Multigroup Invariance Analysis

In this assignment you will test and report on Multigroup Measurement Invariance. Self-Determination is measured by 3 constructs: autonomy, psychological empowerment and self-realization. Each construct has 3 indicators available. Again, the constructs are autonomy [AUTO1-3], psychological empowerment [PSYE1-3] and self-realization [SR1-3].

There are 7 groups in this sample: 1=High_Incidence 2=Sensory 3=Intellectual 4=Orthopedic 5=Cognitive 6=Traumatic_Brain 7 = ASD

Instructions

Note* The model and the syntax for all levels of invariance are given. You will copy and paste this syntax into R. You should not need to write any new syntax, only copy and paste.

The output for the configural model is included in this assignment. You will need to run the metric, scalar and latent means models. The syntax/instructions for these are under the output from the configural model.


YOU WILL BE GRADED ON THE FOLLOWING CRITERIA:

[1] You will be graded on constructing a table like this one using APA 7th edition guidelines. (50 points)

You will use the chi-square value and the DF from the User model, NOT the Baseline model.


[2] You will be graded for drawing an SEM diagram of the model (25 points) Just one model. No need to draw one for each group. *circles, squares, arrows, curved arrows (no need to add values, I just want to see the structure)

*You can use the software at the provided link to draw this diagram <app.diagrams.net>


[3] Based on the guidance from the Multigroup CFA lecture (slides and class recording on blackboard), describe whether the model has reached all levels of invariance: Configural, Metric, Scalar and Latent Means (125).

There will be 4 write-ups, 1 for each stage of invariance testing.

Example Write-Up for Metric Invariance: “Loadings are invariant across 7th and 8th graders. In a comparison of this metric model and the configural model, the change in CFI was .006 which is lower than the .01 threshold. The RMSEA value for this metric model, .04, is within the confidence interval for the configural model’s RMSEA, [.03-.08]. This is evidence that the model has passed metric invariance.” -slide 16 gives this example


Load Data

Your file <NLTS.csv> is in a folder on your computer. Set your directory, with the setwd() function, to that folder. Mine is unique to my computer.

setwd("E:/SEM - TA/HW2") # Make sure to use a forward slash /
dat <- read.csv("NLTS.csv", na.strings = "-99") # Now the software knows where this file lives

Investigate data

names(dat)
##  [1] "id"         "disability" "AUTO1"      "AUTO2"      "AUTO3"     
##  [6] "PSYE1"      "PSYE2"      "PSYE3"      "SR1"        "SR2"       
## [11] "SR3"        "group"
psych::describe(dat)

Level 1: Configural Invariance

Configural invariance describes the situation when the parameters are estimated uniquely in each group but the pattern of free and fixed parameters is the same (or very similar).

Fit a multiple-group model with the same factor structure to two (or more) groups. If the model fits well, configural invariance is supported.

Please judge model fit by the CFI and RMSEA. You can use the fit guidelines from the following page http://davidakenny.net/cm/fit.htm


SD.model <-'
#define the constructs
AUTO =~ AUTO1 + AUTO2 + AUTO3
PSYE =~ PSYE1 + PSYE2 + PSYE3
SR =~ SR1 + SR2 + SR3

#specify correlation
AUTO ~~ PSYE + SR
PSYE ~~ SR'

You may need to install Lavaan if this is your first time using it.

install.packages(“lavaan”)


library(lavaan) 
## This is lavaan 0.6-7
## lavaan is BETA software! Please report any bugs.
conf <- cfa(model = SD.model, 
            data = dat, 
            group = "group", 
            missing = "fiml")


