Abstract
This is an undergrad student level exercise for class use. We analyse soy data, 117 observations.This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
License: CC BY-SA 4.0
Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: exercicio_soja_apostila. Campo Grande-MS,Brasil: RStudio/Rpubs, 2020. Disponível em http://rpubs.com/amrofi/exercicio_soja_apostila.
Sabendo que a variável dependente Qsoja é a quantidade produzida de soja, a variável FERTILIZANTE é a quantidade utilizada de fertilizantes, a variável TRATOR é o número de horas-máquina utilizadas, e MO é a quantidade de mão-de-obra em número de pessoas.
Pede-se:
library(readxl)
# library(foreign)
dados <- read_excel("soja_apostila.xlsx",
sheet = "dados")
# QSOJA = quantidade produzida de soja;
# FERTILIZANTE = quantidade utilizada de fertilizantes,
# TRATOR = número de horas-máquina utilizadas, e
# MO = quantidade de mão-de-obra em número de pessoas
library(knitr)
kable(dados)
OBS | QSOJA | FERTILIZANTE | TRATOR | MO |
---|---|---|---|---|
1 | 436.6313 | 19.027154 | 3.171218 | 0.0680761 |
2 | 373.6483 | 17.896131 | 2.913073 | 0.0680761 |
3 | 394.4222 | 16.781633 | 2.796939 | 0.0680761 |
4 | 343.5695 | 13.490744 | 2.893457 | 0.0680761 |
5 | 303.7661 | 9.879220 | 3.098844 | 0.0715237 |
6 | 301.1642 | 9.475786 | 3.553420 | 0.0833560 |
7 | 288.9482 | 11.364279 | 3.977498 | 0.0985723 |
8 | 330.6534 | 15.127935 | 4.862550 | 0.1114103 |
9 | 312.7905 | 15.332867 | 5.270673 | 0.1144871 |
10 | 326.3374 | 12.851502 | 5.291795 | 0.1026860 |
11 | 393.9242 | 11.513764 | 4.386196 | 0.1213057 |
12 | 472.0955 | 12.855099 | 3.615497 | 0.1231947 |
13 | 506.5198 | 13.013046 | 3.180967 | 0.1133822 |
14 | 351.6223 | 13.455148 | 3.312036 | 0.0988436 |
15 | 381.6837 | 14.347826 | 3.586956 | 0.0807663 |
16 | 383.1624 | 13.446183 | 3.361546 | 0.0622686 |
17 | 411.0399 | 12.850584 | 2.793605 | 0.0838004 |
18 | 393.7213 | 11.878680 | 3.254433 | 0.0765244 |
19 | 434.5707 | 8.974284 | 2.692285 | 0.0574878 |
20 | 433.6160 | 11.285367 | 2.901951 | 0.0653656 |
21 | 397.5211 | 10.345953 | 2.955986 | 0.0725099 |
22 | 392.6673 | 10.167811 | 2.982558 | 0.0780549 |
23 | 388.1611 | 12.599515 | 3.239875 | 0.0806569 |
24 | 370.9625 | 18.063596 | 3.187693 | 0.0816669 |
25 | 392.9900 | 22.590552 | 3.804724 | 0.0822772 |
26 | 364.6083 | 27.078998 | 4.166000 | 0.0801052 |
27 | 346.4324 | 25.893400 | 4.256449 | 0.0750436 |
28 | 418.2499 | 24.670302 | 3.654860 | 0.0703104 |
29 | 406.4036 | 22.348288 | 3.428431 | 0.0796031 |
30 | 335.5657 | 23.066102 | 3.564761 | 0.0830485 |
31 | 372.3893 | 23.462026 | 4.105855 | 0.0935842 |
32 | 355.1380 | 23.374281 | 4.233765 | 0.1009140 |
33 | 350.3687 | 23.629311 | 4.219520 | 0.1086695 |
34 | 333.2291 | 21.508565 | 4.455346 | 0.1116064 |
35 | 331.4042 | 20.424435 | 4.221050 | 0.1188290 |
36 | 350.2156 | 18.864038 | 3.772808 | 0.1201338 |
37 | 347.9309 | 18.264942 | 4.058876 | 0.1182342 |
38 | 429.3538 | 16.125845 | 4.353978 | 0.1057403 |
39 | 312.6486 | 15.387261 | 3.718588 | 0.0934575 |
40 | 320.1290 | 15.747562 | 3.919400 | 0.0841935 |
41 | 367.6004 | 14.898356 | 3.862531 | 0.0798233 |
42 | 370.5812 | 18.571374 | 3.448969 | 0.0747408 |
43 | 318.2939 | 19.782503 | 3.406987 | 0.0708495 |
