E1U1

HéctorZapata

23/10/2020

Calidad del aire en Hermosillo sonora

Introducción

En este analisis miraremos de forma grafica el comportamiento de la calidad del aire en cuestion a una fechas establecidas, compararemos como era la contaminacion en enero del 2019, enero de 2020 y en la fecha actual octubre del 2020.

library(tidyverse)
## -- Attaching packages ---------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.3     v dplyr   1.0.2
## v tidyr   1.1.1     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.5.0
## -- Conflicts ------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(ggplot2)
library(pacman)
p_load(markdown, knitr, dplyr, tidyr, tidyverse, hashmap, lubridate,
       summarytools, ggpubr, kableExtra, reshape2,
       sf, tmap, readr, devtools, plotly, gganimate, gifski, ggplotly)
## Installing package into 'C:/Users/progr/OneDrive/Documentos/R/win-library/3.6'
## (as 'lib' is unspecified)
## Warning: package 'hashmap' is not available (for R version 3.6.3)
## Warning: unable to access index for repository http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6:
##   no fue posible abrir la URL 'http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6/PACKAGES'
## Warning: 'BiocManager' not available.  Could not check Bioconductor.
## 
## Please use `install.packages('BiocManager')` and then retry.
## Warning in p_install(package, character.only = TRUE, ...):
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'hashmap'
## Installing package into 'C:/Users/progr/OneDrive/Documentos/R/win-library/3.6'
## (as 'lib' is unspecified)
## Warning: package 'ggplotly' is not available (for R version 3.6.3)
## Warning: unable to access index for repository http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6:
##   no fue posible abrir la URL 'http://www.stats.ox.ac.uk/pub/RWin/bin/windows/contrib/3.6/PACKAGES'
## Warning: 'BiocManager' not available.  Could not check Bioconductor.
## 
## Please use `install.packages('BiocManager')` and then retry.
## Warning in p_install(package, character.only = TRUE, ...):
## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
## logical.return = TRUE, : there is no package called 'ggplotly'
## Warning in p_load(markdown, knitr, dplyr, tidyr, tidyverse, hashmap, lubridate, : Failed to install/load:
## hashmap, ggplotly
library(pacman)
p_load("readr", "DT", "prettydoc", "fdth", "modeest")

1.- ¿Qué es la estadística y que aplicaciones tiene en ingeniería (según su ingeniería)? R= La estadística es una de las herramientas más importantes en el mundo de la ingeniería, esto se debe a que esta es una herramienta lo suficientemente capaz para modelar y predecir comportamientos de la forma más exacta a problemáticas del día a día como por ejemplo en el 2019 un grupo de programadores y matemáticos hicieron un modelo de cómo sería el impacto de un terremoto a través de la estadística y a que usaron modelos de inteligencia artificial la cual de permitía modelar de una forma muy exacta el comportamiento de las ondas en el momento de la dispersión, ahora no solo sirve para eso también sirve mucho en el campo de la banca y los negocios haciendo sistemas basados en formulas de la estadística para su funcionamiento.

2.- Enliste y define los tipos de variables usados en estadística, de 2 ejemplos de cada uno. Defina distribución de frecuencia y explique que es la distribución normal. 1. Cuantitativa y cualitativa 2. Discreta y continua

un ejemplo de la cuantitativa es a la hora de recolectar muchas temperaturas que te arroja una fecha en una ciudad determinada, otro ejemplo serio el número de libros que lee un mexicano

2 ejemplo de una variable cualitativa seria el sexo y la nacionalidad de una persona

2 ejemplos de las tipas de variables discretas seria el número de páginas de un libro 210 o 211 pero no puede ser 210.5, ahora un ejemplo de una variable continua seria el peso de un recién nacido.

Importamos datos

library(readr)
library(DT)
CalidadDelAireEnero2019 <- read_csv("~/Probabilidad y Estadistica/CalidadDelAireEnero2019.csv")
## Parsed with column specification:
## cols(
##   Time = col_datetime(format = ""),
##   O3 = col_double(),
##   O3_flag = col_character(),
##   SO2 = col_double(),
##   SO2_flag = col_character(),
##   NO2 = col_character(),
##   NO2_flag = col_character(),
##   NO = col_character(),
##   NO_flag = col_character(),
##   CO = col_double(),
##   CO_flag = col_character(),
##   PM10 = col_double(),
##   PM10_flag = col_character(),
##   PM2.5 = col_double(),
##   PM2.5_flag = col_character()
## )
CalidadDelAireEnero2020 <- read_csv("~/Probabilidad y Estadistica/CalidadDelAireEnero2020.csv")
## Parsed with column specification:
## cols(
##   Time = col_datetime(format = ""),
##   O3 = col_double(),
##   O3_flag = col_character(),
##   SO2 = col_double(),
##   SO2_flag = col_character(),
##   NO2 = col_character(),
##   NO2_flag = col_character(),
##   NO = col_character(),
##   NO_flag = col_character(),
##   CO = col_character(),
##   CO_flag = col_character(),
##   PM10 = col_double(),
##   PM10_flag = col_character(),
##   PM2.5 = col_character(),
##   PM2.5_flag = col_character()
## )
CalidadDelAireOctubre2020 <- read_csv("~/Probabilidad y Estadistica/CalidadDelAireOctubre2020.csv")
## Parsed with column specification:
## cols(
##   Time = col_datetime(format = ""),
##   O3 = col_double(),
##   O3_flag = col_character(),
##   SO2 = col_double(),
##   SO2_flag = col_character(),
##   NO2 = col_character(),
##   NO2_flag = col_character(),
##   NO = col_character(),
##   NO_flag = col_character(),
##   CO = col_double(),
##   CO_flag = col_character(),
##   PM10 = col_double(),
##   PM10_flag = col_character(),
##   PM2.5 = col_character(),
##   PM2.5_flag = col_character()
## )
datatable(CalidadDelAireEnero2019)
datatable(CalidadDelAireEnero2020)
datatable(CalidadDelAireOctubre2020)

