Overview and questions

Variables

  • All scaled using min-max [0,1] scaling

BSS Variables

  • BSS 1 (desire to live)
  • BSS 9 (urge)
  • BSS 15 (intent)

Predictors

  • Agitation - BDI11
  • Fatigue - BDI16
  • Hopeless - BDI2
  • Sad - BDI1
  • Self Hate - BDI7

Questions

CORRELATION MATRICES

Thomas

  BSS1 BSS9 AGITATION SAD HOPELESS FATIGUE SELF_HATE
BSS1              
BSS9 0.419***            
AGITATION 0.285** 0.126          
SAD 0.329*** 0.309** 0.323***        
HOPELESS 0.271** 0.219* 0.396*** 0.418***      
FATIGUE 0.032 0.089 0.152 0.255** 0.263**    
SELF_HATE 0.285** 0.246* 0.397*** 0.387*** 0.553*** 0.167  
Computed correlation used pearson-method with listwise-deletion.

Evan

  BSS1 BSS9 AGITATION SAD HOPELESS FATIGUE
BSS1            
BSS9 0.303**          
AGITATION 0.219* 0.433***        
SAD 0.103 0.744*** 0.490***      
HOPELESS 0.195 0.715*** 0.571*** 0.854***    
FATIGUE 0.009 0.545*** 0.251* 0.531*** 0.439***  
Computed correlation used pearson-method with listwise-deletion.

Abby

  BSS1 BSS9 AGITATION SAD HOPELESS FATIGUE SELF_HATE
BSS1              
BSS9 0.256**            
AGITATION 0.160 0.184          
SAD 0.233* 0.254** 0.256**        
HOPELESS 0.313*** 0.184* 0.215* 0.504***      
FATIGUE 0.190* 0.159 0.182 0.415*** 0.388***    
SELF_HATE 0.228* 0.194* 0.134 0.348*** 0.594*** 0.362***  
Computed correlation used pearson-method with listwise-deletion.

Autocorrelation in Evan’s data

LAG ACF_AGI ACF_FAT ACF_NEG ACF_HOPELESS ACF_URGE ACF_RESIST ACF_INTENT
1 0 1 1 1 1 1 1 1
2 1 0.322 0.388 0.426 0.364 0.433 0.716 0.462
3 2 0.257 0.26 0.301 0.283 0.307 0.647 0.361
4 3 0.174 0.22 0.282 0.233 0.244 0.673 0.332
5 4 0.148 0.177 0.232 0.217 0.224 0.683 0.279
6 5 0.135 0.185 0.242 0.226 0.226 0.66 0.277
7 6 0.138 0.17 0.19 0.182 0.176 0.631 0.251
8 7 0.117 0.107 0.194 0.157 0.14 0.61 0.224
9 8 0.11 0.057 0.165 0.191 0.163 0.598 0.205
10 9 0.098 0.074 0.19 0.185 0.14 0.598 0.214
11 10 0.077 0.051 0.138 0.164 0.109 0.579 0.185

