To solve, we’ll let p be the probability of success and 1-p be the probability of failure for the binomial distribution:
\(p({ X }_{ j })=(\frac { n }{ j } ){ p }^{ j }(1-p{ ) }^{ n-j }\quad\)
The moment generating function is:
\(g(t)=E({ e }^{ tX) }\quad =\quad \sum _{ j=1 }^{ \infty }{ { e }^{ t{ x }_{ j } }p({ x }_{ j }) }\)
so together we get:
\(g(t)=\sum _{ j=0 }^{ n }{ { e }^{ tj } } (\frac { n }{ j } ){ p }^{ j }{ q }^{ n-j }\quad =\quad \sum _{ j=0 }^{ n }{ (\frac { n }{ j } ) } (p{ e }^{ t }{ ) }^{ j }{ q }^{ n-j }\quad =\quad (p{ e }^{ t }+q{ ) }^{ n }\)
The expected value is:
\(g'(0)=n(p{ e }^{ t }+q{ ) }^{ n-1 }p{ e }^{ t }\quad =\quad np\quad (t=0)\)
The variance is:
\(g''(0)=n(n-1{ ) }p^{ 2 }+np\quad =\quad np(1-p)\)
\(g(t)=\int _{ 0 }^{ \infty }{ { e }^{ tx } } \lambda { e }^{ -\lambda e }dx\)
\(g(t)=\frac { \lambda { e }^{ (t-\lambda )z } }{ t-\lambda } |\frac { \infty }{ 0 }\)
\(g(t)=\frac { \lambda }{ { \lambda }-t }\)
\(g(t)=\frac { \lambda }{ { { (\lambda }-t })^{ 2 } }\)
\(g(t)=\frac { \lambda }{ { \lambda }^{ 2 } } =\frac { 1 }{ \lambda }\)
\(g''(t)=\frac { 2\lambda }{ ({ \lambda -t) }^{ 3 } }\)
\(g''(0)=\frac { 2\lambda }{ { \lambda }^{ 3 } } =\frac { 2 }{ { \lambda }^{ 2 } }\)
Expected Value:
\(\mu =g'(0)={ \lambda }^{ -1 }\)
Variance:
\({ \sigma }^{ 2 }=g''(0)-g'(0{ ) }^{ 2 }=\frac { 2 }{ { \lambda }^{ 2 } } =\frac { 1 }{ { \lambda }^{ 2 } } ={ \lambda }^{ -2 }\)