Transformamos los datos

# Datos de O3
o3Enero2019 <-CalidadDelAireEnero2019$O3
o3Enero2020 <-CalidadDelAireEnero2020$O3
o3Octubre2020 <-CalidadDelAireOctubre2020$O3
# Datos de mp10
mpEnero2019 <-CalidadDelAireEnero2019$PM10
mpEnero2020 <-CalidadDelAireEnero2020$PM10
mpOctubre2020 <-CalidadDelAireOctubre2020$PM10
# Visualizando los datos
# o3
o3Enero2019
##   [1] 12.68 12.86 17.58 20.26 19.56 22.37 16.69 21.55 32.49 39.83 43.85 45.64
##  [13] 46.01 42.69 41.83 40.96 37.71 32.25 29.74 22.83 20.83 24.56 20.35 20.62
##  [25] 25.34 28.66 29.54 27.71 22.67 19.58 23.47 21.90 27.19 36.26 39.18 40.88
##  [37] 40.55 40.95 41.68 40.14 35.04 31.44 24.46 32.27 33.28 27.52  4.07 16.48
##  [49] 19.34 22.17 27.75 30.36 26.34 23.06 12.29 20.80 33.10 37.69 37.03 42.88
##  [61] 41.62 46.39 41.54 34.02 15.79  4.32  0.81  2.72  1.65  1.26  2.14  3.30
##  [73] 16.03 13.06 17.62 18.43 16.51  5.43  0.71  3.62 15.31 33.05 35.90 37.88
##  [85] 38.76 42.50 44.07 33.55 16.61  1.04  0.59  1.18  1.51  2.91  5.04  4.71
##  [97]  4.50  6.03  8.08 12.89 14.92 14.17  7.75  5.17  9.96 14.37 26.38 27.98
## [109] 25.21 30.11 27.31 30.06 27.16 21.17 14.13  5.97  1.32  1.36  0.74  0.83
## [121]  0.97  2.20  0.12  5.46 14.71 13.11 11.54  9.83 14.02 13.50 10.64 15.62
## [133] 22.42 20.05 19.64 18.28 19.58  9.53  6.67  6.24  0.10  0.34  0.61  0.52
## [145]  0.33  2.36  7.14  6.37  7.95  4.39  0.91  2.99 17.55 20.97 26.06 30.66
## [157] 34.58 36.82 32.44 20.56 11.14  3.49  0.36 -0.06  0.46  0.19  5.26  7.19
## [169]  2.14 15.36  6.42  0.02  0.44  0.07  0.52  0.86  2.92  5.31  3.09  7.14
## [181] 13.36 19.85 20.14 15.88  4.92  0.21  0.05  0.14  3.33  1.37 -0.04 -0.05
## [193] -0.17  0.39 -0.16  0.60  0.67 -0.10  0.23  1.11  5.65 13.59 24.99 31.47
## [205] 36.48 41.82 46.94 39.12 27.51 13.03  4.22  1.34  5.66 11.04  1.39  3.70
## [217] 11.29  5.94  8.88  3.94  0.14 -0.17 -0.15  0.07  1.78  3.00  4.67  1.91
## [229]  5.89  9.05  8.71 15.07 14.96 16.71 16.44 10.32  7.62 -0.10  1.45  0.57
## [241] -0.10 -0.31  1.35  3.49  0.77  0.02  0.02  2.11  5.38 15.25 21.79 29.86
## [253] 34.43 41.73 39.92 34.59 26.22  8.65  1.22  1.06  0.12  0.15  0.26  6.90
## [265]  6.67  6.10  6.07  9.93 13.28  6.92  1.51  5.72 15.18 23.67 26.94 32.32
## [277] 33.13 34.88 35.31 34.58 26.35 12.92  5.82  3.86  5.81  0.55  0.28  0.03
## [289]  0.41  1.27  3.59  5.89  3.61  2.69  3.44  7.75 14.38 22.69 26.36 26.29
## [301] 32.22 32.45 30.33 30.07 25.67 11.53  3.81  0.10  0.38  4.43 14.68 19.25
## [313] 18.64  9.48  4.84  6.50  5.18  2.43  1.00  6.19 13.43 17.90 21.96 21.11
## [325] 23.08 26.33 20.55 14.80  1.34  1.05  1.34  1.04 -0.21  0.12  0.04  2.93
## [337]  1.18  3.80  5.23  6.94  2.25  0.13  0.12  2.75 15.89 22.07 23.29 26.99
## [349] 25.21 28.69 29.10 23.04 18.56  8.75  3.93  0.42  2.31  0.64 -0.03 -0.40
## [361] -0.23 -0.19  0.68  0.42  0.08 -0.36 -0.06  0.57  2.76  4.88 13.00 22.75
## [373] 32.40 33.53 28.34 23.87 12.10  2.53  0.42 -0.07  0.05  1.76 -0.01 -0.05
## [385]  0.17  0.28 -0.20 -0.09  3.60  1.84  0.26  1.20  6.80 10.60 20.66 26.00
## [397] 29.04 32.02 28.39 27.12 18.41 11.66  8.09  3.96  0.38  0.46  0.46  0.54
## [409]  6.84 14.27 18.09 18.97 20.15  1.73  0.99  7.64 11.42 18.72 24.99 32.24
## [421] 34.66 33.88 25.69 25.01 14.85  6.37  1.90  0.60  0.38  0.44  0.33  0.16
## [433]  0.15  0.63  0.15  1.94 14.59  8.31  1.62 16.50 34.40 38.02 39.39 42.78
## [445] 46.95 48.83 49.37 47.99 37.70  3.84  1.26  2.71 37.29 26.79  9.12 15.40
## [457] 19.41 12.91  7.81 10.74 15.95 16.19 14.05 16.11 27.50 33.17 40.56 42.93
## [469] 45.46 51.44 54.10 50.40 34.46 11.02 13.12 19.16  3.62  0.71  0.34  7.92
## [481] 15.09 14.31  9.15 10.00  9.84  7.96  1.56  6.30 13.18 21.25 30.90 36.51
## [493] 39.39 41.35 40.40 35.01 28.10 13.04 21.49 19.22 17.24 14.49 18.25 18.29
## [505] 17.46 17.63 19.47 17.94 18.77  4.70  1.00  4.12  6.74 22.78 42.21 42.56
## [517] 42.72 39.45 39.20 35.29 28.83 23.74 15.59 21.42  4.90 14.58 10.72  9.32
## [529]  3.55  7.44  2.83 11.43 26.32  5.83  9.67 16.38 30.06 34.47 36.41 41.64
## [541] 44.89 46.74 46.12 44.30 32.17 10.43  1.57  0.85  2.15  6.89  2.28  0.45
## [553]  1.05 10.81  8.40  2.43  8.57  3.51  0.76  5.16 10.46 18.64 26.90 32.58
## [565] 41.95 45.71 46.73 27.68 19.80 13.79  5.45 12.03  3.23 18.05 16.59  9.07
## [577]  4.50  1.00  7.50 14.42 12.95  4.03  3.28  7.38 13.58 29.87 38.42 40.74
## [589] 42.93 44.23 34.22 32.82 29.67 24.61 21.45 14.20 10.55  9.58  7.47  4.90
## [601]  4.40  3.73 16.56 10.80  2.33  3.16  0.67  6.33 13.60 25.02 30.81 37.69
## [613] 44.49 49.21 53.94 54.36 38.97 11.78  9.16  5.44  9.17  4.32  1.39  6.86
## [625] 15.51 21.57 26.47 29.79 27.46 27.08 25.94 24.03 22.90 30.94 43.27 49.46
## [637] 51.24 58.26 61.06 50.95 39.19 23.68 16.15 17.09 11.04  2.00  0.52  0.51
## [649]  9.26 22.75 19.01 13.84 17.18 12.71  3.91  8.23 17.83 22.40 35.59 38.09
## [661] 43.86 44.90 45.23 42.89 23.00  9.78  7.97  4.52  5.16  1.45  0.34  3.53
## [673]  3.19  3.87  8.32  9.87 12.04  6.52  1.24  3.08  8.55 15.85 29.46 31.07
## [685] 32.22 40.49 38.22 37.38 27.08 17.29  3.31  4.76  1.33  4.45  9.24  2.94
## [697]  4.78 19.09 20.49  3.39  5.70  2.40  1.03  3.56 16.26 31.00 35.02 41.40
## [709] 39.53 40.28 39.57 38.49 34.62 22.41  9.05  2.37  0.38  0.55  1.99 12.47
## [721] 11.66 10.01 13.37 19.85 16.11 18.45  3.40 10.09 34.73 38.65 39.19 43.69
## [733] 43.20 42.76 41.09 38.10 35.06 27.00 20.94 16.71 16.69 12.59  5.38  3.13
o3Enero2020