44 | 360.7165 | 19.933442 | 3.105908 | 0.0672991 |
45 | 344.1279 | 20.821774 | 3.407199 | 0.0611104 |
46 | 348.4604 | 20.266470 | 3.897398 | 0.0553948 |
47 | 339.9099 | 18.703933 | 3.587056 | 0.0660367 |
48 | 355.1158 | 16.939705 | 3.061392 | 0.0689438 |
49 | 333.9912 | 15.222441 | 2.563779 | 0.0669589 |
50 | 324.3522 | 15.390061 | 3.270388 | 0.0638619 |
51 | 326.3627 | 15.486698 | 3.613563 | 0.0596771 |
52 | 337.5229 | 14.188837 | 2.921231 | 0.0549264 |
53 | 326.4391 | 17.505796 | 3.728086 | 0.0734138 |
54 | 315.8837 | 18.449976 | 4.099995 | 0.0823331 |
55 | 309.3893 | 18.044338 | 4.009853 | 0.0834334 |
56 | 309.9922 | 18.765397 | 3.127566 | 0.0799067 |
57 | 294.8586 | 17.733992 | 3.665025 | 0.0716247 |
58 | 319.1269 | 14.470821 | 3.617705 | 0.0633701 |
59 | 321.0751 | 19.190613 | 2.741516 | 0.0934971 |
60 | 324.6171 | 23.610757 | 3.079664 | 0.1040755 |
61 | 326.4982 | 22.480939 | 2.248094 | 0.1008333 |
62 | 323.0241 | 19.962350 | 2.218039 | 0.0930098 |
63 | 306.6080 | 24.292193 | 3.238959 | 0.0813417 |
64 | 316.6854 | 23.777410 | 3.269394 | 0.0695737 |
65 | 306.6323 | 20.902855 | 2.717371 | 0.2104958 |
66 | 347.0512 | 17.613532 | 3.522706 | 0.2612609 |
67 | 281.0183 | 18.242280 | 2.634996 | 0.2587254 |
68 | 306.4382 | 18.496391 | 2.845599 | 0.2365993 |
69 | 310.1581 | 20.188705 | 3.028306 | 0.2068718 |
70 | 308.5547 | 17.216457 | 2.754633 | 0.1677468 |
71 | 317.9888 | 18.222855 | 3.796428 | 0.1263279 |
72 | 309.3025 | 17.634120 | 3.673775 | 0.1143292 |
73 | 301.9073 | 17.365134 | 4.341284 | 0.1047887 |
74 | 293.6960 | 21.165753 | 4.233151 | 0.0945763 |
75 | 286.2460 | 20.654657 | 5.507909 | 0.0848737 |
76 | 284.7420 | 20.538225 | 5.476860 | 0.0770183 |
77 | 281.5418 | 20.262582 | 5.403355 | 0.0741085 |
78 | 276.0765 | 20.031671 | 6.677224 | 0.0714092 |
79 | 225.2501 | 19.674789 | 6.558263 | 0.0683152 |
80 | 221.5791 | 19.232075 | 6.410692 | 0.0649973 |
81 | 222.8190 | 19.155695 | 6.385232 | 0.0629655 |
82 | 210.4651 | 18.665975 | 6.221992 | 0.0596274 |
83 | 204.5797 | 18.257353 | 6.085784 | 0.0578150 |
84 | 210.2081 | 18.025047 | 6.008349 | 0.0565786 |
85 | 214.6191 | 18.222036 | 6.074012 | 0.0566908 |
86 | 249.6837 | 18.180855 | 6.060285 | 0.0560576 |
87 | 234.0570 | 17.942735 | 5.980912 | 0.0548250 |
88 | 237.7827 | 17.893649 | 5.964550 | 0.0541780 |
89 | 247.7836 | 17.578291 | 5.859430 | 0.0539450 |
90 | 243.3269 | 17.445292 | 5.815097 | 0.0542532 |
91 | 250.5178 | 17.407543 | 5.802515 | 0.0548507 |
92 | 245.4773 | 17.287133 | 5.762378 | 0.0551812 |
93 | 242.5476 | 17.001003 | 5.667001 | 0.0549660 |
94 | 235.1395 | 16.795680 | 5.598560 | 0.0549919 |
95 | 246.0776 | 16.614144 | 5.538048 | 0.0547198 |
96 | 300.6604 | 16.613518 | 5.537839 | 0.0550400 |
97 | 311.5473 | 16.592259 | 5.530753 | 0.0552914 |
98 | 311.5925 | 22.074493 | 5.518623 | 0.0554913 |
99 | 311.6615 | 22.012328 | 5.503082 | 0.0556553 |
100 | 313.5211 | 21.820787 | 5.455197 | 0.0554884 |
101 | 324.6232 | 21.481866 | 5.370467 | 0.0541104 |
102 | 325.2196 | 21.391804 | 5.347951 | 0.0533696 |
103 | 316.0520 | 21.145550 | 5.286388 | 0.0522471 |
104 | 315.2351 | 21.021980 | 5.255495 | 0.0514367 |
105 | 313.0394 | 20.958717 | 5.239679 | 0.0507783 |
106 | 311.2563 | 20.813557 | 5.203389 | 0.0499265 |