options(max.print = 100000) #this line extends the output in the console 
summary(conf, 
        standardized=TRUE, 
        fit.measures=TRUE, 
        rsquare=TRUE)
## lavaan 0.6-7 ended normally after 339 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                        210
##                                                       
##   Number of observations per group:                   
##     1                                             4162
##     3                                              758
##     6                                              204
##     2                                              586
##     5                                              495
##     7                                              637
##     4                                              297
##   Number of missing patterns per group:               
##     1                                               29
##     3                                               21
##     6                                               10
##     2                                               14
##     5                                               13
##     7                                               19
##     4                                                7
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               513.977
##   Degrees of freedom                               168
##   P-value (Chi-square)                           0.000
##   Test statistic for each group:
##     1                                          226.822
##     3                                           40.211
##     6                                           35.299
##     2                                           54.914
##     5                                           33.024
##     7                                           73.438
##     4                                           50.270
## 
## Model Test Baseline Model:
## 
##   Test statistic                             12407.613
##   Degrees of freedom                               252
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.972
##   Tucker-Lewis Index (TLI)                       0.957
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10175.921
##   Loglikelihood unrestricted model (H1)      -9918.933
##                                                       
##   Akaike (AIC)                               20771.843
##   Bayesian (BIC)                             22215.242
##   Sample-size adjusted Bayesian (BIC)        21547.909
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.045
##   90 Percent confidence interval - lower         0.041
##   90 Percent confidence interval - upper         0.049
##   P-value RMSEA <= 0.05                          0.969
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.029
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Observed
##   Observed information based on                Hessian
## 
## 
## Group 1 [1]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.571    0.717
##     AUTO2             1.038    0.029   36.226    0.000    0.592    0.716
##     AUTO3             0.925    0.025   36.808    0.000    0.528    0.776
##   PSYE =~                                                               
##     PSYE1             1.000                               0.114    0.537
##     PSYE2             1.227    0.050   24.509    0.000    0.140    0.628
##     PSYE3             0.745    0.039   19.162    0.000    0.085    0.459
##   SR =~                                                                 
##     SR1               1.000                               0.100    0.559
##     SR2               0.970    0.039   24.710    0.000    0.097    0.572
##     SR3               1.181    0.051   23.377    0.000    0.118    0.618
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.016    0.002    9.562    0.000    0.240    0.240
##     SR                0.011    0.001    8.528    0.000    0.200    0.200
##   PSYE ~~                                                               
##     SR                0.010    0.000   20.149    0.000    0.871    0.871
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.825    0.012  228.708    0.000    2.825    3.549
##    .AUTO2             2.409    0.013  187.573    0.000    2.409    2.910
##    .AUTO3             2.701    0.011  255.556    0.000    2.701    3.969
##    .PSYE1             1.908    0.003  577.886    0.000    1.908    8.979
##    .PSYE2             1.899    0.003  549.287    0.000    1.899    8.523
##    .PSYE3             1.923    0.003  667.984    0.000    1.923   10.385
##    .SR1               1.940    0.003  701.252    0.000    1.940   10.886
##    .SR2               1.951    0.003  745.609    0.000    1.951   11.571
##    .SR3               1.915    0.003  645.736    0.000    1.915   10.061
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.308    0.010   30.904    0.000    0.308    0.486
##    .AUTO2             0.334    0.011   30.941    0.000    0.334    0.488
##    .AUTO3             0.184    0.007   24.800    0.000    0.184    0.398
##    .PSYE1             0.032    0.001   36.126    0.000    0.032    0.712
##    .PSYE2             0.030    0.001   29.809    0.000    0.030    0.606
##    .PSYE3             0.027    0.001   39.613    0.000    0.027    0.789
##    .SR1               0.022    0.001   35.524    0.000    0.022    0.688
##    .SR2               0.019    0.001   34.780    0.000    0.019    0.672
##    .SR3               0.022    0.001   32.364    0.000    0.022    0.618
##     AUTO              0.326    0.014   22.953    0.000    1.000    1.000
##     PSYE              0.013    0.001   14.730    0.000    1.000    1.000
##     SR                0.010    0.001   15.545    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.514
##     AUTO2             0.512
##     AUTO3             0.602
##     PSYE1             0.288
##     PSYE2             0.394
##     PSYE3             0.211
##     SR1               0.312
##     SR2               0.328
##     SR3               0.382
## 
## 
## Group 2 [3]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.636    0.738
##     AUTO2             0.958    0.062   15.460    0.000    0.609    0.707
##     AUTO3             0.901    0.057   15.678    0.000    0.573    0.763
##   PSYE =~                                                               
##     PSYE1             1.000                               0.154    0.591
##     PSYE2             0.940    0.105    8.942    0.000    0.144    0.629
##     PSYE3             0.482    0.065    7.393    0.000    0.074    0.410
##   SR =~                                                                 
##     SR1               1.000                               0.166    0.690
##     SR2               0.536    0.053   10.082    0.000    0.089    0.521
##     SR3               0.846    0.080   10.518    0.000    0.141    0.654
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.026    0.006    4.526    0.000    0.267    0.267