##Fatigue

##Agitation

CFA output and comparisons

CFAs

Summaries

summary(Thomas_CFA.fit, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-7 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          6
##                                                       
##   Number of observations                           102
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                74.864
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                -51.735
##   Loglikelihood unrestricted model (H1)        -51.735
##                                                       
##   Akaike (AIC)                                 115.470
##   Bayesian (BIC)                               131.220
##   Sample-size adjusted Bayesian (BIC)          112.268
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.192    0.551
##     BSS9_rescale      1.247    0.267    4.677    0.000    0.239    0.761
##     BSS15_rescale     1.302    0.285    4.562    0.000    0.250    0.805
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.084    0.014    6.230    0.000    0.084    0.697
##    .BSS9_rescale      0.042    0.012    3.514    0.000    0.042    0.421
##    .BSS15_rescale     0.034    0.012    2.777    0.005    0.034    0.352
##     BSS               0.037    0.014    2.653    0.008    1.000    1.000
summary(Evan_CFA.fit, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-7 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          6
##                                                       
##   Number of observations                           100
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                65.276
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                 61.851
##   Loglikelihood unrestricted model (H1)         61.851
##                                                       
##   Akaike (AIC)                                -111.701
##   Bayesian (BIC)                               -96.070
##   Sample-size adjusted Bayesian (BIC)         -115.020
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.091    0.305
##     BSS9_rescale      2.117    1.009    2.099    0.036    0.192    0.995
##     BSS15_rescale     1.334    0.446    2.990    0.003    0.121    0.656
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.080    0.012    6.841    0.000    0.080    0.907
##    .BSS9_rescale      0.000    0.013    0.026    0.980    0.000    0.009
##    .BSS15_rescale     0.019    0.006    3.255    0.001    0.019    0.569
##     BSS               0.008    0.006    1.360    0.174    1.000    1.000
summary(Abby_CFA.fit, fit.measures=TRUE, standardized=TRUE)
## lavaan 0.6-7 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          6
##                                                       
##   Number of observations                           114
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                16.207
##   Degrees of freedom                                 3
##   P-value                                        0.001
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -139.406
##   Loglikelihood unrestricted model (H1)       -139.406
##                                                       
##   Akaike (AIC)                                 290.811
##   Bayesian (BIC)                               307.229
##   Sample-size adjusted Bayesian (BIC)          288.265
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.294    0.879
##     BSS9_rescale      0.420    0.432    0.973    0.330    0.124    0.291
##     BSS15_rescale     0.376    0.385    0.976    0.329    0.111    0.304
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.025    0.086    0.295    0.768    0.025    0.227
##    .BSS9_rescale      0.165    0.027    6.201    0.000    0.165    0.915
##    .BSS15_rescale     0.120    0.020    6.008    0.000    0.120    0.908
##     BSS               0.086    0.087    0.993    0.321    1.000    1.000

Thomas’ Data

lavaanPlot(model = Thomas_CFA.fit, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "orange"), coefs = T, covs = TRUE, stars = c("latent","regress"))

Evan’s Data

lavaanPlot(model = Evan_CFA.fit, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "blue"), coefs = T, covs = TRUE, stars = c("latent","regress"))

Abby’s Data

lavaanPlot(model = Abby_CFA.fit, node_options = list(shape = "box", fontname = "Helvetica"), edge_options = list(color = "red"), coefs = T, covs = TRUE, stars = c("latent","regress"))

Comparisions

Vuong test

## 
## Model 1 
##  Class: lavaan 
##  Call: lavaan::lavaan(model = CFA_MODEL, data = DATA_COMBINED, model.type = "cfa", ...
## 
## Model 2 
##  Class: lavaan 
##  Call: lavaan::lavaan(model = CFA_MODEL, data = DATA_COMBINED, group = "DATA", ...
## 
## Variance test 
##   H0: Model 1 and Model 2 are indistinguishable 
##   H1: Model 1 and Model 2 are distinguishable 
##     w2 = 1.816,   p = 0.000138
## 
## Non-nested likelihood ratio test 
##   H0: Model fits are equal for the focal population 
##   H1A: Model 1 fits better than Model 2 
##     z = -8.213,   p = 1
##   H1B: Model 2 fits better than Model 1 
##     z = -8.213,   p = < 2.2e-16

Measurement Invariance

Weak + Strong, but not Strict invariance – structure, intercepts, and factor loadings are the same across groups. Means and residuals are not. This may be d/t the samples being somewhat different? Or the measurement? Either way, it’s pretty cool!

## 
## Measurement invariance models:
## 
## Model 1 : fit.configural
## Model 2 : fit.loadings
## Model 3 : fit.intercepts
## Model 4 : fit.residuals
## Model 5 : fit.means
## 
## Chi-Squared Difference Test
## 
##                Df    AIC    BIC    Chisq Chisq diff Df diff Pr(>Chisq)    
## fit.configural  0 312.58 413.99   0.0000                                  
## fit.loadings    4 310.36 396.75   5.7834      5.783       4     0.2159    
## fit.intercepts  8 308.78 380.14  12.1995      6.416       4     0.1702    
## fit.residuals  14 440.54 489.36 155.9564    143.757       6     <2e-16 ***
## fit.means      16 650.47 691.78 369.8862    213.930       2     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## Fit measures:
## 
##                  cfi rmsea cfi.delta rmsea.delta
## fit.configural 1.000 0.000        NA          NA
## fit.loadings   0.988 0.065     0.012       0.065
## fit.intercepts 0.971 0.071     0.016       0.006
## fit.residuals  0.037 0.310     0.935       0.240
## fit.means      0.000 0.458     0.037       0.148