107 | 314.7598 | 22.874988 | 5.198861 | 0.0499026 |
108 | 319.8599 | 22.885027 | 5.201142 | 0.0499440 |
109 | 315.8649 | 22.750874 | 5.170653 | 0.0496706 |
110 | 313.0671 | 22.673329 | 5.153029 | 0.0495206 |
111 | 305.2353 | 22.486607 | 5.110593 | 0.0491320 |
112 | 299.9114 | 22.332207 | 5.075502 | 0.0488136 |
113 | 292.8193 | 22.137539 | 6.037511 | 0.0483839 |
114 | 288.3748 | 22.133144 | 6.036312 | 0.0483701 |
115 | 282.5741 | 22.081594 | 6.022253 | 0.0482533 |
116 | 280.0402 | 22.111346 | 6.030367 | 0.0483141 |
117 | 272.0936 | 22.061101 | 6.016664 | 0.0482002 |
attach(dados)
# PASSO 1: estimar o modelo
regressao1<-lm(QSOJA~FERTILIZANTE+TRATOR+MO)
summary(regressao1)
##
## Call:
## lm(formula = QSOJA ~ FERTILIZANTE + TRATOR + MO)
##
## Residuals:
## Min 1Q Median 3Q Max
## -66.714 -33.171 1.768 24.894 149.637
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 494.9657 25.5723 19.356 < 2e-16 ***
## FERTILIZANTE -0.5535 1.0589 -0.523 0.6022
## TRATOR -33.6899 3.7410 -9.006 6.09e-15 ***
## MO -209.1407 107.8926 -1.938 0.0551 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 41.51 on 113 degrees of freedom
## Multiple R-squared: 0.4651, Adjusted R-squared: 0.4509
## F-statistic: 32.75 on 3 and 113 DF, p-value: 2.608e-15
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(list(regressao1),type="text",style="all" )
##
## =======================================================
## Dependent variable:
## -----------------------------------
## QSOJA
## -------------------------------------------------------
## FERTILIZANTE -0.554
## (1.059)
## t = -0.523
## p = 0.603
## TRATOR -33.690***
## (3.741)
## t = -9.006
## p = 0.000
## MO -209.141*
## (107.893)
## t = -1.938
## p = 0.056
## Constant 494.966***
## (25.572)
## t = 19.356
## p = 0.000
## -------------------------------------------------------
## Observations 117
## R2 0.465
## Adjusted R2 0.451
## Residual Std. Error 41.506 (df = 113)
## F Statistic 32.753*** (df = 3; 113) (p = 0.000)
## =======================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#PASSO 2: obtencao dos valores ajustados
# utilizaremos o recurso I(fitted(regressao1)) para gerar automaticamente e já estimar a regressão de teste
#PASSO 3: colocar valores ajustados ao quadrado e ao cubo e a quarta potencias
#PASSO 4: estimar regressão de teste
reg_RESET_3<-lm(QSOJA~FERTILIZANTE+TRATOR+MO+I(fitted(regressao1)^2)+
I(fitted(regressao1)^3)+I(fitted(regressao1)^4),data=dados)
reg_RESET<-lm(QSOJA~FERTILIZANTE+TRATOR+MO+
I(fitted(regressao1)^2)+I(fitted(regressao1)^3),data=dados)
results<-stargazer(list(regressao1,reg_RESET_3),type="text",style="all" )
##
## ==============================================================================================
## Dependent variable:
## -----------------------------------------------------------------------
## QSOJA
## (1) (2)
## ----------------------------------------------------------------------------------------------
## FERTILIZANTE -0.554 304.130**
## (1.059) (135.047)
## t = -0.523 t = 2.252
## p = 0.603 p = 0.027
## TRATOR -33.690*** 18,591.290**
## (3.741) (8,231.767)
## t = -9.006 t = 2.258
## p = 0.000 p = 0.026
## MO -209.141* 115,237.700**
## (107.893) (51,069.360)
## t = -1.938 t = 2.256
## p = 0.056 p = 