##     SR                0.026    0.006    4.523    0.000    0.247    0.247
##   PSYE ~~                                                               
##     SR                0.015    0.002    7.497    0.000    0.592    0.592
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.704    0.031   86.175    0.000    2.704    3.136
##    .AUTO2             2.357    0.031   75.125    0.000    2.357    2.736
##    .AUTO3             2.638    0.027   96.113    0.000    2.638    3.508
##    .PSYE1             1.871    0.010  196.862    0.000    1.871    7.190
##    .PSYE2             1.895    0.008  226.663    0.000    1.895    8.247
##    .PSYE3             1.924    0.007  290.540    0.000    1.924   10.649
##    .SR1               1.892    0.009  214.839    0.000    1.892    7.839
##    .SR2               1.944    0.006  311.528    0.000    1.944   11.341
##    .SR3               1.887    0.008  239.456    0.000    1.887    8.760
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.339    0.028   12.272    0.000    0.339    0.456
##    .AUTO2             0.371    0.027   13.574    0.000    0.371    0.500
##    .AUTO3             0.236    0.021   11.205    0.000    0.236    0.418
##    .PSYE1             0.044    0.003   12.881    0.000    0.044    0.651
##    .PSYE2             0.032    0.003   11.439    0.000    0.032    0.605
##    .PSYE3             0.027    0.002   16.869    0.000    0.027    0.832
##    .SR1               0.031    0.003   10.837    0.000    0.031    0.524
##    .SR2               0.021    0.001   16.095    0.000    0.021    0.729
##    .SR3               0.027    0.002   12.043    0.000    0.027    0.573
##     AUTO              0.405    0.040   10.057    0.000    1.000    1.000
##     PSYE              0.024    0.004    6.407    0.000    1.000    1.000
##     SR                0.028    0.003    7.982    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.544
##     AUTO2             0.500
##     AUTO3             0.582
##     PSYE1             0.349
##     PSYE2             0.395
##     PSYE3             0.168
##     SR1               0.476
##     SR2               0.271
##     SR3               0.427
## 
## 
## Group 3 [6]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.585    0.700
##     AUTO2             1.018    0.114    8.951    0.000    0.595    0.764
##     AUTO3             0.980    0.111    8.853    0.000    0.573    0.826
##   PSYE =~                                                               
##     PSYE1             1.000                               0.141    0.608
##     PSYE2             1.082    0.202    5.358    0.000    0.152    0.652
##     PSYE3             0.600    0.132    4.526    0.000    0.084    0.457
##   SR =~                                                                 
##     SR1               1.000                               0.117    0.687
##     SR2               0.952    0.136    6.979    0.000    0.111    0.672
##     SR3               1.250    0.205    6.092    0.000    0.146    0.644
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.028    0.009    3.148    0.002    0.344    0.344
##     SR                0.002    0.006    0.309    0.757    0.029    0.029
##   PSYE ~~                                                               
##     SR                0.010    0.002    4.246    0.000    0.585    0.585
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.813    0.059   47.969    0.000    2.813    3.370
##    .AUTO2             2.429    0.055   44.548    0.000    2.429    3.119
##    .AUTO3             2.741    0.049   56.226    0.000    2.741    3.948
##    .PSYE1             1.896    0.016  116.214    0.000    1.896    8.186
##    .PSYE2             1.874    0.016  114.093    0.000    1.874    8.021
##    .PSYE3             1.923    0.013  147.399    0.000    1.923   10.411
##    .SR1               1.946    0.012  162.784    0.000    1.946   11.417
##    .SR2               1.944    0.012  167.526    0.000    1.944   11.729
##    .SR3               1.896    0.016  118.044    0.000    1.896    8.340
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.355    0.046    7.688    0.000    0.355    0.510
##    .AUTO2             0.253    0.039    6.474    0.000    0.253    0.417
##    .AUTO3             0.154    0.032    4.822    0.000    0.154    0.319
##    .PSYE1             0.034    0.005    6.934    0.000    0.034    0.631
##    .PSYE2             0.031    0.005    6.231    0.000    0.031    0.575
##    .PSYE3             0.027    0.003    8.667    0.000    0.027    0.791
##    .SR1               0.015    0.002    6.427    0.000    0.015    0.528
##    .SR2               0.015    0.002    6.731    0.000    0.015    0.548
##    .SR3               0.030    0.004    6.836    0.000    0.030    0.585
##     AUTO              0.342    0.067    5.122    0.000    1.000    1.000
##     PSYE              0.020    0.005    3.651    0.000    1.000    1.000
##     SR                0.014    0.003    4.484    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.490
##     AUTO2             0.583
##     AUTO3             0.681
##     PSYE1             0.369
##     PSYE2             0.425
##     PSYE3             0.209
##     SR1               0.472
##     SR2               0.452
##     SR3               0.415
## 
## 
## Group 4 [2]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.505    0.655
##     AUTO2             0.969    0.083   11.677    0.000    0.489    0.631
##     AUTO3             1.070    0.092   11.592    0.000    0.540    0.816
##   PSYE =~                                                               
##     PSYE1             1.000                               0.145    0.681
##     PSYE2             0.922    0.105    8.763    0.000    0.134    0.593
##     PSYE3             0.490    0.072    6.831    0.000    0.071    0.433
##   SR =~                                                                 
##     SR1               1.000                               0.094    0.532
##     SR2               0.955    0.123    7.753    0.000    0.090    0.598
##     SR3               0.988    0.148    6.656    0.000    0.093    0.521
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.019    0.005    4.032    0.000    0.260    0.260