##   [1]  7.87 16.03 16.61 15.84 13.78 18.14 15.41 18.71 23.47 25.82 29.98 36.60
##  [13] 41.31 41.97 39.05 37.55 32.83 18.80 22.65 17.69 15.29 10.69  7.96 12.72
##  [25] 17.24 19.78 18.15 10.58  7.48  7.94  6.23  9.74 13.34 22.80 30.89 36.24
##  [37] 38.07 37.94 36.42 36.33 31.02 22.35 18.26 16.55  6.91  1.00 11.10 14.98
##  [49] 20.57 14.26 18.25 25.83 22.78 12.00  6.81  7.54 13.82 21.36 31.12 34.99
##  [61] 40.23 41.01 41.60 38.30 19.92  2.11  1.50  2.05  1.66  0.59  3.20  3.27
##  [73]  9.56 13.69 16.01 16.45 18.05 17.28  7.72  8.37 12.30 18.54 24.58 31.56
##  [85] 37.20 41.28 43.48 47.69 22.42  1.05  1.88  2.56  1.74  6.39  9.05 12.59
##  [97] 15.41 15.28  4.88 10.53 10.57  9.58  7.74 12.56 20.13 21.14 28.43 34.02
## [109] 41.31 43.67 43.11 41.08 28.51  2.74  2.34  0.55  1.10  0.72  1.08  4.46
## [121]  8.80  9.38  9.22 10.77  0.47  3.12  4.04  2.13  6.47 14.13 18.67 28.06
## [133] 37.44 42.57 34.13 28.37 12.21  4.43  4.74  1.01  0.62  0.72  0.68  2.01
## [145] 10.70 11.43 14.14 12.89 11.98  7.47  2.91  6.49 10.84 15.34 22.41 30.87
## [157] 40.23 39.41 38.43 42.15 16.36  1.33  0.53  1.02  2.39  4.16  0.67  5.79
## [169]  8.70  8.39  8.71 10.66 10.25  4.85  2.55  4.77 10.03 22.01 21.99 24.68
## [181] 26.36 24.19 29.80 26.49 12.18  0.91  1.35  1.36  0.86  0.58  0.41  0.76
## [193]  2.01  5.44  6.01 10.26 11.46  7.49  3.64  8.36 13.87 24.94 26.79 34.46
## [205] 37.50 38.08 37.01 36.85 29.12 25.24 23.74 18.02 17.16 10.52 13.69 17.21
## [217] 25.10 25.43 21.89 20.83 18.67 11.08  1.50  4.70 19.22 29.31 34.45 36.15
## [229] 35.25 35.52 36.76 34.09 22.74 16.77  2.13  1.59  1.76  1.39  7.56 10.07
## [241] 17.40 24.85 14.52 13.29 13.13 10.99 10.62 14.39 25.94 30.11 33.59 39.06
## [253] 39.80 48.49 43.65 41.85 28.78  6.00  0.99  1.41  3.22  1.94  0.10  0.52
## [265]  1.53  9.13 13.52 17.37 16.55 19.67 16.28 23.81 28.14 27.02 33.84 38.14
## [277] 47.92 46.40 41.67 35.63 21.64  5.37  1.23  1.54  1.35  1.56  0.94  2.25
## [289]  9.38 10.96 12.42 10.12 13.40  9.20  1.79  4.39 10.74 18.99 29.59 30.93
## [301] 35.23 41.49 38.88 35.34 15.48  1.01  1.96  2.44  0.52  3.43  9.01 17.92
## [313] 18.50 12.80 15.10 18.63 21.11 11.93  5.14  9.56 14.59 19.97 21.98 26.32
## [325] 33.12 38.51 37.12 29.66  9.16  3.72 14.27  8.46  0.89  0.87  0.79  1.10
## [337]  6.82  7.85  7.29  6.50  5.88  2.47  2.97  4.48 10.06 11.77 15.64 21.71
## [349] 21.83 18.85 16.59 16.64  6.10  1.03  1.54  1.82  0.28  0.74  4.41  4.81
## [361]  0.55  0.31  5.09 12.35 11.62  2.56  0.43  0.72  0.86  3.12  4.84  2.79
## [373]  3.40  3.24  7.85  4.18  0.30  0.38  2.06  2.63  2.72  2.54  0.11  0.09
## [385]  2.14  2.46  3.67  4.53  3.18  1.06  0.63  4.35 10.45 20.71 21.15 26.68
## [397] 33.05 29.85 29.66 24.75 11.80  5.48  5.69  4.37  5.90  7.65 12.67  5.17
## [409]  3.41  1.04  0.46  3.71 11.21  1.60  0.69  2.15  9.96 13.73 20.57 27.64
## [421] 33.90 35.00 31.89 28.32 21.59 15.99  8.63 13.53  5.58  7.50 12.06 17.96
## [433]  5.87 10.54 10.94  0.81  0.78  0.33  8.45 15.04 17.73 19.83 30.04 37.40
## [445] 44.58 47.23 38.45 37.45 27.40  6.64 19.39  4.91  1.34  1.81  8.73 10.59
## [457] 10.79 11.11 12.63 10.58  7.07  1.70  1.38  2.59  7.52 13.01 22.14 30.84
## [469] 35.19 36.59 38.95 32.95 26.27  8.86  4.20  1.48 15.91  9.86 10.41  5.86
## [481]  6.81  4.02  1.03  1.09  2.85  2.34  0.21  6.66 15.19 15.15 21.14 25.05
## [493] 25.93 23.07 22.89 20.52 15.38  8.87  9.77 15.69 18.21 18.96 17.98 13.20
## [505]  3.42 16.14  8.53  3.39  1.00  0.00  0.12  0.83  4.67 13.59 20.72 29.43
## [517] 31.23 29.84 28.39 27.71 25.78  8.30 16.51  8.95  7.33 10.00  6.87 14.94
## [529] 15.82 13.32  2.18  0.05  0.04  0.18  0.22  3.56  7.49 15.32 21.71 29.55
## [541] 37.17 40.07 39.01 37.75 22.02  5.79  8.07  7.50 13.09  9.53  5.09  4.29
## [553] 13.00 10.23  6.21  8.69  5.28  2.32  1.48  4.37  9.33 19.79 25.85 25.76
## [565] 29.95 31.14 34.14 33.54 25.52  6.87  3.86  5.48  4.13  0.36  0.62  0.23
## [577]  1.92  4.52  3.54  0.95  4.45  5.41  2.83  7.45 14.51 20.03 29.85 37.09
## [589] 37.98 37.87 39.28 37.93 33.93 20.75  4.67  3.15  6.45  8.87  2.62  0.44
## [601]  9.00 15.14 12.00 11.81 10.64  9.20  8.61 16.11 21.61 29.53 36.25 43.15
## [613] 47.64 46.20 46.15 44.21 37.95 24.98 27.99 22.60  7.82  3.61  1.94  2.89
## [625]  5.12  4.81  3.07  5.67  3.80  3.16  2.50  6.28  7.95 17.89 32.35 36.81
## [637] 36.18 36.02 35.57 32.32 25.83 16.42 17.34 10.78  6.36  3.37  9.63 21.19
## [649] 18.10 19.50 25.47 22.42 18.02 10.65  1.87  8.68 14.86 28.01 28.36 42.92
## [661] 45.04 45.23 41.77 38.24 29.00  6.97  7.83  1.90  0.58  0.74  1.09 10.82
## [673] 17.08 18.92 19.49 12.60  6.89  3.64  3.72  7.74 16.00 18.32 27.57 35.39
## [685] 36.98 39.85 38.82 39.40 33.76 21.12 20.29 18.29 24.15 30.03 26.66 26.92
## [697] 33.74 32.23 26.92 22.65 29.33  6.06  1.36  6.12 23.77 33.16 35.23 38.64
## [709] 42.43 48.58 45.33 40.36 31.68 28.29 20.77 11.06 10.80  7.93  6.96  2.35
## [721]  3.18  3.34 10.87  8.95 12.39 11.23  9.01  7.09 15.76 29.92 36.22 41.64
## [733] 45.48 47.00 46.02 43.56 33.70  2.74  0.94  2.01  1.95  0.49  2.16  1.63
o3Octubre2020
##   [1] 17.42 21.01 24.53 19.04 19.26 14.05 14.85 14.33 16.49 18.82 23.97 32.80
##  [13] 37.03 31.26 27.53 25.94 27.12 20.63 18.98 19.87 20.20 19.30 18.29 15.81
##  [25] 13.35 14.51 17.49 18.04  8.23  7.81 11.55 15.35 14.57 18.40 20.81 25.51
##  [37] 31.40 31.18 24.80 22.37 21.66 18.42 14.75 12.61  9.40 10.72 12.97 12.36
##  [49] 14.20 17.11 16.52 12.17  3.24  2.99  6.62 10.94 12.46 18.24 23.73 30.44
##  [61] 35.72 34.36 31.75 27.52 29.53 19.68 15.78 11.67 10.59  8.99  1.20  2.55
##  [73]  6.96  8.51  8.12  5.72  9.04  8.49  7.92 13.18 19.42 25.90 27.36 31.49
##  [85] 38.20 46.63 53.99 49.76 35.33 21.91 17.87 16.08 14.89  9.09  5.05  3.20
##  [97]  7.60  5.95  5.82 11.96 10.67  9.56  7.27 14.30 21.65 23.69 29.27 33.82
## [109] 37.37 36.07 36.61 31.80 31.64 22.61 20.31 19.37 15.39 16.19  7.70  3.88
## [121]  6.29  9.66 11.74 10.42  7.41  5.85  7.60 12.43 18.84 23.54 29.59 36.24
## [133] 38.02 49.01 53.77 45.44 32.59 23.03 17.53 17.33 15.15 15.18 13.69  8.73
## [145]  8.59 10.94 10.24 11.11 10.44  6.30  6.51 15.55 19.14 22.59 26.49 32.31
## [157] 36.74 34.08 34.74 37.64 29.71 21.70 18.62 13.62 15.34 12.99 17.31 19.50
## [169] 19.89  8.16  6.10  7.01  6.70  3.55  6.79  7.91 20.35 28.12 30.90 38.77
## [181] 34.19 34.88 29.76 30.90 22.57 17.33 12.03  4.91  6.09  2.81  4.70  2.99
## [193]  4.26  8.27 11.00 10.81 10.35  8.84  8.99 11.36 19.70 26.03 32.77 37.31
## [205] 37.88 38.80 33.71 32.62 28.52 20.09  7.18  7.61 13.75 13.00 11.31 10.20
## [217]  9.73  0.88  4.83  8.42  8.40  4.82  6.00 10.81 15.93 20.82 25.70 26.30
## [229] 28.15 29.74 29.06 28.39 27.18 20.69 18.16 17.38 14.83 13.97 14.51 12.49
## [241] 11.57  9.73  6.45  3.34  4.94  3.77  5.18  9.62 