0.027
## I(fitted(regressao1)2) 2.665**
## (1.165)
## t = 2.287
## p = 0.025
## I(fitted(regressao1)3) -0.006**
## (0.002)
## t = -2.300
## p = 0.024
## I(fitted(regressao1)4) 0.00000**
## (0.00000)
## t = 2.303
## p = 0.024
## Constant 494.966*** -230,604.700**
## (25.572) (101,861.300)
## t = 19.356 t = -2.264
## p = 0.000 p = 0.026
## ----------------------------------------------------------------------------------------------
## Observations 117 117
## R2 0.465 0.532
## Adjusted R2 0.451 0.507
## Residual Std. Error 41.506 (df = 113) 39.331 (df = 110)
## F Statistic 32.753*** (df = 3; 113) (p = 0.000) 20.879*** (df = 6; 110) (p = 0.000)
## ==============================================================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
#PASSOS 4 A 6: calcular estatisticas de teste
# RESET: H0: o modelo esta bem especificado, ou H0: COEFICIENTES incluindo "fitted" sao nulos
library(car)
## Loading required package: carData
# RESETH0<-c("I(fitted(regressao1)^2)","I(fitted(regressao1)^3)",
# "I(fitted(regressao1)^4)")
RESETH0<-c("I(fitted(regressao1)^2)","I(fitted(regressao1)^3)")
Tabela_RESET<-linearHypothesis(reg_RESET,RESETH0)
# outra alternativa é usar a linha abaixo com o matchCoefs
#Tabela_RESET<-linearHypothesis(reg_RESET, matchCoefs(reg_RESET,"fitted"))
Tabela_RESET
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
TesteRESET<-resettest(regressao1, power = 2:3) # default é power = 2:3
TesteRESET
##
## RESET test
##
## data: regressao1
## RESET = 5.0746, df1 = 2, df2 = 111, p-value = 0.007783
#alterando as potencias
TesteRESET.power<-resettest(regressao1, power = 2:4)
TesteRESET.power
##
## RESET test
##
## data: regressao1
## RESET = 5.2816, df1 = 3, df2 = 110, p-value = 0.001932
regressao1$AIC <- AIC(regressao1)
regressao1$BIC <- BIC(regressao1)
#mostrando os valores de AIC e SIC
library(stargazer)
star.1 <- stargazer(regressao1,
title="Título: Resultado da Regressão",
align=TRUE,
type = "text", style = "all",
keep.stat=c("aic","bic","rsq", "adj.rsq","n")
)
##
## Título: Resultado da Regressão
## ===============================================
## Dependent variable:
## ---------------------------
## QSOJA
## -----------------------------------------------
## FERTILIZANTE -0.554
## (1.059)
## t = -0.523
## p = 0.603
## TRATOR -33.690***
## (3.741)
## t = -9.006
## p = 0.000
## MO -209.141*
## (107.893)
## t = -1.938
## p = 0.056
## Constant 494.966***
## (25.572)
## t = 19.356
## p = 0.000
## -----------------------------------------------
## Observations 117
## R2 0.465
## Adjusted R2 0.451
## Akaike Inf. Crit. 1,209.807
## Bayesian Inf. Crit. 1,223.617
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
reg.loglog<-lm(log(QSOJA)~log(FERTILIZANTE)+log(TRATOR)+log(MO))
reg.loglog$AIC <- AIC(reg.loglog)
reg.loglog$BIC <- BIC(reg.loglog)
summary(reg.loglog)
##
## Call:
## lm(formula = log(QSOJA) ~ log(FERTILIZANTE) + log(TRATOR) + log(MO))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.28745 -0.11478 0.01292 0.09072 0.35834
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.36829 0.17474 36.445 < 2e-16 ***
## log(FERTILIZANTE) -0.03156 0.05807 -0.543 0.588
## log(TRATOR) -0.41543 0.05420 -7.664 6.74e-12 ***
## log(MO) -0.02877 0.03960 -0.727 0.469
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1351 on 113 degrees of freedom