SEM output and comparisons

SEM

Summaries

## lavaan 0.6-7 ended normally after 67 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         20
##                                                       
##   Number of observations                           102
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 8.434
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.392
## 
## Model Test Baseline Model:
## 
##   Test statistic                               164.040
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997
##   Tucker-Lewis Index (TLI)                       0.992
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -140.138
##   Loglikelihood unrestricted model (H1)       -135.921
##                                                       
##   Akaike (AIC)                                 320.276
##   Bayesian (BIC)                               372.776
##   Sample-size adjusted Bayesian (BIC)          309.603
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.023
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.120
##   P-value RMSEA <= 0.05                          0.572
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.191    0.548
##     BSS9_rescale      1.147    0.237    4.843    0.000    0.219    0.696
##     BSS15_rescale     1.410    0.285    4.952    0.000    0.269    0.867
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATION_rscl    0.062    0.062    1.001    0.317    0.324    0.107
##     SAD_rescale       0.209    0.071    2.931    0.003    1.094    0.364
##     HOPELESS_rescl    0.131    0.066    1.977    0.048    0.688    0.233
##     FATIGUE_rescal    0.008    0.058    0.141    0.888    0.043    0.014
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.035    0.011    3.108    0.002    0.035    0.323
##     FATIGUE_rescal        0.016    0.011    1.514    0.130    0.016    0.152
##     HOPELESS_rescl        0.044    0.012    3.720    0.000    0.044    0.396
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.028    0.011    2.495    0.013    0.028    0.255
##     HOPELESS_rescl        0.047    0.012    3.898    0.000    0.047    0.418
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.029    0.011    2.572    0.010    0.029    0.263
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.085    0.013    6.420    0.000    0.085    0.700
##    .BSS9_rescale      0.051    0.010    5.282    0.000    0.051    0.516
##    .BSS15_rescale     0.024    0.010    2.403    0.016    0.024    0.249
##     AGITATION_rscl    0.108    0.015    7.141    0.000    0.108    1.000
##     SAD_rescale       0.111    0.015    7.141    0.000    0.111    1.000
##     HOPELESS_rescl    0.114    0.016    7.141    0.000    0.114    1.000
##     FATIGUE_rescal    0.107    0.015    7.141    0.000    0.107    1.000
##    .BSS               0.025    0.009    2.679    0.007    0.682    0.682
## lavaan 0.6-7 ended normally after 88 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         20
##                                                       
##   Number of observations                           100
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                20.042
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.010
## 
## Model Test Baseline Model:
## 
##   Test statistic                               383.709
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.967
##   Tucker-Lewis Index (TLI)                       0.913
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                171.129
##   Loglikelihood unrestricted model (H1)        181.150
##                                                       
##   Akaike (AIC)                                -302.258
##   Bayesian (BIC)                              -250.154
##   Sample-size adjusted Bayesian (BIC)         -313.319
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.123
##   90 Percent confidence interval - lower         0.056
##   90 Percent confidence interval - upper         0.191
##   P-value RMSEA <= 0.05                          0.039
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.045
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.088    0.296
##     BSS9_rescale      2.112    0.718    2.944    0.003    0.186    0.966
##     BSS15_rescale     1.424    0.498    2.857    0.004    0.126    0.681
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATION_rscl    0.012    0.027    0.420    0.674    0.130    0.033
##     SAD_rescale       0.111    0.056    1.966    0.049    1.259    0.344
##     HOPELESS_rescl    0.110    0.057    1.934    0.053    1.246    0.335
##     FATIGUE_rescal    0.073    0.035    2.100    0.036    0.824    0.225
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.034    0.008    4.398    0.000    0.034    0.490
##     FATIGUE_rescal        0.017    0.007    2.434    0.015    0.017    0.251
##     HOPELESS_rescl        0.039    0.008    4.957    0.000    0.039    0.571
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.040    0.008    4.687    0.000    0.040    0.531