17.55 20.32 26.72 29.05
## [253] 21.26 20.59 20.24 19.06 19.75 15.26 15.41 10.84  9.38  2.55  1.86  2.80
## [265]  6.25  6.02  7.61  9.50  9.42  6.63  5.50  8.06 13.58 22.00 34.79 47.94
## [277] 32.75 33.76 37.04 34.06 22.38 17.68 16.36 16.59 15.38 15.15 15.20 14.86
## [289] 15.51 17.24 14.93  8.44  7.40  3.58  2.90  2.92  6.75 17.12 22.18 25.62
## [301] 33.59 36.06 31.39 27.72 24.08 21.24 20.49 20.70 19.78 18.31 18.47 16.91
## [313] 13.64 15.24 13.90 13.29 11.13  6.86  2.72 12.85 20.29 24.44 28.37 29.51
## [325] 30.25 30.08 25.37 22.64 20.68 14.85 14.65 13.38 10.59 11.59  8.41  3.26
## [337]  4.51  8.69  6.61  3.86  1.54  1.38  4.19 10.77 17.86 25.64 35.45 30.25
## [349] 27.28 27.90 26.22 24.53 19.16 14.59 11.30  6.73  6.85  6.35  1.63  5.87
## [361]  3.53  7.02  9.64 11.05  7.44  9.98  8.58  9.48 13.99 27.29 38.79 48.01
## [373] 47.37 39.45 34.02 30.18 23.82 16.12 16.61 15.80 13.34  9.91 10.44  5.64
## [385]  2.22  6.14  9.88  5.59  8.12  3.61  7.99 15.82 14.95 24.38 29.29 31.30
## [397] 31.84 31.28 32.11 32.07 29.07 21.77 19.22 19.09 16.55 18.43 13.14 11.83
## [409] 11.63 12.65  4.45  2.88  4.86  7.39  9.21 18.30 23.76 26.05 31.09 34.80
## [421] 37.80 40.98 40.66 41.22 37.71 25.38 20.07 16.96 15.74 15.92 14.18 11.50
## [433]  9.20  4.88  6.50  6.89  8.19  5.89  7.54  7.83 17.38 22.92 27.59 32.88
## [445] 35.59 35.00 35.02 28.87 21.51 12.18 12.13  8.82 11.77 11.49  2.32  4.79
## [457] 10.85  9.40  7.96  6.98  9.51  7.01 10.86 14.22 21.85 27.91 32.33 37.60
## [469] 35.96 36.38 32.78 29.62 26.05 17.29 15.24 15.09 13.61  7.41  7.75  5.61
## [481]  9.72 10.90 10.49 11.08 10.53  9.04  9.56 14.93 22.74 28.13 27.16 29.84
## [493] 31.70 32.35 29.18 28.31 24.83 19.08 13.53 10.90 11.78 11.82 10.36 10.65
## [505]  5.98  5.33  2.29  4.50  5.97  5.40  4.66 10.27 15.80 22.91 25.48 26.87
## [517] 28.06 25.97 25.84 21.29 16.86 14.63 15.16 13.86 14.55 13.02  9.52  4.26
## [529]  3.20  4.69  7.84  7.74  4.97  5.69  8.16 15.35 17.42 21.63 22.95 22.94
## [541] 23.66 23.42 24.28 22.65 18.83 14.43 11.01
# mp10
mpEnero2019
##   [1]  68.53  71.08  33.51  26.12  18.38  19.56  14.85  17.86  32.69  27.18
##  [11]  20.96  14.17  16.69  12.93   7.67  13.61  19.74   6.95  11.84  26.60
##  [21]  29.23  29.66   3.39   4.19  16.80  -5.30   1.03   4.87   0.09   6.86
##  [31]   8.37   2.19   5.87  41.87  17.55   9.16   7.03  10.54   3.63  -0.77
##  [41]  23.82  18.75  11.66   6.41   4.52   2.33  33.90  22.67 -10.93  -9.72
##  [51]  -2.94  -9.44   3.80  11.93  11.51   7.43  19.65  56.77  36.75  17.64
##  [61]  15.52  20.87  21.30  32.14  23.85  49.39  58.86  89.53  87.66  91.96
##  [71]  55.34  39.78  18.74   7.02  -2.34 -14.64   1.67   3.37  29.31  18.93
##  [81]  80.92  75.89  24.64  22.36  12.32  28.33  37.80  40.44  31.32  72.53
##  [91] 120.03 124.46 142.37 108.45  63.15  58.35  33.25  10.57   3.60   3.65
## [101]   5.91  10.89  19.64  35.53  43.88  45.24  43.49  29.12  25.77  43.55
## [111]  37.59  29.94  35.01  39.52  47.16  59.68  62.19  57.29  59.83  76.96
## [121]  75.03  59.41  39.48  34.13  19.70  17.92  19.44  11.22   1.37   7.63
## [131]   8.26 -11.10   4.73  11.86  12.68   5.13  18.92  13.19  15.49  22.46
## [141]  19.40  44.36  62.68  59.45  41.63  19.94   8.40   2.29  -1.84  -1.56
## [151]   1.57  23.84  22.92  13.00   5.17   4.81   4.93  14.82   2.35  21.58
## [161]  39.77  47.55  64.24 101.68  82.15 100.87  55.50  34.57  26.20  15.44
## [171]  10.68  26.79  43.63  35.66  42.14  24.95  26.26  27.23  83.71 113.52
## [181] 121.46  88.35  38.09  28.96  40.71 110.62 134.68  90.23  45.77  36.34
## [191]  32.18  43.23  47.86  23.93   7.38  16.89  19.74   0.88  46.58  86.59
## [201]  56.82  50.70  50.14  41.25  16.63  32.63  41.45  37.57  39.56  31.55
## [211]  42.34  62.39  58.31  38.78  33.12  49.96  13.68  22.92  16.72  16.04
## [221]  24.31  39.02  47.36  56.43  38.37  27.20  18.35  27.56  34.05  15.31
## [231]   7.43  -1.68   6.94   6.86   8.57   0.23  15.01  16.88  25.04   2.37
## [241]  26.36  32.58  16.16   5.40  -0.26   5.83   5.90  -1.70  17.51  27.55
## [251]   7.38  12.21  19.95  33.62  26.28  35.64  34.54  47.23  62.25  86.81
## [261]  80.19  77.39  60.40  38.30  20.86  17.02  12.60   7.53   7.16   6.90
## [271]  19.44  26.70  33.84  23.84  12.12  16.92  23.57  15.57  11.50  22.28
## [281]  14.53  36.08  41.66  65.87  56.45  62.19  77.34  58.27  51.29  32.66
## [291]  20.19   9.00   4.79   6.27   8.21   0.46  22.14  22.61  22.21  17.11
## [301]  15.97  10.62   9.54   5.23  10.81  30.62  45.73  82.29  76.24  34.52
## [311]  24.47   4.86  11.92  10.26  24.47  16.59   7.78  16.24  27.28  26.33
## [321]  22.17  24.91  10.63  21.74  20.18  18.99  26.20  49.26  51.52  99.85
## [331] 205.20 270.03 153.94  63.96  82.64  40.52  11.77  20.71  17.92   8.85
## [341]  10.46   9.74  32.46  30.39  22.52  11.69  19.47  18.53  24.19  19.91
## [351]  17.47  21.44  26.19  37.68  51.04  48.67  51.12  51.07  41.65  51.70
## [361]  40.67  56.83  26.91  26.33  17.01  23.62  30.38  31.94  39.16  34.92
## [371]  38.12  76.88  68.78  48.09  34.88  35.95  22.97  54.72  50.89  74.79
## [381]  92.12  57.47  43.39  44.60  40.34  31.02  33.91  21.01  25.03  22.84
## [391]  34.27  23.98  47.23  49.68  71.44  43.79  26.96  19.32  24.00  17.57
## [401]  26.13  34.19  39.54  43.50  70.56 114.62 108.33  59.08  43.45  13.54
## [411]  11.71  13.58  20.68  25.42  81.23  37.42  34.65  36.02  29.32  44.54
## [421]  59.66  37.77  26.38  20.27  25.32  35.00  50.36  99.47 141.70 114.99
## [431] 150.00 106.82  77.71  65.04  48.04  51.32  27.05  14.73  30.08  31.39
## [441]  23.93  38.47  24.26  13.38  20.05   3.07  17.74  32.63  36.10  41.49
## [451]  72.66  73.60  44.53  12.10  33.79  36.16  25.78  33.68  53.19  34.66
## [461]  20.26  11.56   9.50  -1.43  25.48  18.34  11.94  21.84   8.93  31.25
## [471]  22.45  19.57  20.00  47.80  61.68  61.67  60.44  63.09  74.51  56.06
## [481]  33.60  27.97  31.03  11.22   8.89   8.39  29.91  31.62  50.71  50.52
## [491]  52.43  33.03  40.81  29.61  21.00  19.21  25.59  55.59  48.29  39.40
## [501]  28.97  26.41  29.70  19.29  27.88  11.67  16.29  21.03  