## Multiple R-squared: 0.4275, Adjusted R-squared: 0.4123
## F-statistic: 28.13 on 3 and 113 DF, p-value: 1.162e-13
library(stargazer)
stargazer(regressao1,reg.loglog,
type="text",style="all",
keep.stat=c("aic","bic","rsq", "adj.rsq","n"))
##
## ================================================
## Dependent variable:
## ----------------------------
## QSOJA log(QSOJA)
## (1) (2)
## ------------------------------------------------
## FERTILIZANTE -0.554
## (1.059)
## t = -0.523
## p = 0.603
## TRATOR -33.690***
## (3.741)
## t = -9.006
## p = 0.000
## MO -209.141*
## (107.893)
## t = -1.938
## p = 0.056
## log(FERTILIZANTE) -0.032
## (0.058)
## t = -0.543
## p = 0.588
## log(TRATOR) -0.415***
## (0.054)
## t = -7.664
## p = 0.000
## log(MO) -0.029
## (0.040)
## t = -0.727
## p = 0.470
## Constant 494.966*** 6.368***
## (25.572) (0.175)
## t = 19.356 t = 36.445
## p = 0.000 p = 0.000
## ------------------------------------------------
## Observations 117 117
## R2 0.465 0.428
## Adjusted R2 0.451 0.412
## Akaike Inf. Crit. 1,209.807 -130.503
## Bayesian Inf. Crit. 1,223.617 -116.692
## ================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
outlierTest(reg.loglog)
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferroni p
## 13 2.777133 0.0064307 0.75239
outlierTest(regressao1)
## rstudent unadjusted p-value Bonferroni p
## 13 3.882668 0.00017511 0.020487
library(AER)
## Loading required package: sandwich
## Loading required package: survival
bp.het<-bptest(regressao1, studentize = TRUE)
bp.het
##
## studentized Breusch-Pagan test
##
## data: regressao1
## BP = 10.087, df = 3, p-value = 0.01784
# regressao1<-lm(QSOJA~FERTILIZANTE+TRATOR+MO)
m <- regressao1
data <- dados
#rotina do teste com base em m e data
u2 <- m$residuals^2
#sem termos cruzados, no cross-terms
reg.auxiliar <- lm(u2 ~ FERTILIZANTE+TRATOR+MO+
I(FERTILIZANTE^2)+I(TRATOR^2)+I(MO^2))
summary(reg.auxiliar)
##
## Call:
## lm(formula = u2 ~ FERTILIZANTE + TRATOR + MO + I(FERTILIZANTE^2) +
## I(TRATOR^2) + I(MO^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3451.5 -1319.0 -345.4 365.3 18550.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9516.00 6550.45 1.453 0.1491
## FERTILIZANTE -810.45 551.79 -1.469 0.1448
## TRATOR -2061.75 2106.30 -0.979 0.3298
## MO 76907.49 29850.12 2.576 0.0113 *
## I(FERTILIZANTE^2) 18.85 15.37 1.226 0.2227
## I(TRATOR^2) 245.72 236.74 1.038 0.3016
## I(MO^2) -230942.82 103719.00 -2.227 0.0280 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2805 on 110 degrees of freedom
## Multiple R-squared: 0.1389, Adjusted R-squared: 0.09188
## F-statistic: 2.956 on 6 and 110 DF, p-value: 0.0103
Ru2<- summary(reg.auxiliar)$r.squared
LM <- nrow(data)*Ru2
#obtendo o numero de regressores menos o intercepto
k <- length(coefficients(reg.auxiliar))-1
k
## [1] 6
p.value <- 1-pchisq(LM, k) # O TESTE TEM k TERMOS REGRESSORES EM reg.auxiliar
#c("LM","p.value")
c(LM, p.value)
## [1] 16.24547461 0.01249533
Agora com o bptest
para reproduzir White. Pelo pacote lmtest, o bptest dará o mesmo resultado, desde que especifique a mesma regressão auxiliar usada no White acima.
