Sys.Date()
## [1] "2020-10-25"
The numbers of infection have increased in the past days to require further restrictions in movements and a lockdown to 6pm for public services such as bars and restaurants; gyms and high level schools are required to perform on-line as a distance learning.
The follow analytics summarise the impact of new infections in months since the begin of this Panademic outbreak:
library(dplyr)
library(tidyverse)
library(tidyr)
library(deSolve)
library(reader)
library(formattable)
library(ggplot2)
library(lubridate)
customGreen0 = "#DeF7E9"
customGreen = "#71CA97"
customRed = "#ff7f7f"
Source of data are from : githubusercontent.com/pcm-dpc/COVID-19
it_regions<-read.csv("https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv")
IT_regions<- read.csv("input_data/coronavirus_it_regions.csv")
IT_regions<-formattable(IT_regions)
head(IT_regions)
| date | state | regions | recovered | ICU | hospidalized_tot | isolation | positives | new_positives | deaths | cases | new_cases | new_deaths | days_since_death10 | days_since_case100 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2020-02-24T18:00:00 | ITA | Abruzzo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2020-02-25T18:00:00 | ITA | Abruzzo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2020-02-26T18:00:00 | ITA | Abruzzo | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2020-02-27T18:00:00 | ITA | Abruzzo | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 2020-02-28T18:00:00 | ITA | Abruzzo | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2020-02-29T17:00:00 | ITA | Abruzzo | 0 | 0 | 2 | 0 | 2 | 1 | 0 | 2 | 1 | 0 | 0 | 0 |
IT_regions$date =as.Date(IT_regions$date)
it_cfr<-IT_regions%>%mutate(CFR=deaths/cases)%>%
group_by(regions)%>%
summarise(round(mean(cases)),round(mean(deaths)),round(mean(CFR,na.rm=TRUE),2))
names(it_cfr)=c("regions","avg_cases","avg_deaths","CFR" )
formattable(it_cfr,
align =c("l","c","c","r"),
list(`Indicator Name` = formatter(
"span", style = ~ style(color = "grey",font.weight = "bold")),
`CFR` = color_bar(customRed)
))
| regions | avg_cases | avg_deaths | CFR |
|---|---|---|---|
| Abruzzo | 3059 | 360 | 0.11 |
| Basilicata | 449 | 23 | 0.05 |
| Calabria | 1219 | 80 | 0.06 |
| Campania | 6312 | 355 | 0.06 |
| Emilia-Romagna | 25677 | 3513 | 0.13 |
| Friuli Venezia Giulia | 3155 | 279 | 0.08 |
| Lazio | 8785 | 646 | 0.07 |
| Liguria | 8959 | 1229 | 0.13 |
| Lombardia | 80782 | 13661 | 0.16 |
| Marche | 6096 | 823 | 0.13 |
| Molise | 414 | 19 | 0.05 |
| P.A. Bolzano | 2485 | 241 | 0.09 |
| P.A. Trento | 4168 | 349 | 0.08 |
| Piemonte | 26491 | 3189 | 0.11 |
| Puglia | 4583 | 435 | 0.09 |
| Sardegna | 1784 | 110 | 0.07 |
| Sicilia | 3793 | 234 | 0.06 |
| Toscana | 9939 | 879 | 0.08 |
| Umbria | 1591 | 66 | 0.04 |
| Valle d’Aosta | 1063 | 120 | 0.11 |
| Veneto | 18522 | 1611 | 0.08 |
it_month<-IT_regions%>%
mutate(month = format(date, "%m"),CFR=deaths/cases)%>%
group_by(month)%>%
summarise(round(mean(cases)),round(mean(deaths)),round(mean(CFR,na.rm=TRUE)*100,2))
names(it_month)=c("month","avg_cases","avg_deaths","CFR" )
it_month<-formattable(it_month)
improvement_formatter <-
formatter("span",
style = x ~ style(
font.weight = "bold",
color = ifelse(x > 0, customRed, ifelse(x < 0, customGreen, "black"))))
formattable(it_month,
align =c("l","c","c","r"),
list(`Indicator Name` = formatter(
"span", style = ~ style(color = "grey",font.weight = "bold")),
#`CFR` = color_bar(customRed),
`CFR` = improvement_formatter
))
| month | avg_cases | avg_deaths | CFR |
|---|---|---|---|
| 02 | 29 | 1 | 0.61 |
| 03 | 1858 | 179 | 3.84 |
| 04 | 7823 | 1022 | 9.15 |
| 05 | 10622 | 1496 | 10.44 |
| 06 | 11294 | 1633 | 10.89 |
| 07 | 11614 | 1667 | 10.83 |
| 08 | 12165 | 1682 | 10.22 |
| 09 | 13888 | 1698 | 8.64 |
| 10 | 18084 | 1731 | 6.74 |
cfr<-it_month$CFR
plot(cfr,type="o",col="red")
it_month<-as.data.frame(it_month)
require(ggplot2)
g<-ggplot(it_month,aes(month,CFR))
g+geom_point()
hist(it_month$CFR)