21.67  39.59
## [511]  59.10  45.12 112.99 114.31  61.47  19.96  15.71  15.82  16.50  34.26
## [521]  41.88  42.35  30.23  53.94  50.05  61.24  50.40  46.23  33.23  36.44
## [531]  22.77  22.50   2.07   7.64  50.02  27.94  41.47  35.34  17.34  15.69
## [541]   9.82   7.52  16.13  23.10  23.03  27.01  50.23 128.85 142.59 126.33
## [551]  58.10  59.69  67.41  44.93  22.97  19.08  27.66  10.26  89.52 103.09
## [561]  56.04  61.32  52.72  58.09  49.06  48.66  50.59  32.98  22.69  35.79
## [571]  48.39  65.35  76.20  65.06  46.08  53.90  52.60  47.00  36.39  11.06
## [581]   7.42  21.41  22.18  31.43  71.87  66.05  32.25  10.49  49.02  31.63
## [591]  29.97  31.63  40.27  47.74  44.82  43.90  66.10  64.71  68.14  78.74
## [601]  67.50  62.41  22.40   4.72  17.70  16.56  19.40  32.67  50.12  78.43
## [611]  63.83  55.18  42.37  45.01  40.25  46.54  39.57  46.66  56.35  67.80
## [621]  96.57  91.30 116.81  66.16  51.32  15.93   9.75   8.98   9.09  12.28
## [631]   9.87   7.66  27.15  36.22  32.84  23.11   1.54  22.16  21.01  21.09
## [641]  16.25  28.67  40.36  49.88  69.20  74.29 114.97 119.80  91.38  28.75
## [651]  13.59  19.15  11.42  18.17  27.17  32.22  70.80  61.66  62.29  67.85
## [661]  51.72  36.78  26.67  31.43  34.62  77.73  89.22 100.79  64.11  51.06
## [671]  58.05  64.57  51.05  43.50  32.12  28.23  20.08  24.72  42.25  50.29
## [681]  50.90  60.98  59.08  26.06  38.06  31.01  27.55   9.68  32.21  40.38
## [691]  80.95 101.45  75.86  74.07  59.62  63.18  63.35  40.79  18.92  30.70
## [701]  40.31  33.70  34.18  48.21  53.32  36.42  32.86  31.96  18.33  11.07
## [711]  21.47   9.06  30.43  46.13  56.97  64.05 107.56 131.43  90.90  59.36
## [721]  33.14  34.58  23.55  19.91  16.68  16.18  45.26  49.94  37.56  22.86
## [731]  28.77  36.36  24.59  29.15  16.71  11.33  27.87  40.67  43.51  38.10
## [741]  42.49  35.26  46.81  49.16
mpEnero2020
##   [1]  26.47  26.94  13.08  13.10   2.19   5.77   4.42 -18.70  27.19  48.48
##  [11]  14.25  26.25  22.30  16.80   8.73  22.55  25.50  41.81  26.69  24.60
##  [21]  35.22  37.33  38.55  20.86  22.71  11.90  16.60  18.29   4.50   4.94
##  [31]   9.48   1.96  25.18  58.60  45.75  27.79  19.75  20.65  15.40  14.62
##  [41]  31.08  32.05  46.08  43.78  50.71  56.03  39.11   2.41   4.60  19.22
##  [51]  14.27 -10.18  -3.25   0.29  14.49  -3.99  32.33  73.24  59.65  15.03
##  [61]  11.87  13.82  26.20  19.15  50.07  72.17 167.00 322.14 255.97 109.57
##  [71]  33.47  18.02   1.54  -6.45  -3.63  -7.74  -2.50   3.01   5.95  10.46
##  [81]  59.16  83.50  51.05  20.27  36.05  33.51  51.13  61.37  87.62 113.14
##  [91] 219.67 226.70 197.89  25.89  28.93   4.89   2.39   3.81  11.30  15.37
## [101]   1.71  -3.63  -5.49 -20.12  32.48  75.51  48.48  28.52  22.85  45.64
## [111]  26.97  21.22  37.66  72.48 129.61 122.14 100.61  97.16  76.17  35.81
## [121]  -4.72   1.86  -7.28  -6.56  10.45  16.42  11.15  37.56 112.86 102.51
## [131]  93.18  68.29  55.19  41.81  37.52  40.51  55.42 124.23  67.09 131.63
## [141] 125.00  84.45  90.97  77.72  12.11  -2.57  -1.90   3.60   1.32   8.39
## [151]   9.89  19.89  56.69  99.26  64.93  77.69  35.92   8.30  29.91  54.60
## [161]  80.72 122.09 129.25 197.19 189.36  79.76  92.94  37.46   6.30  -2.56
## [171] -10.26  -1.96 -10.95   5.62  18.49  38.12  40.44  47.40  67.89  45.34
## [181]  74.93  57.82  41.25  34.45  69.33 156.57 228.34 237.55 168.81 135.13
## [191]  82.93  45.19  18.96   7.74   0.93   4.60   5.79   6.49  11.34   8.79
## [201]  43.91  80.46  41.87  42.54  46.25  27.17  32.23  44.97  31.21  59.39
## [211]  50.08  46.97  29.28  20.10  29.39  19.66  13.41   8.85   0.57  16.46
## [221]  17.67  14.82  26.74  59.74  79.58  63.97  44.60  30.83  31.84  32.65
## [231]  31.47  37.34  43.50  69.71 136.47 104.16 123.26  73.68  70.27  19.46
## [241]  16.91  -2.07   6.28  23.14   3.62   2.39  -0.07  -7.14  49.28  68.43
## [251]  75.33  41.63  21.48  45.63  31.07  27.30  42.24  58.45  83.57 150.68
## [261] 202.03 217.92 133.89  75.69  37.24  13.68 -12.62  -9.59   7.93   5.91
## [271]  -0.47   0.39  16.65  51.11  62.65  25.43  39.30  50.78  18.94  38.63
## [281]  47.63  72.34 157.03 161.22 115.81  99.93 113.71  48.90   7.83  -5.90
## [291]  -7.62 -15.79 -18.06   5.67  40.22  24.69  74.51  99.93  72.41  45.93
## [301]  24.28  42.73  55.87  53.40  61.45 130.52 222.32 325.17 186.36  67.83
## [311]  60.33  24.27  10.99  10.47   3.69  -2.60  -5.78  16.27  25.82  39.67
## [321]  63.87  81.16  58.29  53.93  32.08  35.88  77.58  62.64  87.09 203.51
## [331] 138.05  66.27  85.54 150.15 144.94  92.82  41.02  11.02  16.94   6.42
## [341]   2.91   5.71  30.05  21.79  71.35  80.31  73.76  61.15  32.69  66.24
## [351] 116.70  70.80  73.68 157.42 305.38 355.60 199.50 206.65 139.13  37.92
## [361]  77.16  90.38  77.42  35.75  28.97  34.11  55.56  94.26 254.36 162.34
## [371]  52.39  59.00  54.96  74.38  42.86  43.93  96.86  92.25 111.25  26.40
## [381]  43.18  20.61  26.13  11.27  -3.91  -1.87 -17.42  -8.62  -5.53  -2.13
## [391]   3.98   2.82  35.82  41.26  21.70  29.66  41.61  29.97  18.64  27.09
## [401]  29.46  65.87  61.06  95.04  70.39  58.09  41.69  35.75  24.76   8.30
## [411]  13.82  13.07   1.80  -1.09  14.24  22.97  68.36  84.03  80.23  71.31
## [421]  54.29  40.45  24.19  25.54  27.18  45.39  65.20  49.66  49.04  61.29
## [431]  45.20  40.06  24.88  28.17  17.53  30.34  65.24  78.92  35.25 -13.23
## [441]  41.98  70.21  42.10  40.03  31.67  38.10  20.48  13.01  29.66  76.17
## [451]  49.22  88.98  97.20  87.12  51.35  41.37  18.91   4.01   4.72  -3.80
## [461]  14.86  35.03  46.02  28.63  41.06  80.70  76.01  66.10  67.06   6.39
## [471]  47.69  65.57  40.55  65.62 101.57 131.04  82.78  48.86  39.21  66.22
## [481]  69.05  57.37  53.03  48.83  23.40  29.42  58.46  91.30   7.47  19.74
## [491]   4.33  11.92  12.61   1.88   8.38  12.65   5.41  30.48  34.43  23.74
## [501]  12.09   2.37  12.63  10.41  17.41  13.89   7.58  12.10   2.07   5.98
## [511]  20.02  23.92  44.58  53.58  23.61  28.74  32.20  19.43  20.48  30.16
## [521]  27.89  45.80  44.57  31.22  46.58  35.87  32.21  