lnPCGDP = log of Per Capita GDP
TR = Tax Revenue (% of GDP)
GE.EST = Government Effectiveness.
CC.EST = Control of Corruption.
PV.EST = Political Stability and Absence of Violence.
RQ.EST = Regulatory Quality.
RL.EST = Rule of Law.
VA.EST = Voice and Accountability.
Sig = p-value
## New names:
## * `` -> ...4
## * `` -> ...5
## * `` -> ...6
## * `` -> ...7
## Model Summary
## --------------------------------------------------------------
## R 0.578 RMSE 0.598
## R-Squared 0.334 Coef. Var 37.487
## Adj. R-Squared 0.237 MSE 0.358
## Pred R-Squared 0.074 MAE 0.403
## --------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------
## Regression 9.890 8 1.236 3.452 0.0027
## Residual 19.695 55 0.358
## Total 29.586 63
## ------------------------------------------------------------------
##
## Parameter Estimates
## ----------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## ----------------------------------------------------------------------------------------
## (Intercept) 3.853 1.481 2.602 0.012 0.885 6.820
## lnPCGDP -0.142 0.159 -0.187 -0.896 0.374 -0.460 0.176
## TR -0.046 0.017 -0.376 -2.704 0.009 -0.080 -0.012
## GE.EST -0.412 0.451 -0.486 -0.912 0.366 -1.316 0.493
## CC.EST 0.494 0.283 0.717 1.742 0.087 -0.074 1.062
## PV.EST -0.210 0.158 -0.230 -1.334 0.188 -0.526 0.105
## RQ.EST -0.020 0.301 -0.023 -0.068 0.946 -0.623 0.583
## RL.EST -0.417 0.440 -0.544 -0.947 0.348 -1.299 0.465
## VA.EST 0.487 0.191 0.592 2.549 0.014 0.104 0.869
## ----------------------------------------------------------------------------------------
Here we have found ‘Control of Corruption’,‘Voice & Accountability’ and ‘Tax Revenue’(% of GDP) as significant variables to influence the palma ratio.
## Model Summary
## ---------------------------------------------------------------
## R 0.518 RMSE 0.284
## R-Squared 0.268 Coef. Var 22.789
## Adj. R-Squared 0.002 MSE 0.081
## Pred R-Squared -0.987 MAE 0.193
## ---------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------
## Regression 0.653 8 0.082 1.009 0.4573
## Residual 1.780 22 0.081
## Total 2.433 30
## ------------------------------------------------------------------
##
## Parameter Estimates
## ---------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## ---------------------------------------------------------------------------------------
## (Intercept) 1.197 2.361 0.507 0.617 -3.699 6.093
## lnPCGDP 0.080 0.239 0.102 0.336 0.740 -0.414 0.575
## TR -0.017 0.011 -0.314 -1.493 0.150 -0.040 0.007
## GE.EST -0.309 0.540 -0.524 -0.573 0.573 -1.429 0.811
## CC.EST 0.301 0.234 0.773 1.287 0.212 -0.184 0.785
## PV.EST -0.276 0.156 -0.437 -1.774 0.090 -0.599 0.047
## RQ.EST -0.072 0.264 -0.127 -0.273 0.787 -0.620 0.475
## RL.EST -0.088 0.524 -0.174 -0.167 0.869 -1.175 0.999
## VA.EST -0.028 0.442 -0.031 -0.063 0.950 -0.945 0.890
## ---------------------------------------------------------------------------------------
Here we have only found ‘political stability and absence of violence’ as a significant variable to influence the palma ratio.
## Model Summary
## --------------------------------------------------------------
## R 0.844 RMSE 0.578
## R-Squared 0.712 Coef. Var 27.987
## Adj. R-Squared 0.534 MSE 0.334
## Pred R-Squared 0.147 MAE 0.363
## --------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------
## Regression 10.726 8 1.341 4.01 0.0132
## Residual 4.346 13 0.334
## Total 15.073 21
## ------------------------------------------------------------------
##
## Parameter Estimates
## ----------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## ----------------------------------------------------------------------------------------
## (Intercept) 11.799 4.840 2.438 0.030 1.344 22.255
## lnPCGDP -0.822 0.486 -0.267 -1.692 0.114 -1.871 0.228
## TR -0.106 0.049 -0.488 -2.170 0.049 -0.212 0.000
## GE.EST -0.182 0.620 -0.064 -0.293 0.774 -1.522 1.159
## CC.EST 0.294 0.546 0.155 0.538 0.600 -0.886 1.473
## PV.EST -0.786 0.271 -0.607 -2.904 0.012 -1.371 -0.201
## RQ.EST -0.541 0.521 -0.283 -1.038 0.318 -1.666 0.585
## RL.EST 0.227 0.680 0.102 0.333 0.744 -1.243 1.696
## VA.EST 1.219 0.270 1.080 4.507 0.001 0.635 1.803
## ----------------------------------------------------------------------------------------
Here we have found ‘Tax Revenue’,‘Political Stability & Absence of Violence(PV.ESt)’ and ‘voice & accountability’ as significant to influence the Palma Ratio.
