CHAPTER 9. CENTRAL LIMIT THEOREM
Let X be a continuous random variable with mean μ(X) and variance σ^2(X), and let X^∗=(X−μ)σ be its standardized version. Verify directly that μ(X^∗)=0 and σ2(X∗)=1.
\[X^∗= \frac{(X−μ)}{σ} \]
\[E(X^∗)=\frac{1}{σ}(E(X)−μ) \]
\[E(X^∗)=\frac{1}{σ}(μ−μ) \]
\[E(X^∗)=μ(X^∗)=0 \]
\[σ^2(X^∗)=E(\frac{X−μ}{σ})^2 \]
\[σ^2(X^∗)=\frac{1}{σ^2}σ^2 \]
\[σ^2(X^∗)=1 \]