Human FOI Correlation
Annual Precipitation
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ `Annual Precipitation`,
## data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) `Annual Precipitation`
## -0.2506439 0.0001119
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$`Annual Precipitation` and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.7153, df = 8, p-value = 0.02644
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1115429 0.9206999
## sample estimates:
## cor
## 0.6925324
Wettest
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Wettest, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Wettest
## -0.1566348 0.0004093
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Wettest and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.6573, df = 8, p-value = 0.02893
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.09683174 0.91840326
## sample estimates:
## cor
## 0.6847126
Driest
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Driest, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Driest
## 0.080678 -0.001899
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Driest and HumEnviroVardf$HumanRevGroupModLambda
## t = -0.77002, df = 8, p-value = 0.4634
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7656726 0.4396603
## sample estimates:
## cor
## -0.2626821
Seasonal
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Seasonal, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Seasonal
## -0.377742 0.005503
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Seasonal and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.8179, df = 8, p-value = 0.02257
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1370696 0.9245562
## sample estimates:
## cor
## 0.7057848
NDVI Mean
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMean, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMean
## 8.830e-03 4.998e-10
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMean and HumEnviroVardf$HumanRevGroupModLambda
## t = 0.48873, df = 8, p-value = 0.6381
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5145169 0.7224447
## sample estimates:
## cor
## 0.1702684
NDVI Max
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMax
## 1.704e-01 -1.568e-09
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMax and HumEnviroVardf$HumanRevGroupModLambda
## t = -0.89192, df = 8, p-value = 0.3985
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7822465 0.4057060
## sample estimates:
## cor
## -0.3007431
NDVI Min
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ NDVIMin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMin
## 2.429e-02 7.388e-10
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$NDVIMin and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.4801, df = 8, p-value = 0.1771
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2344095 0.8462362
## sample estimates:
## cor
## 0.4636466
LST Mean
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMean, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMean
## 2.048356 -0.006658
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMean and HumEnviroVardf$HumanRevGroupModLambda
## t = -1.3502, df = 8, p-value = 0.2139
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8341621 0.2728379
## sample estimates:
## cor
## -0.4307925
LST Max
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMax
## 1.598491 -0.005134
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMax and HumEnviroVardf$HumanRevGroupModLambda
## t = -1.1069, df = 8, p-value = 0.3005
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8085333 0.3441696
## sample estimates:
## cor
## -0.3644275
LST Min
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ LSTMin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMin
## 0.416869 -0.001257
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$LSTMin and HumEnviroVardf$HumanRevGroupModLambda
## t = -0.5994, df = 8, p-value = 0.5655
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7403092 0.4857100
## sample estimates:
## cor
## -0.2073172
Tmin
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Tmin, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Tmin
## -1.355446 0.005939
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Tmin and HumEnviroVardf$HumanRevGroupModLambda
## t = 1.9818, df = 8, p-value = 0.08282
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.08736077 0.88404989
## sample estimates:
## cor
## 0.5738288
Tmax
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Tmax, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Tmax
## 7.15394 -0.02281
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Tmax and HumEnviroVardf$HumanRevGroupModLambda
## t = -2.443, df = 8, p-value = 0.04038
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.90912458 -0.04083903
## sample estimates:
## cor
## -0.6536576
Precip
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = HumanRevGroupModLambda ~ Precip, data = HumEnviroVardf)
##
## Coefficients:
## (Intercept) Precip
## -0.250644 0.001343
##
## Pearson's product-moment correlation
##
## data: HumEnviroVardf$Precip and HumEnviroVardf$HumanRevGroupModLambda
## t = 2.7153, df = 8, p-value = 0.02644
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1115429 0.9206999
