For our model we consider a rectangular heat fin of length \( l \), width \( w \), and thickness \( b \)
\[ \small{ \begin{Bmatrix} \mathrm{rate \, of} \\ \mathrm{change \, of} \\ \mathrm{heat\, in \, section} \\ \end{Bmatrix} = \begin{Bmatrix} \mathrm{rate \, heat} \\ \mathrm{conducted} \\ \mathrm{in\, at\, x} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \, heat} \\ \mathrm{conducted} \\ \mathrm{out\, at\, x+\Delta x} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate\, of\, heat} \\ \mathrm{lost\, to} \\ \mathrm{surroundings} \\ \end{Bmatrix}} \]
\[ \small{ \begin{Bmatrix} \mathrm{rate \, heat} \\ \mathrm{conducted} \\ \mathrm{in\, at\, x} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate \, heat} \\ \mathrm{conducted} \\ \mathrm{out\, at\, x+\Delta x} \\ \end{Bmatrix} - \begin{Bmatrix} \mathrm{rate\, of\, heat} \\ \mathrm{lost\, to} \\ \mathrm{surroundings} \\ \end{Bmatrix} = 0} \]
\[ \small{ \begin{align} \begin{Bmatrix} \mathrm{rate \, heat} \\ \mathrm{conducted} \\ \mathrm{in\, at\, x} \\ \end{Bmatrix} &= J(x)A(x) = J(x)bw \\ \begin{Bmatrix} \mathrm{rate \, heat} \\ \mathrm{conducted} \\ \mathrm{out\, at\, x+\Delta x} \\ \end{Bmatrix} &= J(x+\Delta x)A(x) = J(x+\Delta x)bw \end{align} } \]
\[ \small{ \begin{Bmatrix} \mathrm{rate\, heat} \\ \mathrm{exchanged\, with} \\ \mathrm{surroundings} \\ \end{Bmatrix}} = \pm hS \Delta U \]
\[ \small{ \begin{Bmatrix} \mathrm{rate\, heat} \\ \mathrm{exchanged\, with} \\ \mathrm{surroundings} \\ \end{Bmatrix}} = \pm hS \Delta U \]
\[ \small{ \begin{Bmatrix} \mathrm{rate\, heat} \\ \mathrm{exchanged\, with} \\ \mathrm{surroundings} \\ \end{Bmatrix} } = hS \Delta U = 2hw\Delta x[U(x^*)-u_s] \]
\[ J(x)bw - J(x+\Delta x)bw - 2hw\Delta x[U(x^*)-u_s] = 0. \]
\[ J(x)bw - J(x+\Delta x)bw - 2hw\Delta x[U(x + \lambda \Delta x)-u_s] = 0. \]
\[ \begin{aligned} \big[ hS \Delta U \big] &= \big[J(x)bw \big], \\ \big[ h \big] \times m^2 \times C &= \frac{ W }{m^2} \times m^2, \\ \big[ h \big] &= \frac{ W }{ C \times m^2 }, \\ \big[ h \big] &= \frac{ J }{ C \times m^2 \times sec } \end{aligned} \]
\[ J(x)bw - J(x+\Delta x)bw - 2hw\Delta x[U(x + \lambda \Delta x)-u_s] = 0 \]
\[ \frac{J(x+\Delta x)-J(x)}{\Delta x}+ \frac{2h}{b}\left[U(x+ \lambda \Delta x)-u_{s}\right] = 0 \]
\[ \frac{dJ}{dx} = - \frac{2h}{b}\left[U(x)-u_{s}\right] \]
\[ \frac{dJ}{dx} = - \frac{2h}{b}\left[U(x)-u_{s}\right] \]
\[ \frac{dJ}{dx} = - k \frac{dU}{dx} \]
\[ k\frac{d^2U}{dx^2} = \frac{2h}{b}[U(x)-u_{s}] \]
\[ k\frac{dJ}{dx} = \frac{2h}{b}\left[U(x)-u_{s}\right] \]
\[ \beta = \frac{2h}{kb} \]
\[ \frac{d^2 U}{dx^2} = \beta [U - u_s] \]