bptest(regressao1,
~ FERTILIZANTE+TRATOR+MO+
I(FERTILIZANTE^2)+I(TRATOR^2)+I(MO^2))
##
## studentized Breusch-Pagan test
##
## data: regressao1
## BP = 16.245, df = 6, p-value = 0.0125
reg.auxiliar <- lm(u2 ~ FERTILIZANTE+I(FERTILIZANTE*FERTILIZANTE)+
I(FERTILIZANTE*TRATOR)+I(FERTILIZANTE*MO)+
TRATOR+I(TRATOR*TRATOR)+I(TRATOR*MO)+
MO+I(MO*MO))
summary(reg.auxiliar)
##
## Call:
## lm(formula = u2 ~ FERTILIZANTE + I(FERTILIZANTE * FERTILIZANTE) +
## I(FERTILIZANTE * TRATOR) + I(FERTILIZANTE * MO) + TRATOR +
## I(TRATOR * TRATOR) + I(TRATOR * MO) + MO + I(MO * MO))
##
## Residuals:
## Min 1Q Median 3Q Max
## -4733.0 -1149.1 -261.6 588.4 15712.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -20557.49 9888.59 -2.079 0.04002 *
## FERTILIZANTE 445.35 600.72 0.741 0.46010
## I(FERTILIZANTE * FERTILIZANTE) 25.27 15.81 1.599 0.11283
## I(FERTILIZANTE * TRATOR) -120.17 87.70 -1.370 0.17349
## I(FERTILIZANTE * MO) -13077.63 3137.31 -4.168 6.24e-05 ***
## TRATOR 864.94 3116.37 0.278 0.78190
## I(TRATOR * TRATOR) 309.35 253.61 1.220 0.22522
## I(TRATOR * MO) -22449.97 12081.31 -1.858 0.06588 .
## MO 426443.96 90390.39 4.718 7.24e-06 ***
## I(MO * MO) -365960.48 130236.21 -2.810 0.00589 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2600 on 107 degrees of freedom
## Multiple R-squared: 0.2806, Adjusted R-squared: 0.2201
## F-statistic: 4.638 on 9 and 107 DF, p-value: 3.426e-05
Ru2<- summary(reg.auxiliar)$r.squared
LM <- nrow(data)*Ru2
#obtendo o numero de regressores menos o intercepto
k <- length(coefficients(reg.auxiliar))-1
k
## [1] 9
p.value <- 1-pchisq(LM, k) # O TESTE TEM k TERMOS REGRESSORES EM reg.auxiliar
c(LM, p.value)
## [1] 3.283525e+01 1.426649e-04
Novamente, pelo bptest
:
library(lmtest)
# reg.auxiliar <- lm(u2 ~ FERTILIZANTE+I(FERTILIZANTE*FERTILIZANTE)+
# I(FERTILIZANTE*TRATOR)+I(FERTILIZANTE*MO)+
# TRATOR+I(TRATOR*TRATOR)+I(TRATOR*MO)+
# MO+I(MO*MO))
bptest(regressao1,
~ FERTILIZANTE+I(FERTILIZANTE*FERTILIZANTE)+
I(FERTILIZANTE*TRATOR)+I(FERTILIZANTE*MO)+
TRATOR+I(TRATOR*TRATOR)+I(TRATOR*MO)+
MO+I(MO*MO))
##
## studentized Breusch-Pagan test
##
## data: regressao1
## BP = 32.835, df = 9, p-value = 0.0001427
#regressao1<-lm(QSOJA~FERTILIZANTE+TRATOR+MO)
#library(car)
#possibilidades: hccm(regressao1,type=c("hc0","hc1","hc2","hc3","hc4"))
vcov.white0<-hccm(regressao1,type=c("hc1"))
#
coeftest(regressao1,vcov.white0)
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 494.96573 26.46010 18.7061 < 2.2e-16 ***
## FERTILIZANTE -0.55354 1.27243 -0.4350 0.66437
## TRATOR -33.68994 3.79488 -8.8777 1.198e-14 ***
## MO -209.14074 115.17696 -1.8158 0.07205 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
estimatr