##     SR                0.012    0.003    3.637    0.000    0.249    0.249
##   PSYE ~~                                                               
##     SR                0.008    0.001    6.520    0.000    0.598    0.598
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.851    0.032   89.534    0.000    2.851    3.702
##    .AUTO2             2.383    0.032   74.224    0.000    2.383    3.071
##    .AUTO3             2.718    0.027   98.879    0.000    2.718    4.103
##    .PSYE1             1.904    0.009  215.309    0.000    1.904    8.925
##    .PSYE2             1.889    0.009  201.914    0.000    1.889    8.371
##    .PSYE3             1.940    0.007  284.426    0.000    1.940   11.804
##    .SR1               1.937    0.007  265.190    0.000    1.937   10.979
##    .SR2               1.956    0.006  315.564    0.000    1.956   13.046
##    .SR3               1.925    0.007  260.000    0.000    1.925   10.822
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.338    0.027   12.361    0.000    0.338    0.570
##    .AUTO2             0.363    0.028   13.107    0.000    0.363    0.602
##    .AUTO3             0.147    0.023    6.388    0.000    0.147    0.335
##    .PSYE1             0.024    0.003    8.686    0.000    0.024    0.537
##    .PSYE2             0.033    0.003   11.827    0.000    0.033    0.648
##    .PSYE3             0.022    0.002   14.565    0.000    0.022    0.813
##    .SR1               0.022    0.002   12.586    0.000    0.022    0.717
##    .SR2               0.014    0.001   10.777    0.000    0.014    0.643
##    .SR3               0.023    0.002   12.619    0.000    0.023    0.729
##     AUTO              0.255    0.034    7.453    0.000    1.000    1.000
##     PSYE              0.021    0.003    6.379    0.000    1.000    1.000
##     SR                0.009    0.002    5.052    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.430
##     AUTO2             0.398
##     AUTO3             0.665
##     PSYE1             0.463
##     PSYE2             0.352
##     PSYE3             0.187
##     SR1               0.283
##     SR2               0.357
##     SR3               0.271
## 
## 
## Group 5 [5]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.594    0.710
##     AUTO2             1.114    0.085   13.090    0.000    0.661    0.750
##     AUTO3             0.952    0.072   13.184    0.000    0.566    0.777
##   PSYE =~                                                               
##     PSYE1             1.000                               0.134    0.574
##     PSYE2             0.979    0.115    8.544    0.000    0.131    0.560
##     PSYE3             0.791    0.100    7.947    0.000    0.106    0.523
##   SR =~                                                                 
##     SR1               1.000                               0.155    0.655
##     SR2               0.655    0.073    8.991    0.000    0.101    0.544
##     SR3               0.752    0.082    9.178    0.000    0.116    0.598
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.029    0.006    4.794    0.000    0.363    0.363
##     SR                0.028    0.006    4.551    0.000    0.309    0.309
##   PSYE ~~                                                               
##     SR                0.019    0.002    7.959    0.000    0.912    0.912
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.769    0.038   73.571    0.000    2.769    3.309
##    .AUTO2             2.356    0.040   59.348    0.000    2.356    2.672
##    .AUTO3             2.671    0.033   81.328    0.000    2.671    3.668
##    .PSYE1             1.893    0.011  180.084    0.000    1.893    8.114
##    .PSYE2             1.880    0.011  178.487    0.000    1.880    8.029
##    .PSYE3             1.909    0.009  207.780    0.000    1.909    9.418
##    .SR1               1.905    0.011  179.194    0.000    1.905    8.079
##    .SR2               1.942    0.008  232.453    0.000    1.942   10.448
##    .SR3               1.910    0.009  217.757    0.000    1.910    9.834
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.348    0.031   11.240    0.000    0.348    0.496
##    .AUTO2             0.339    0.034    9.947    0.000    0.339    0.437
##    .AUTO3             0.210    0.023    8.969    0.000    0.210    0.396
##    .PSYE1             0.036    0.003   12.249    0.000    0.036    0.670
##    .PSYE2             0.038    0.003   12.571    0.000    0.038    0.686
##    .PSYE3             0.030    0.002   13.113    0.000    0.030    0.727
##    .SR1               0.032    0.003   10.859    0.000    0.032    0.571
##    .SR2               0.024    0.002   13.041    0.000    0.024    0.704
##    .SR3               0.024    0.002   12.098    0.000    0.024    0.643
##     AUTO              0.353    0.044    7.967    0.000    1.000    1.000
##     PSYE              0.018    0.003    5.658    0.000    1.000    1.000
##     SR                0.024    0.004    6.651    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.504
##     AUTO2             0.563
##     AUTO3             0.604
##     PSYE1             0.330
##     PSYE2             0.314
##     PSYE3             0.273
##     SR1               0.429
##     SR2               0.296
##     SR3               0.357
## 
## 
## Group 6 [7]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.598    0.734
##     AUTO2             0.867    0.069   12.552    0.000    0.518    0.647
##     AUTO3             0.865    0.067   12.893    0.000    0.517    0.741
##   PSYE =~                                                               
##     PSYE1             1.000                               0.166    0.575
##     PSYE2             0.947    0.115    8.261    0.000    0.157    0.578
##     PSYE3             0.383    0.068    5.623    0.000    0.063    0.343
##   SR =~                                                                 
##     SR1               1.000                               0.121    0.596
##     SR2               0.948    0.099    9.558    0.000    0.114    0.595
##     SR3               1.046    0.136    7.695    0.000    0.126    0.544
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.033    0.007    4.643    0.000    0.335    0.335