## Model Summary
## -------------------------------------------------------------
## R 1.000 RMSE NaN
## R-Squared 1.000 Coef. Var NaN
## Adj. R-Squared NaN MSE NaN
## Pred R-Squared NaN MAE 0.000
## -------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## -------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## -------------------------------------------------------------
## Regression 1.874 7 0.268 NaN NaN
## Residual 0.000 0 NaN
## Total 1.874 7
## -------------------------------------------------------------
##
## Parameter Estimates
## ----------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## ----------------------------------------------------------------------------------
## (Intercept) -3.960 NaN NaN NaN NaN NaN
## lnPCGDP 1.121 NaN 0.972 NaN NaN NaN NaN
## TR -0.238 NaN -1.835 NaN NaN NaN NaN
## GE.EST -5.612 NaN -3.495 NaN NaN NaN NaN
## CC.EST 6.069 NaN 3.712 NaN NaN NaN NaN
## PV.EST -0.329 NaN -0.508 NaN NaN NaN NaN
## RQ.EST 2.553 NaN 1.351 NaN NaN NaN NaN
## RL.EST -1.593 NaN -1.051 NaN NaN NaN NaN
## VA.EST NA NA 0.829 NA NA NaN NaN
## ----------------------------------------------------------------------------------
From the table,we can see that there are several factors which has no standard error,t value or p-value (Sig).The reason behind is that our number of observation is very low to estimate the parameters.
OLS Assumption:
Number of estimators must be lower than number of observations.
Since our observation contains only 8 countries and number of parameters we wanted to estimate is also equal to 8,we don’t find any significant result. As our residual variation becomes 0, r square value becomes 1.
Same reason also goes for 3 low income countries.There’s no use running regression on that.
##
## East Asia & Pacific Europe & Central Asia
## 4 40
## Latin America & Caribbean Middle East & North Africa
## 11 2
## North America South Asia
## 1 2
## Sub-Saharan Africa
## 4
## Model Summary
## ---------------------------------------------------------------
## R 0.614 RMSE 0.249
## R-Squared 0.376 Coef. Var 20.339
## Adj. R-Squared 0.216 MSE 0.062
## Pred R-Squared -0.224 MAE 0.165
## ---------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------
## Regression 1.163 8 0.145 2.339 0.0428
## Residual 1.927 31 0.062
## Total 3.090 39
## ------------------------------------------------------------------
##
## Parameter Estimates
## ---------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## ---------------------------------------------------------------------------------------
## (Intercept) -1.444 1.397 -1.034 0.309 -4.294 1.406
## lnPCGDP 0.231 0.138 0.511 1.678 0.103 -0.050 0.513
## TR 0.009 0.010 0.173 0.978 0.335 -0.010 0.029
## GE.EST 0.332 0.264 0.961 1.257 0.218 -0.207 0.870
## CC.EST -0.195 0.171 -0.716 -1.140 0.263 -0.543 0.154
## PV.EST -0.159 0.086 -0.435 -1.845 0.075 -0.336 0.017
## RQ.EST 0.487 0.183 1.317 2.659 0.012 0.114 0.861
## RL.EST -0.488 0.299 -1.608 -1.634 0.112 -1.098 0.121
## VA.EST -0.075 0.136 -0.222 -0.555 0.583 -0.353 0.202
## ---------------------------------------------------------------------------------------
We have found ‘Political Stability & Absence of Violence’ & ‘Regulatory quality’ as significant to influence the Palma Ratio.
## Model Summary
## ---------------------------------------------------------------
## R 0.978 RMSE 0.321
## R-Squared 0.957 Coef. Var 11.855
## Adj. R-Squared 0.785 MSE 0.103
## Pred R-Squared -0.315 MAE 0.101
## ---------------------------------------------------------------
## RMSE: Root Mean Square Error
## MSE: Mean Square Error
## MAE: Mean Absolute Error
##
## ANOVA
## ------------------------------------------------------------------
## Sum of
## Squares DF Mean Square F Sig.
## ------------------------------------------------------------------
## Regression 4.582 8 0.573 5.551 0.1616
## Residual 0.206 2 0.103
## Total 4.789 10
## ------------------------------------------------------------------
##
## Parameter Estimates
## -----------------------------------------------------------------------------------------
## model Beta Std. Error Std. Beta t Sig lower upper
## -----------------------------------------------------------------------------------------
## (Intercept) 10.680 17.848 0.598 0.610 -66.112 87.472
## lnPCGDP -0.625 1.612 -0.263 -0.388 0.736 -7.559 6.309
## TR -0.062 0.091 -0.351 -0.688 0.562 -0.453 0.328
## GE.EST -0.991 1.846 -0.521 -0.537 0.645 -8.936 6.953
## CC.EST -0.636 0.736 -0.630 -0.864 0.479 -3.803 2.531
## PV.EST -0.936 0.621 -0.853 -1.509 0.270 -3.606 1.734
## RQ.EST -0.627 0.721 -0.310 -0.869 0.477 -3.731 2.477
## RL.EST 3.706 1.228 2.665 3.019 0.094 -1.576 8.989
## VA.EST -0.589 2.165 -0.389 -0.272 0.811 -9.904 8.725
## -----------------------------------------------------------------------------------------
Here we have only found the ‘Rule of Law’ as a significant variable to influence the Palma Ratio.
For the same reason mentioned above,we are not able to show the impact of our factors on Palma Ratio based on rest of the regions.