library(pacman)
p_load("readr", "DT", "prettydoc", "fdth", "modeest")
sonora <- read_csv("sonora3.csv")
## Parsed with column specification:
## cols(
##   country_region_code = col_character(),
##   country_region = col_character(),
##   sub_region_1 = col_character(),
##   sub_region_2 = col_logical(),
##   metro_area = col_logical(),
##   iso_3166_2_code = col_character(),
##   census_fips_code = col_logical(),
##   date = col_character(),
##   recreacion = col_double(),
##   tiendas = col_double(),
##   parques = col_double(),
##   transito = col_double(),
##   trabajo = col_double(),
##   residencial = col_double()
## )
datatable(sonora)
visitasparques <- sonora$parques

Distribuciones

Distribuciones de frecuencia

Medidas de tendencia

summary(visitasparques)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -64.00  -40.75  -34.00  -31.49  -26.00   12.00
boxplot(visitasparques)

mfv(visitasparques)
## [1] -38

Medidas de dispersión

sd(visitasparques)
## [1] 16.38546
var(visitasparques)
## [1] 268.4832
plot(visitasparques)

Tabla de distribuciones de frecuencia

dist <- fdt(visitasparques, breaks = "Sturges")
dist
##       Class limits  f   rf rf(%)  cf  cf(%)
##   [-64.64,-56.111)  8 0.03  3.31   8   3.31
##  [-56.111,-47.582) 25 0.10 10.33  33  13.64
##  [-47.582,-39.053) 38 0.16 15.70  71  29.34
##  [-39.053,-30.524) 76 0.31 31.40 147  60.74
##  [-30.524,-21.996) 52 0.21 21.49 199  82.23
##  [-21.996,-13.467) 12 0.05  4.96 211  87.19
##  [-13.467,-4.9378)  3 0.01  1.24 214  88.43
##   [-4.9378,3.5911) 11 0.05  4.55 225  92.98
##     [3.5911,12.12) 17 0.07  7.02 242 100.00

Histogramas y políginos de distribución de frecuencia

plot(dist,type="fh")

plot(dist,type="rfh")

plot(dist,type="cfh")

plot(dist,type="fp")

plot(dist,type="rfp")

plot(dist,type="cfp")

Distribuciones de probabilidad

Frecuencia con la cual se repiten los valores del conjunto de datos

sort(visitasparques)
##   [1] -64 -63 -63 -60 -59 -59 -57 -57 -56 -56 -55 -54 -54 -53 -53 -53 -53 -53
##  [19] -52 -52 -51 -51 -51 -51 -50 -50 -50 -49 -49 -49 -49 -48 -48 -47 -47 -47
##  [37] -47 -46 -46 -46 -45 -45 -45 -45 -45 -44 -44 -44 -43 -42 -42 -42 -42 -42
##  [55] -42 -41 -41 -41 -41 -41 -41 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40 -39
##  [73] -39 -39 -39 -39 -39 -39 -39 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38 -38
##  [91] -38 -38 -38 -38 -37 -37 -37 -37 -37 -37 -37 -37 -37 -37 -37 -37 -37 -36
## [109] -36 -36 -36 -36 -36 -36 -36 -36 -35 -35 -35 -35 -34 -34 -34 -34 -34 -34
## [127] -34 -34 -33 -33 -33 -33 -32 -32 -32 -32 -32 -32 -32 -32 -31 -31 -31 -31
## [145] -31 -31 -31 -30 -30 -30 -30 -29 -29 -29 -29 -29 -29 -28 -28 -28 -28 -28
## [163] -28 -27 -27 -27 -27 -27 -27 -27 -27 -26 -26 -26 -26 -26 -26 -26 -26 -26
## [181] -26 -26 -26 -25 -25 -25 -25 -25 -25 -25 -24 -24 -24 -24 -23 -23 -23 -23
## [199] -22 -21 -21 -21 -21 -21 -21 -21 -21 -20 -18 -17 -14 -13  -9  -5  -4  -3
## [217]  -2  -1   0   2   2   3   3   3   3   4   4   5   5   5   5   6   6   6
## [235]   6   6   6   8   8  10  11  12
table(visitasparques)
## visitasparques
## -64 -63 -60 -59 -57 -56 -55 -54 -53 -52 -51 -50 -49 -48 -47 -46 -45 -44 -43 -42 
##   1   2   1   2   2   2   1   2   5   2   4   3   4   2   4   3   5   3   1   6 
## -41 -40 -39 -38 -37 -36 -35 -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 
##   6  10   8  15  13   9   4   8   4   8   7   4   6   6   8  12   7   4   4   1 
## -21 -20 -18 -17 -14 -13  -9  -5  -4  -3  -2  -1   0   2   3   4   5   6   8  10 
##   8   1   1   1   1   1   1   1   1   1   1   1   1   2   4   2   4   6   2   1 
##  11  12 
##   1   1

¿Cómo sería si por ejemplo quisieramos saber la probabilidad de que en un día tengamos un valor de desfase 13 (moda) si fuera esto con probabilidad clásica?

P(A) = 1/31

Distribución normal

R tiene módulos para analizar la probabilidad distibuida

\[ \begin{array}{l|l|l|c} \text{Función} & \text{Significado} & \text{Uso}& \text{Observación}\\ \hline p & \text{probability} & \text{Calcula probabilidades acumuladas (cdf)} & \text{---}\\ q & \text{quantile} & \text{Calcula cuantiles (percentiles)} & \text{---}\\ d & \text{density} & \text{Calcula probabilidades puntuales} & \text{Sólo uso gráfico en el caso continuo}\\ r & \text{random} & \text{Genera datos aleatorios según una distribución específica} & \text{---}\\ \hline \end{array} \]

¿Cómo podemos calcular la probabilidad de que tengamos un valor de -40 o menos utilizando la distribución normal?

Tenemos una media de: -31.49 y desviación estándar de: 16.38564

¿Cuál es la probabilidad de que \(X\) sea menor o igual a 15 o menos

pnorm(-40, mean = -31.49, sd=16.3856467)
## [1] 0.3017559

El número -40 tiene una probabilidad de salir del 30.1%

Conclusión

Sin duda la asistencias a parques disminuyó en buena medida, pero no ha sido lo suficiente para poder disminuir aún más los contagios, por lo tanto el porcentaje de gente que no asiste a parque ha comenzado a aumentar, entonces el porcentaje de contagios será aún más alto.