -1.042e-03  7.416e-03  -0.140   0.8883    
## V161380     -2.955e-04  6.459e-03  -0.046   0.9635    
## V161384      6.517e-03  9.064e-03   0.719   0.4722    
## V161388     -3.962e-03  8.725e-03  -0.454   0.6498    
## V161390     -1.189e-03  6.669e-03  -0.178   0.8585    
## V161396      3.198e-05  6.952e-03   0.005   0.9963    
## V161399      7.279e-03  6.766e-03   1.076   0.2821    
## V161405      1.608e-03  7.742e-03   0.208   0.8355    
## V161365      1.127e-02  1.485e-02   0.759   0.4480    
## V161370      4.176e-03  9.953e-03   0.420   0.6748    
## V161371     -1.269e-02  8.067e-03  -1.573   0.1158    
## V161372     -6.107e-03  1.016e-02  -0.601   0.5478    
## V161375     -8.834e-05  1.686e-02  -0.005   0.9958    
## V161379      8.382e-03  6.790e-03   1.234   0.2172    
## V161381      4.277e-03  7.566e-03   0.565   0.5719    
## V161382     -3.584e-03  7.163e-03  -0.500   0.6169    
## V161386     -6.940e-03  1.146e-02  -0.605   0.5450    
## V161391     -1.564e-03  1.076e-02  -0.145   0.8844    
## V161393      1.078e-02  1.056e-02   1.020   0.3077    
## V161400     -6.520e-03  6.467e-03  -1.008   0.3135    
## V161403      8.212e-03  1.201e-02   0.684   0.4942    
## V161404     -9.986e-04  1.350e-02  -0.074   0.9410    
## V161409      1.089e-02  9.078e-03   1.200   0.2304    
## V161385     -7.520e-03  8.796e-03  -0.855   0.3927    
## V161389     -9.684e-03  7.446e-03  -1.301   0.1935    
## V161402      3.490e-05  9.007e-03   0.004   0.9969    
## V161406      1.589e-02  8.895e-03   1.786   0.0742 .  
## V161411     -3.983e-02  2.803e-02  -1.421   0.1555    
## V161366      2.207e-03  8.098e-03   0.273   0.7852    
## V161368      3.508e-03  6.841e-03   0.513   0.6081    
## V161374     -1.786e-03  6.962e-03  -0.257   0.7976    
## V161377     -1.097e-02  9.909e-03  -1.107   0.2685    
## V161387     -7.082e-03  7.722e-03  -0.917   0.3592    
## V161392      7.968e-03  1.376e-02   0.579   0.5627    
## V161397      4.381e-03  7.858e-03   0.558   0.5772    
## V161401     -2.256e-03  9.476e-03  -0.238   0.8119    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1193 on 2397 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.01101,    Adjusted R-squared:  -0.004258 
## F-statistic: 0.7211 on 37 and 2397 DF,  p-value: 0.8939
coefplot::coefplot(All_Political_Variables_Moded)

Regression for Four Most Signifigant Shows (V161364<- 20/20) (V161406<- Scandal) (V161398<- Conan) (V161407 <- The Big Bang Theory)

clean <- function(x){ifelse (x < 0, NA, x)}
anes_clean <- anes16 %>%
    mutate(across (everything(), clean)) %>%

mutate(vote = case_when(
V162034 == 2 ~ 0,
V162034 == 1 ~ 1))

Four_Most_Signifigant_Shows_Moded <- lm(vote ~ V161364 + V161406 + V161398 + V161407, data = anes_clean)

summary(Four_Most_Signifigant_Shows_Moded)
## 
## Call:
## lm(formula = vote ~ V161364 + V161406 + V161398 + V161407, data = anes_clean)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.99963  0.00980  0.01447  0.01447  0.06731 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.985534   0.003156 312.290  < 2e-16 ***
## V161364     -0.009425   0.005727  -1.646 0.099965 .  
## V161406      0.014095   0.008313   1.695 0.090113 .  
## V161398     -0.043422   0.012683  -3.424 0.000628 ***
## V161407      0.009456   0.005397   1.752 0.079921 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1187 on 2430 degrees of freedom
##   (1835 observations deleted due to missingness)
## Multiple R-squared:  0.007613,   Adjusted R-squared:  0.005979 
## F-statistic:  4.66 on 4 and 2430 DF,  p-value: 0.0009516
coefplot::coefplot(Four_Most_Signifigant_Shows_Moded)