##     SR                0.018    0.004    4.076    0.000    0.253    0.253
##   PSYE ~~                                                               
##     SR                0.015    0.002    7.514    0.000    0.763    0.763
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.503    0.032   77.407    0.000    2.503    3.071
##    .AUTO2             2.215    0.032   69.757    0.000    2.215    2.768
##    .AUTO3             2.568    0.028   92.743    0.000    2.568    3.679
##    .PSYE1             1.792    0.012  155.436    0.000    1.792    6.216
##    .PSYE2             1.818    0.011  167.771    0.000    1.818    6.696
##    .PSYE3             1.919    0.007  260.095    0.000    1.919   10.382
##    .SR1               1.919    0.008  238.211    0.000    1.919    9.483
##    .SR2               1.933    0.008  253.194    0.000    1.933   10.066
##    .SR3               1.874    0.009  201.093    0.000    1.874    8.081
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.307    0.029   10.428    0.000    0.307    0.462
##    .AUTO2             0.372    0.028   13.452    0.000    0.372    0.581
##    .AUTO3             0.219    0.022   10.158    0.000    0.219    0.450
##    .PSYE1             0.056    0.005   12.187    0.000    0.056    0.670
##    .PSYE2             0.049    0.004   11.896    0.000    0.049    0.666
##    .PSYE3             0.030    0.002   16.174    0.000    0.030    0.883
##    .SR1               0.026    0.002   11.946    0.000    0.026    0.645
##    .SR2               0.024    0.002   12.083    0.000    0.024    0.646
##    .SR3               0.038    0.003   13.008    0.000    0.038    0.704
##     AUTO              0.357    0.041    8.770    0.000    1.000    1.000
##     PSYE              0.027    0.005    5.708    0.000    1.000    1.000
##     SR                0.015    0.002    6.011    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.538
##     AUTO2             0.419
##     AUTO3             0.550
##     PSYE1             0.330
##     PSYE2             0.334
##     PSYE3             0.117
##     SR1               0.355
##     SR2               0.354
##     SR3               0.296
## 
## 
## Group 7 [4]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO =~                                                               
##     AUTO1             1.000                               0.619    0.731
##     AUTO2             1.123    0.103   10.910    0.000    0.696    0.806
##     AUTO3             0.896    0.083   10.807    0.000    0.555    0.757
##   PSYE =~                                                               
##     PSYE1             1.000                               0.100    0.490
##     PSYE2             1.145    0.198    5.771    0.000    0.114    0.551
##     PSYE3             1.007    0.198    5.094    0.000    0.100    0.522
##   SR =~                                                                 
##     SR1               1.000                               0.129    0.703
##     SR2               0.778    0.107    7.299    0.000    0.100    0.603
##     SR3               0.454    0.094    4.801    0.000    0.058    0.407
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AUTO ~~                                                               
##     PSYE              0.017    0.006    2.812    0.005    0.274    0.274
##     SR                0.015    0.007    2.209    0.027    0.184    0.184
##   PSYE ~~                                                               
##     SR                0.011    0.002    5.742    0.000    0.858    0.858
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             2.850    0.049   57.945    0.000    2.850    3.366
##    .AUTO2             2.455    0.050   49.023    0.000    2.455    2.845
##    .AUTO3             2.832    0.043   66.342    0.000    2.832    3.861
##    .PSYE1             1.922    0.012  162.394    0.000    1.922    9.450
##    .PSYE2             1.912    0.012  159.235    0.000    1.912    9.240
##    .PSYE3             1.931    0.011  172.947    0.000    1.931   10.050
##    .SR1               1.934    0.011  181.948    0.000    1.934   10.558
##    .SR2               1.958    0.010  202.774    0.000    1.958   11.766
##    .SR3               1.951    0.008  232.367    0.000    1.951   13.587
##     AUTO              0.000                               0.000    0.000
##     PSYE              0.000                               0.000    0.000
##     SR                0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .AUTO1             0.334    0.039    8.530    0.000    0.334    0.465
##    .AUTO2             0.261    0.040    6.476    0.000    0.261    0.350
##    .AUTO3             0.230    0.029    8.021    0.000    0.230    0.427
##    .PSYE1             0.031    0.003    9.840    0.000    0.031    0.760
##    .PSYE2             0.030    0.003    9.137    0.000    0.030    0.696
##    .PSYE3             0.027    0.003    9.775    0.000    0.027    0.727
##    .SR1               0.017    0.003    6.531    0.000    0.017    0.505
##    .SR2               0.018    0.002    8.949    0.000    0.018    0.637
##    .SR3               0.017    0.002   10.839    0.000    0.017    0.834
##     AUTO              0.383    0.059    6.474    0.000    1.000    1.000
##     PSYE              0.010    0.003    3.428    0.001    1.000    1.000
##     SR                0.017    0.003    5.135    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     AUTO1             0.535
##     AUTO2             0.650
##     AUTO3             0.573
##     PSYE1             0.240
##     PSYE2             0.304
##     PSYE3             0.273
##     SR1               0.495
##     SR2               0.363
##     SR3               0.166