## sample estimates:
## cor
## 0.6925324
Dog FOI Correlation
Annual Precipitation
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ `Annual Precipitation`, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) `Annual Precipitation`
## 9.833117 -0.002961
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$`Annual Precipitation` and DogEnviroVardf$DogRevGroupModLambda
## t = -0.5582, df = 3, p-value = 0.6157
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9357644 0.7890681
## sample estimates:
## cor
## -0.3067433
Wettest
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ Wettest, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Wettest
## 7.20081 -0.01054
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Wettest and DogEnviroVardf$DogRevGroupModLambda
## t = -0.53303, df = 3, p-value = 0.631
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.934018 0.794243
## sample estimates:
## cor
## -0.294131
Driest
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ Driest, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Driest
## 0.46544 0.07856
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Driest and DogEnviroVardf$DogRevGroupModLambda
## t = 0.34043, df = 3, p-value = 0.756
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8307644 0.9187905
## sample estimates:
## cor
## 0.1928594
Seasonal
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ Seasonal, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Seasonal
## 9.8227 -0.1018
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Seasonal and DogEnviroVardf$DogRevGroupModLambda
## t = -0.38484, df = 3, p-value = 0.726
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9226117 0.8228259
## sample estimates:
## cor
## -0.2168978
NDVI Mean
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMean, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMean
## 3.796e+00 -2.609e-08
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMean and DogEnviroVardf$DogRevGroupModLambda
## t = -0.14312, df = 3, p-value = 0.8953
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8992794 0.8625877
## sample estimates:
## cor
## -0.08234898
NDVI Max
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMax
## 9.406e+00 -9.031e-08
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMax and DogEnviroVardf$DogRevGroupModLambda
## t = -0.40848, df = 3, p-value = 0.7103
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9245673 0.8184816
## sample estimates:
## cor
## -0.22954
NDVI Min
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ NDVIMin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) NDVIMin
## 5.492e+00 -1.330e-07
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$NDVIMin and DogEnviroVardf$DogRevGroupModLambda
## t = -4.3964, df = 3, p-value = 0.02181
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9954997 -0.2686792
## sample estimates:
## cor
## -0.9303979
LST Mean
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMean, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMean
## -323.490 1.081
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMean and DogEnviroVardf$DogRevGroupModLambda
## t = 1.0278, df = 3, p-value = 0.3797
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.6765700 0.9602451
## sample estimates:
## cor
## 0.5103053
LST Max
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMax
## -273.0922 0.9075
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMax and DogEnviroVardf$DogRevGroupModLambda
## t = 0.51959, df = 3, p-value = 0.6393
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7969681 0.9330639
## sample estimates:
## cor
## 0.2873335
LST Min
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ LSTMin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) LSTMin
## 10.15893 -0.02732
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$LSTMin and DogEnviroVardf$DogRevGroupModLambda
## t = -0.082579, df = 3, p-value = 0.9394
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8923944 0.8712501
## sample estimates:
## cor
## -0.04762277
Tmin
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ Tmin, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Tmin
## 39.3715 -0.1586
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Tmin and DogEnviroVardf$DogRevGroupModLambda
## t = -0.46955, df = 3, p-value = 0.6707
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9293748 0.8068811
## sample estimates:
## cor
## -0.2616492
Tmax
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ Tmax, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Tmax
## -293.076 0.947
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Tmax and DogEnviroVardf$DogRevGroupModLambda
## t = 0.79845, df = 3, p-value = 0.483
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7351558 0.9500167
## sample estimates:
## cor
## 0.4186454
Precip
## `geom_smooth()` using formula 'y ~ x'

##
## Call:
## lm(formula = DogRevGroupModLambda ~ Precip, data = DogEnviroVardf)
##
## Coefficients:
## (Intercept) Precip
## 9.83312 -0.03553
##
## Pearson's product-moment correlation
##
## data: DogEnviroVardf$Precip and DogEnviroVardf$DogRevGroupModLambda
## t = -0.5582, df = 3, p-value = 0.6157
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9357644 0.7890681
## sample estimates:
## cor
## -0.3067433