14.57   8.20   6.33
## [531]  22.39  16.57  15.54  16.08  62.66  34.09  48.88  57.70  58.65  42.04
## [541]  53.60  47.30  40.45  51.86  42.74  68.30  59.50  56.64  32.67  36.09
## [551]  73.33  35.90  32.48   6.83  11.33  -0.36  -0.89  13.63  17.25  29.41
## [561]  62.25  66.29  27.75  34.61  27.12  61.97  45.88  43.65  54.70  88.19
## [571] 100.80  88.92  71.31  98.28 119.67  84.01  43.36  27.64   8.66   9.62
## [581]   5.58   8.99   8.55  13.42  33.48  48.04  31.64  26.83  20.46  24.25
## [591]  18.82  23.43  29.53  43.95  74.77 118.88 112.93  69.00  72.10  62.26
## [601]  47.28  17.26   9.91  15.16   6.40   3.33  11.29   4.46  35.86  24.97
## [611]  30.52  28.05  42.64  29.01  16.67  28.03  14.37  38.65  42.73  38.70
## [621]  44.05  89.03  87.93  65.48  40.55  36.14  25.24  10.07  10.37  -4.90
## [631]  20.19  28.21 120.78 152.09  87.97  55.42  27.23  33.40  33.72  20.98
## [641]  30.69  53.94  47.66  90.79  94.36  77.02  66.38  27.20  12.14  11.15
## [651]   4.76  -0.18   6.88   3.80  46.50  22.28  59.63  87.37 106.97  54.80
## [661]  22.08  49.66  21.62  41.98  36.24  75.86 118.65 102.60 120.82 131.61
## [671]  77.38  39.81   8.60  -0.46  -0.15  -5.27   0.76  14.54  32.37  10.98
## [681]  49.87  70.99  50.28  36.29  42.05  32.51  37.18  32.85  36.62  63.40
## [691]  79.20  72.11  63.82  33.90  13.62  19.69  19.25   7.86   5.37   6.84
## [701]  -5.26  21.76  65.34  34.88  84.15  31.96  28.18  32.29  45.85  36.95
## [711]  33.29  29.50  30.93  49.28  58.10  80.99  91.71  75.66  79.47  54.58
## [721]  45.71  46.04  18.25   0.64   0.12  -5.96   8.99  18.53  89.97  74.59
## [731]  43.15  22.79  18.26  17.76  21.00  11.04  15.92  73.68 127.12 249.39
## [741] 281.16 198.56  70.62  44.19
mpOctubre2020
##   [1]  82.02  46.24  48.98  43.83  40.21  50.43  39.21  35.89  36.35  43.73
##  [11]  35.03  59.20  72.76  67.89  47.19  39.97  58.65  64.00  59.27  48.44
##  [21]  49.77  37.87  47.94  45.07  61.63  44.74  39.04  34.78  43.87  41.75
##  [31]  26.65  27.33  49.33  46.04  46.73  41.46  52.97  67.50  40.14  46.15
##  [41]  41.82  46.68  54.82  46.45  50.99  61.78  41.48  47.14  41.05  35.53
##  [51]  36.58  35.41  50.59  37.44  37.16  44.06  43.24  48.17  34.46  38.34
##  [61]  64.44  39.94  36.92  20.38  28.03  34.23  44.19  47.56  55.59  37.73
##  [71]  58.83  81.32  65.85  40.04  38.13  40.57  41.47  13.80   8.55  55.83
##  [81]  11.89  42.74  58.55  26.91  26.84  35.12  53.52  45.19  35.13  54.73
##  [91]  16.06  37.73  30.41  36.50  42.76  51.75  63.55  47.98  52.55  25.68
## [101]  29.36  36.20  41.55  66.88  28.48  37.15  38.61  40.21  38.08  45.49
## [111]  32.89  52.43  52.69  58.49  55.16  33.85  38.54  30.92  38.25  54.94
## [121]  56.61  25.99  30.28  37.36  36.88  39.30  36.06  60.99  38.75  28.84
## [131]  42.79  35.97  38.39  51.17  43.64  55.02  58.95  65.18  64.96  45.50
## [141]  47.94  39.37  33.57  38.41  50.38  37.09  25.01  28.28  22.43  32.40
## [151]  45.68  69.25  62.11  52.95  40.36  68.58  44.48  42.76  16.00  33.81
## [161]  61.21  86.63  47.99  50.29  52.70  53.70  43.01  34.25  22.79  39.22
## [171]  40.99  42.02  24.49  31.03  72.01  77.74  79.13  77.42  60.41  33.75
## [181]  31.78  25.07  24.82  23.62  28.96  38.38  75.74 171.98  93.30 107.50
## [191]  87.49  67.16  66.30  47.05  29.54  35.07  26.91  31.49  50.14  71.33
## [201]  67.84  52.32  36.30  34.55  -5.27  22.82  46.52  56.59  34.56  40.29
## [211] 126.40 105.36  77.54  40.73  59.43  57.65  60.00  65.52  55.28  37.19
## [221]  30.03  36.12  33.91  56.69  41.67  44.42  45.13  29.97  31.93  22.58
## [231]  -4.96  42.61  29.26  27.90  25.51  36.74  37.54  32.68  34.34  34.68
## [241]  38.82  33.24  52.71  38.58  33.88  39.69  68.99  43.02  44.27  13.19
## [251]  46.48  36.91  18.94  11.03 -23.10  16.87  10.30  41.08  38.22  16.06
## [261]  27.39  49.79  65.52  57.63  38.75  37.83  25.09  26.50  18.86  27.67
## [271]  85.04  57.52  72.56  64.19  55.48  71.38  50.10  37.43  40.23  34.39
## [281]  42.67  47.32  58.29  57.30  46.06  31.23  16.80  34.85  28.67  14.94
## [291]  26.81  32.53  31.36  34.31  57.57  87.48 131.35  74.84  67.48  56.91
## [301]  54.26  48.78  65.32  59.88  62.00  23.00  43.68  25.01  43.53  38.06
## [311]  42.66  46.27  57.73  25.73  24.49  29.44  30.63  44.53  62.69 109.15
## [321]  25.41  61.10  49.15  48.19  72.54  54.95  47.36  50.81  30.74  44.76
## [331]  64.99  59.49  66.07  53.85  47.71  72.44  72.62  46.24  43.69  53.08
## [341]  54.16  54.39  67.18  74.66  51.13  31.75  49.99  51.95  34.08  26.86
## [351]  29.80   9.59  28.08  67.36  44.33  50.11  71.14  65.00  63.37  54.81
## [361]  41.69  44.54  36.65  28.22  34.84  39.40  40.48  73.04  72.64  73.87
## [371]  69.79  68.07  72.45  51.04  32.13  15.21  33.16  39.20  34.74  40.38
## [381]  37.74  69.33  83.59  65.31  86.27  83.58  37.35  47.87  48.77  53.36
## [391]  60.14  81.40  49.63  47.46  36.61  27.04  50.63  23.17  44.78  47.14
## [401]  54.04  57.95  44.44  37.48  39.20  34.41  26.35  41.41  60.09  47.30
## [411]  49.57  69.35  52.64  38.35  56.25  42.31  34.22  34.42  54.10  48.43
## [421]  45.61  20.68  25.91  24.04  36.10  33.54  30.18  44.50  48.68  31.91
## [431]  30.92  28.16  37.91  57.72  43.01  30.12  16.09  35.80  58.61  75.66
## [441]  62.03  67.97  42.42  41.09  55.80  61.46  33.66  30.47  34.46  53.88
## [451]  76.11  61.27  42.67  52.40  83.16  59.40  54.04  35.54  47.70  35.94
## [461]  44.82  42.72  59.00 118.80  57.97  76.83  60.71  46.46  52.42  49.96
## [471]  45.30  41.62  50.82  65.74  71.82  76.43  57.63  61.59  68.69  50.95
## [481]  68.69  45.54  51.35  29.89  32.07  34.99  44.53  90.19  57.46  43.27
## [491]  41.81  51.87  51.82  37.83  25.37  57.82  64.23  41.40  47.48  50.78
## [501]  57.23  35.77  43.01  38.78  54.99  45.17  50.38  39.44  38.93  31.29
## [511]  34.67  61.57  40.79  47.12  36.04  36.95  46.95  38.53  31.51  62.45
## [521]  52.01  42.93  35.16  27.14  32.69  32.40  18.54  39.29  46.15  38.07
## [531]  32.18  23.71  34.56  26.44  24.77  33.23  28.35  29.59  34.29  30.35
## [541]  32.10  25.20  21.53  11.52  36.02  40.77  46.11