Level 2: Metric Invariance

Metric invariance describes the situation when the values of the factor loadingsare equal between the groups.

It also suggests that the observed variables have the same unit of measurement.

Constrain the values of the factor loadings to be equal between the groups. If the model fits well, and the fit is not significantly worsethan the fit of the configural invariance model (Level 1), metric invariance is supported.

Please judge model fit by the change in CFI between this model and the configural model. Change should not be greater than .01 from the configural model.

metric <- cfa(model = SD.model, 
            data = dat, 
            group = "group", 
            missing = "fiml",
            group.equal = "loadings")

+Enter this into R to get model results

summary(metric, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE)


Level 3: Scalar Invariance

Scalar invariance describes the situation when the values of the factor loadings as well as the intercepts are equal between groups.

It also suggests that the variables have the same unit of measurement as well as the same origin.

Scalar invariance is a “prerequisite” for comparing factor means between groups.

Please judge model fit by the change in CFI between this model and the metric model. Change should not be greater than .01 from the metric model.

scalar <- cfa(model = SD.model, 
            data = dat, 
            group = "group", 
            missing = "fiml",
            group.equal = c("loadings", "intercepts"))

+Enter this into R to get model results

summary(scalar, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE)


Level 4: Invariance of Factor Means

Invariance of factor means suggests that the values of the factor means are equal across groups

lvmean <- cfa(SD.model,
              data = dat,
              group = "group", 
              missing = "fiml",
              group.equal=c("loadings", "intercepts", "means"))

+Enter this into R to get model results

summary(lvmean, standardized=TRUE, fit.measures=TRUE, rsquare=TRUE)

To compare the latent means model with the scalar model we use the anova test for the difference in chi square values (instead of the change in CFI and RMSEA). If this value is significant, then we can say the values of the factor means are equal across groups.

+Enter this into R to get the anova test results

anova(scalar, lvmean)