setwd("~/ESTADISTICA APLICADA DE 10-11")
library(pacman)
p_load("DT","prettydoc","readr","tidyverse")
DatosMobilityReport <- read_csv("sonora3.csv")## Parsed with column specification:
## cols(
## country_region_code = col_character(),
## country_region = col_character(),
## sub_region_1 = col_character(),
## sub_region_2 = col_logical(),
## metro_area = col_logical(),
## iso_3166_2_code = col_character(),
## census_fips_code = col_logical(),
## date = col_character(),
## retail_and_recreation_percent_change_from_baseline = col_double(),
## grocery_and_pharmacy_percent_change_from_baseline = col_double(),
## parks_percent_change_from_baseline = col_double(),
## transit_stations_percent_change_from_baseline = col_double(),
## workplaces_percent_change_from_baseline = col_double(),
## residential_percent_change_from_baseline = col_double()
## )
- creacion de data frame
FechaMR = seq(from = as.Date("2019-02-15"), to = as.Date("2019-10-14"), by = 'day')
##
Retail_Recreation_Percentage <- DatosMobilityReport$retail_and_recreation_percent_change_from_baseline
###
Grocery_Pharmacy_Percentage <- DatosMobilityReport$grocery_and_pharmacy_percent_change_from_baseline
###
Parks_Percentage <- DatosMobilityReport$parks_percent_change_from_baseline
###
TransitStations_Percentage <- DatosMobilityReport$transit_stations_percent_change_from_baseline
###
Workplaces_Percentage <- DatosMobilityReport$workplaces_percent_change_from_baseline
###
Residential_Percentage <- DatosMobilityReport$residential_percent_change_from_baseline
##### GRAFICA 2
###
Porcentaje_VR <- DatosMobilityReport$retail_and_recreation_percent_change_from_baseline
###
Porcentaje_F <- DatosMobilityReport$grocery_and_pharmacy_percent_change_from_baseline
###
Porcentaje_P <- DatosMobilityReport$parks_percent_change_from_baseline
###
Porcentaje_ET <- DatosMobilityReport$transit_stations_percent_change_from_baseline
###
Porcentaje_AT <- DatosMobilityReport$workplaces_percent_change_from_baseline
###
Porcentaje_H <- DatosMobilityReport$residential_percent_change_from_baseline
dataMR <- data.frame(x=FechaMR, y=Retail_Recreation_Percentage)Graficas
gMR1 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_VR), size=1, colour="orange") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("a) Comercio y recreación (-45%)")
gMR2 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_F), size=1, colour="darkgreen") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("b) Farmacias y abarrotes (-11%)")
gMR3 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_P), size=1, colour="purple") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("c) Parques (-37%)")
gMR4 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_ET), size=1, colour="brown") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("d) Estaciones de tránsito (-43%)")
gMR5 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_AT), size=1, colour="red") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("e) Espacios de trabajo (-37%)")
gMR6 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_H), size=1, colour="blue") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("f) Hogares (+18%)")
p_load(gridExtra)
grid.arrange(gMR1,gMR2,gMR3,gMR4,gMR5,gMR6)Análisis de movilidad local para Sonora utilizando datos de google mobility report
¿Ocurrió algo importante entre 15 de febrero y 14 de octubre 2020?
El valor de referencia de cada día es el valor medio del periodo de cinco semanas de enero. Piensa en eventos locales y cambios estacionales que puedan sesgar el valor de referencia:
¿Hubo un invierno frío o un verano más largo de lo habitual en tu región?
¿Los festivos cayeron el mismo día de la semana?
¿Tienes otras fuentes de datos (como tiques de peajes, parquímetros o viajes en metro) que puedan ayudarte a determinar el cambio previsto?
Al inicio del año se observa en las graficas que tiene un indice alto ya que estos lugares como el supermercados, farmacias, parques, espacios de trabajos eran vistiados con normalidad, se observa que al inicio del año quedarse en encerrados en los hogares no era una opcion, apartir de marzo cuando empezo la pandemi se observa un bajon en las graficas donde nos indica que las personas al inicio de esto se estaban haciendo cuarentena pero existen picos en las graficas que son los dias festivo como el dia de la madre, del padre, el dia del niño, el 16 septiembre, y obviamente tambien en los fines de semana se observa mayor movimiento de las personas, al principio de la cuarente se observa que la gente se la pasa en sus casos pero solo fue al principio en mediado de junio se observa que la gente ya estaba llendo a su trabajo con normalidad, hasta el 14 de octubre se observa que todavia existe gente cumpliendo con la cuarente pero en realidad solo es una pequeña parte ya que la mayoria de las personas volvieron a su vida norma.