Visualizamos los datos

Medidas de dispercion

# Grafica de caja y bigo de nivel de O3 en enero del 2019
summary(o3Enero2019)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -0.400   3.325  13.085  16.391  27.090  61.060
boxplot(o3Enero2019)

mfv(o3Enero2019)
## [1] 0.12 0.38
# Grafico de caja y bigote de nivel de MP en enero del 2019
summary(mpEnero2019)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -14.64   17.62   31.43   37.23   50.12  270.03
boxplot(mpEnero2019)

mfv(mpEnero2019)
##  [1]  6.86  7.38  7.43 10.26 11.22 17.92 18.92 19.40 19.44 19.74 19.91 21.01
## [13] 22.92 22.97 23.84 23.93 24.47 26.20 26.33 27.55 31.43 31.63 32.63 40.67
## [25] 43.50 47.23 51.32 59.08 62.19
# Grafica de caja y bigo de nivel de O3 en enero del 2020
summary(o3Enero2020)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   4.425  12.370  16.045  25.835  48.580
boxplot(o3Enero2020)

mfv(o3Enero2019)
## [1] 0.12 0.38
# Grafico de caja y bigote de nivel de  MP en enero del 2020
summary(mpEnero2020)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -20.12   15.32   35.81   47.27   65.27  355.60
boxplot(mpEnero2020)

mfv(mpEnero2020)
## [1] 73.68
# Grafica de caja y bigote de nivel de O3 en  Octubre del 2020
summary(o3Octubre2020)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.88    9.04   15.35   17.66   25.43   53.99
boxplot(o3Octubre2020)

mfv(o3Octubre2020)
##  [1]  2.55  2.99  3.20  4.26  7.01  7.41  7.60  7.61  8.12  8.16  8.99  9.04
## [13]  9.40  9.56  9.73 10.44 10.59 10.81 10.90 10.94 14.51 14.85 14.93 15.15
## [25] 15.24 15.35 15.80 17.33 17.38 17.42 24.53 26.05 30.25 30.90
# Grafica de caja y bigote de nivel de MP10 en  Octubre del 2020
summary(mpOctubre2020)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -23.10   34.51   43.24   45.85   55.22  171.98
boxplot(mpOctubre2020)

mfv(mpOctubre2020)
## [1] 43.01

Podemos observar como el nivel de O3 de enero del 2019 es mayor al nivel de O3 de enero del 2020.

sd(o3Enero2019)
## [1] 14.59937
var(o3Enero2019)
## [1] 213.1417
plot(o3Enero2019)

sd(o3Enero2020)
## [1] 13.28159
var(o3Enero2020)
## [1] 176.4007
plot(o3Enero2020)

### Miremos esta otra grafica Esto es vastante interesante, en octubre del 2020 es mucho menor el nivel de O3 en el aire que en enero del 2020 y en enero del 2019, la pregunta es porque?, es muy sencillo de explicar esto pasa por que el momento en el que nos encontramos esa crucial, las personas dejaron de salir, los carros dejaron de circular y por ende el O3 dejo de producirse dando paso a que el O3 que existia se dispersara a travez del tiempo y los niveles O3 disminuyeran.

sd(o3Octubre2020)
## [1] 10.66746
var(o3Octubre2020)
## [1] 113.7947
plot(o3Octubre2020)

Niveles de MP10

Al igual que el analisis de O3, analisaremos como es el nivel de MP10 en el aire en cuestion a las fechas de enero del 2019, enero del 2020 y octubre del 2020

sd(mpEnero2019)
## [1] 29.3919
var(mpEnero2019)
## [1] 863.8836
plot(mpEnero2019)

sd(mpEnero2020)
## [1] 49.37823
var(mpEnero2020)
## [1] 2438.209
plot(mpEnero2020)

Interesantes datos, podemos observar como el nivel de MP10 en el aire eran mucho mayor en enero del 2020 que en enero del 2019 esto es deducible ya que hay una tendencia a crecimiento en contaminantes a travez del tiempo pero… y si analizamos esta otra grafica. __________________________________________________________________________________________________ Ahora surge una pregunta, se suponia que el nivel de contaminacion en el aire iba en crecimiento a travez del tiempo…poque esta grafica no respeta esa tendencia.

sd(mpOctubre2020)
## [1] 18.44385
var(mpOctubre2020)
## [1] 340.1758
plot(mpOctubre2020)

Podemos observar como el nivel de MP10 es mucho menor al nivel de MP10 de enero del 2019 y literalmente enero del 2020 tenia el doble de MP10 en el aire, esto es un claro ejemplo de como esta impactando la pandemia en el medio ambiente, esto es un punto bueno poder decir que tenemos un aire mas limpio….y eso es todo lo bueno.

Tablas de distribucion de frecuancia nivel de O3 de enero del 2019, enero del 2020, octubre del 2020

DO3E2019 <- fdt(o3Enero2019, breaks = "Sturges")
DO3E2019
##     Class limits   f   rf rf(%)  cf  cf(%)
##  [-0.404,5.2391) 241 0.32 32.39 241  32.39
##  [5.2391,10.882) 102 0.14 13.71 343  46.10
##  [10.882,16.525)  87 0.12 11.69 430  57.80
##  [16.525,22.169)  74 0.10  9.95 504  67.74
##  [22.169,27.812)  65 0.09  8.74 569  76.48
##  [27.812,33.455)  49 0.07  6.59 618  83.06
##  [33.455,39.098)  46 0.06  6.18 664  89.25
##  [39.098,44.741)  53 0.07  7.12 717  96.37
##  [44.741,50.384)  18 0.02  2.42 735  98.79
##  [50.384,56.027)   7 0.01  0.94 742  99.73
##  [56.027,61.671)   2 0.00  0.27 744 100.00
DO3E2020 <- fdt(o3Enero2020, breaks = "Sturges")
DO3E2020
##     Class limits   f   rf rf(%)  cf  cf(%)
##       [0,4.4605) 189 0.25 25.40 189  25.40
##  [4.4605,8.9211) 105 0.14 14.11 294  39.52
##  [8.9211,13.382)  96 0.13 12.90 390  52.42
##  [13.382,17.842)  67 0.09  9.01 457  61.42
##  [17.842,22.303)  66 0.09  8.87 523  70.30
##  [22.303,26.763)  44 0.06  5.91 567  76.21
##  [26.763,31.224)  47 0.06  6.32 614  82.53
##  [31.224,35.684)  37 0.05  4.97 651  87.50
##  [35.684,40.145)  51 0.07  6.85 702  94.35
##  [40.145,44.605)  27 0.04  3.63 729  97.98
##  [44.605,49.066)  15 0.02  2.02 744 100.00
DO3O2020 <- fdt(o3Octubre2020, breaks = "Sturges")
DO3O2020
##     Class limits   f   rf rf(%)  cf  cf(%)
##  [0.8712,5.7493)  58 0.11 10.60  58  10.60
##  [5.7493,10.627) 114 0.21 20.84 172  31.44
##  [10.627,15.505) 105 0.19 19.20 277  50.64
##  [15.505,20.383)  80 0.15 14.63 357  65.27
##  [20.383,25.262)  51 0.09  9.32 408  74.59
##   [25.262,30.14)  55 0.10 10.05 463  84.64
##   [30.14,35.018)  45 0.08  8.23 508  92.87
##  [35.018,39.896)  27 0.05  4.94 535  97.81
##  [39.896,44.774)   3 0.01  0.55 538  98.35
##  [44.774,49.652)   6 0.01  1.10 544  99.45
##   [49.652,54.53)   3 0.01  0.55 547 100.00

Tablas de distribucion de frecuancia nivel de MP10 de enero del 2019, enero del 2020, octubre del 2020