library(estimatr)
library(car)
# Erros padrões robustos HC1 - padrão do Stata
model <- lm_robust(QSOJA~FERTILIZANTE+TRATOR+MO,
data = dados,
se_type = "stata")
summary(model)
##
## Call:
## lm_robust(formula = QSOJA ~ FERTILIZANTE + TRATOR + MO, data = dados,
## se_type = "stata")
##
## Standard error type: HC1
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 494.9657 26.460 18.706 2.147e-36 442.543 547.388 113
## FERTILIZANTE -0.5535 1.272 -0.435 6.644e-01 -3.074 1.967 113
## TRATOR -33.6899 3.795 -8.878 1.198e-14 -41.208 -26.172 113
## MO -209.1407 115.177 -1.816 7.205e-02 -437.327 19.046 113
##
## Multiple R-squared: 0.4651 , Adjusted R-squared: 0.4509
## F-statistic: 33.94 on 3 and 113 DF, p-value: 1.021e-15
stargazer(regressao1,
se = starprep(regressao1,se_type = "HC1"),
p = starprep(regressao1,se_type = "HC1", stat = "p.value"),
type="text",style="all",
omit.stat = "f")
##
## ===============================================
## Dependent variable:
## ---------------------------
## QSOJA
## -----------------------------------------------
## FERTILIZANTE -0.554
## (1.272)
## t = -0.435
## p = 0.665
## TRATOR -33.690***
## (3.795)
## t = -8.878
## p = 0.000
## MO -209.141*
## (115.177)
## t = -1.816
## p = 0.073
## Constant 494.966***
## (26.460)
## t = 18.706
## p = 0.000
## -----------------------------------------------
## Observations 117
## R2 0.465
## Adjusted R2 0.451
## Residual Std. Error 41.506 (df = 113)
## Akaike Inf. Crit. 1,209.807
## Bayesian Inf. Crit. 1,223.617
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
# alternativa HC3 - padrão do R
model.hc3 <- lm_robust(QSOJA~FERTILIZANTE+TRATOR+MO,
data = dados,
se_type = "HC3")
summary(model.hc3)
##
## Call:
## lm_robust(formula = QSOJA ~ FERTILIZANTE + TRATOR + MO, data = dados,
## se_type = "HC3")
##
## Standard error type: HC3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 494.9657 27.746 17.8390 1.194e-34 439.995 549.936 113
## FERTILIZANTE -0.5535 1.308 -0.4233 6.729e-01 -3.144 2.037 113
## TRATOR -33.6899 3.896 -8.6463 4.069e-14 -41.410 -25.970 113
## MO -209.1407 129.250 -1.6181 1.084e-01 -465.208 46.927 113
##
## Multiple R-squared: 0.4651 , Adjusted R-squared: 0.4509
## F-statistic: 32.44 on 3 and 113 DF, p-value: 3.334e-15
HEISS, Florian. Using R for Introductory Econometrics. 2.ed. Florian Heiss, 2020. Recurso online. Disponível em: http://www.urfie.net/.
WOOLDRIDGE, J.M. Introdução à Econometria: uma abordagem moderna. São Paulo: Pioneira Thomson Learning, 2006.(tradução da segunda edição americana).