DMP3E2019 <- fdt(mpEnero2019, breaks = "Sturges")
DMP3E2019
##        Class limits   f   rf rf(%)  cf  cf(%)
##  [-14.7864,11.3515) 113 0.15 15.19 113  15.19
##   [11.3515,37.4894) 333 0.45 44.76 446  59.95
##   [37.4894,63.6272) 195 0.26 26.21 641  86.16
##   [63.6272,89.7651)  62 0.08  8.33 703  94.49
##   [89.7651,115.903)  25 0.03  3.36 728  97.85
##   [115.903,142.041)  10 0.01  1.34 738  99.19
##   [142.041,168.179)   4 0.01  0.54 742  99.73
##   [168.179,194.317)   0 0.00  0.00 742  99.73
##   [194.317,220.455)   1 0.00  0.13 743  99.87
##   [220.455,246.592)   0 0.00  0.00 743  99.87
##    [246.592,272.73)   1 0.00  0.13 744 100.00
DMP3E2020 <- fdt(mpEnero2020, breaks = "Sturges")
DMP3E2020
##        Class limits   f   rf rf(%)  cf  cf(%)
##  [-20.3212,14.1767) 174 0.23 23.39 174  23.39
##   [14.1767,48.6747) 306 0.41 41.13 480  64.52
##   [48.6747,83.1726) 156 0.21 20.97 636  85.48
##   [83.1726,117.671)  52 0.07  6.99 688  92.47
##   [117.671,152.168)  26 0.03  3.49 714  95.97
##   [152.168,186.666)   8 0.01  1.08 722  97.04
##   [186.666,221.164)  10 0.01  1.34 732  98.39
##   [221.164,255.662)   6 0.01  0.81 738  99.19
##    [255.662,290.16)   2 0.00  0.27 740  99.46
##    [290.16,324.658)   2 0.00  0.27 742  99.73
##   [324.658,359.156)   2 0.00  0.27 744 100.00
DMP3O2020 <- fdt(mpOctubre2020, breaks = "Sturges")
DMP3O2020
##       Class limits   f   rf rf(%)  cf  cf(%)
##  [-23.331,-5.4191)   1 0.00  0.18   1   0.18
##   [-5.4191,12.493)   8 0.01  1.46   9   1.65
##    [12.493,30.405)  79 0.14 14.44  88  16.09
##    [30.405,48.317) 254 0.46 46.44 342  62.52
##    [48.317,66.228) 141 0.26 25.78 483  88.30
##     [66.228,84.14)  50 0.09  9.14 533  97.44
##     [84.14,102.05)   7 0.01  1.28 540  98.72
##    [102.05,119.96)   4 0.01  0.73 544  99.45
##    [119.96,137.88)   2 0.00  0.37 546  99.82
##    [137.88,155.79)   0 0.00  0.00 546  99.82
##     [155.79,173.7)   1 0.00  0.18 547 100.00

Histogramas y políginos de distribución de frecuencia de nivel de O3 en enero del 2019

plot(DO3E2019,type="fh")

plot(DO3E2019,type="rfh")

plot(DO3E2019,type="cfh")

plot(DO3E2019,type="fp")

plot(DO3E2019,type="rfp")

plot(DO3E2019,type="cfp")

Histogramas y políginos de distribución de frecuencia de nivel de O3 en enero del 2020

plot(DO3E2020,type="fh")

plot(DO3E2020,type="rfh")

plot(DO3E2020,type="cfh")

plot(DO3E2020,type="fp")

plot(DO3E2020,type="rfp")

plot(DO3E2020,type="cfp")

Histogramas y políginos de distribución de frecuencia de nivel de O3 en octubre del 2020

plot(DO3O2020,type="fh")

plot(DO3O2020,type="rfh")

plot(DO3O2020,type="cfh")

plot(DO3O2020,type="fp")

plot(DO3O2020,type="rfp")

plot(DO3O2020,type="cfp")

Crecimiento de contaminacion a en el mes de enero del año 2019

Podemos observar como se comporta el crecimiento de O3 en el aire en el mes de enero del 2019a travez del tiempo.

ggplot(data = CalidadDelAireEnero2019) +
  geom_point(mapping = aes(x = CalidadDelAireEnero2019$Time, y =o3Enero2019 , color = "Magenta"))

ggplot(data = CalidadDelAireEnero2019) +
  geom_point(mapping = aes(x = CalidadDelAireEnero2019$Time, y =mpEnero2019 , color = "Magenta"))

Crecimiento de contaminacion a en el mes de enero del año 2020

Podemos observar como se comporta el crecimiento de O3 en el aire en el mes de enero del 2020a travez del tiempo.

ggplot(data = CalidadDelAireEnero2020) +
  geom_point(mapping = aes(x = CalidadDelAireEnero2020$Time, y =o3Enero2020 , color = "Magenta"))

ggplot(data = CalidadDelAireEnero2019) +
  geom_point(mapping = aes(x = CalidadDelAireEnero2020$Time, y =mpEnero2020 , color = "Magenta"))

Crecimiento de contaminacion a en el mes de octubre del año 2020

Podemos observar como se comporta el crecimiento de O3 en el aire en el mes de octubre del 2020 a travez del tiempo.

ggplot(data = CalidadDelAireOctubre2020) +
  geom_point(mapping = aes(x = CalidadDelAireOctubre2020$Time, y =o3Octubre2020 , color = "Magenta"))

ggplot(data = CalidadDelAireOctubre2020) +
  geom_point(mapping = aes(x = CalidadDelAireOctubre2020$Time, y =mpOctubre2020 , color = "Magenta"))

Matriz de dispercion

o3 <- CalidadDelAireEnero2019$O3
mp <- CalidadDelAireEnero2019$PM10
tiempo <- CalidadDelAireEnero2019$Time
matriz <- data.frame(o3, tiempo,mp)
pairs(matriz)

## Puntos a aclarar Como pudimos observar este análisis se hizo a cabo con la ayuda de 3 fechas importantes, enero del 2019, enero del 2020 y octubre del 2020 esto con la finalidad de hacer una comparativa cuando el crecimiento de los contaminantes es continuo y como una pandemia viene y afecta todas las áreas posibles, economía, trabajo, tecnología y como analizamos en este caso el medio ambiente. Este análisis son con los datos de la cuidad de Hermosillo sonora.

Preguntas

¿Este año tiene menor cantidad de contaminantes atmosféricos que el año pasado?
R = Es totalmente correcto, este año tiene un medio ambiente más limpio que el año pasado, esto pasa porque el mundo se paró por causa de esta pandemia, el mundo dio una vuelta de 360 grados, dejamos de circular en las calles y el aire comenzó a dispersar los contaminantes a través del tiempo

¿Cuál es la influencia de la pandemia sobre la calidad del aire? R= Este es un ejemplo de como el hombre está matando a la tierra, los ríos, mares, bosques se empezaron a purificar y el aire no sería una excepción, esto es un punto sumamente importante de analizar y de cuestionar, la diferencia radica en el hecho de la reducción masiva de tráfico en las calles por causa de la pandemia, se dejaron de visitar parques, ríos, playas y por ende el vehículo dejo de estar en circulación dando paso a una purificación del medio ambiente. ¿Qué periodos de este año están más contaminados que el año pasado? R= enero de este año 2020 está más contaminado que enero del 2020.

¿Por qué un año está más contaminado que otro en ciertos periodos? Esto se debe al que las personas comenzaron a salir a través del tiempo generando nuevas oleadas de contaminación un ejemplo muy sencillo es la fecha del 16 de septiembre el cual fue el día con más tráfico en las calles en lo que lleva del año y ese día era más que obvio las personas decidieron salir a festejar el día al igual que el día de la madre y el día del padre fueron fechas donde la circulación de vehículos aumento demasiado.

Pregunta de rescate (opcional):

Mini ensayo de mínimo media y máximo una cuartilla contestando a la pregunta: ¿la gente realmente quiere ser feliz o es una fabricada que nos vendieron? (Use datos para fundamentarse)

La gente es un ser sumamente complicado que vive de una manera muy sencilla, esta pregunta la han debatido demasiado filosos y grandes pensantes de nuestra era, el ser humano actualmente compra el termino felicidad ya que en zonas de áfrica donde las personas no están tristes por un teléfono, en ocasiones uno mismo se da el termino de infelicidad o de ser una persona triste, con el tiempo el hombre adopta modas y criterios los cuales están implantados por el lugar o zona donde residen, hay una tribuí llamada centinel la cual jamás ha tenido contacto con otros seres humanos, esas personas viven dentro de su ideología, religión y costumbres ahora viene de nuevo la pregunta, usted….. compra la felicidad? la verdad es que si la compramos y es algo inevitable.