##     HOPELESS_rescl        0.063    0.010    6.496    0.000    0.063    0.854
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.032    0.008    4.021    0.000    0.032    0.439
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.081    0.011    7.025    0.000    0.081    0.912
##    .BSS9_rescale      0.003    0.003    0.898    0.369    0.003    0.068
##    .BSS15_rescale     0.018    0.003    6.324    0.000    0.018    0.536
##     AGITATION_rscl    0.065    0.009    7.071    0.000    0.065    1.000
##     SAD_rescale       0.075    0.011    7.071    0.000    0.075    1.000
##     HOPELESS_rescl    0.072    0.010    7.071    0.000    0.072    1.000
##     FATIGUE_rescal    0.075    0.011    7.071    0.000    0.075    1.000
##    .BSS               0.003    0.002    1.455    0.146    0.345    0.345
## lavaan 0.6-7 ended normally after 73 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         20
##                                                       
##   Number of observations                           114
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 5.538
##   Degrees of freedom                                 8
##   P-value (Chi-square)                           0.699
## 
## Model Test Baseline Model:
## 
##   Test statistic                               112.288
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.071
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -197.771
##   Loglikelihood unrestricted model (H1)       -195.002
##                                                       
##   Akaike (AIC)                                 435.541
##   Bayesian (BIC)                               490.265
##   Sample-size adjusted Bayesian (BIC)          427.052
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.084
##   P-value RMSEA <= 0.05                          0.835
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.032
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.199    0.595
##     BSS9_rescale      0.874    0.321    2.718    0.007    0.174    0.410
##     BSS15_rescale     0.733    0.273    2.681    0.007    0.146    0.401
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATION_rscl    0.078    0.089    0.885    0.376    0.394    0.114
##     SAD_rescale       0.169    0.102    1.652    0.098    0.850    0.252
##     HOPELESS_rescl    0.190    0.091    2.100    0.036    0.955    0.319
##     FATIGUE_rescal    0.068    0.093    0.725    0.469    0.339    0.101
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.022    0.008    2.648    0.008    0.022    0.256
##     FATIGUE_rescal        0.016    0.008    1.913    0.056    0.016    0.182
##     HOPELESS_rescl        0.021    0.009    2.240    0.025    0.021    0.215
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.037    0.009    4.093    0.000    0.037    0.415
##     HOPELESS_rescl        0.050    0.010    4.802    0.000    0.050    0.504
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.039    0.010    3.864    0.000    0.039    0.388
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.072    0.016    4.453    0.000    0.072    0.645
##    .BSS9_rescale      0.150    0.023    6.478    0.000    0.150    0.832
##    .BSS15_rescale     0.111    0.017    6.538    0.000    0.111    0.839
##     AGITATION_rscl    0.083    0.011    7.550    0.000    0.083    1.000
##     SAD_rescale       0.088    0.012    7.550    0.000    0.088    1.000
##     HOPELESS_rescl    0.111    0.015    7.550    0.000    0.111    1.000
##     FATIGUE_rescal    0.088    0.012    7.550    0.000    0.088    1.000
##    .BSS               0.026    0.014    1.886    0.059    0.650    0.650

Thomas’ Data

Evan’s Data

Abby’s Data

Multigroup SEM

## lavaan 0.6-7 ended normally after 155 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         81
##                                                       
##   Number of observations per group:                   
##     THOMAS                                         102
##     EVAN                                           100
##     ABBY                                           114
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                34.014
##   Degrees of freedom                                24
##   P-value (Chi-square)                           0.084
##   Test statistic for each group:
##     THOMAS                                       8.434
##     EVAN                                        20.042
##     ABBY                                         5.538
## 
## Model Test Baseline Model:
## 
##   Test statistic                               660.037
##   Degrees of freedom                                63
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.983
##   Tucker-Lewis Index (TLI)                       0.956
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -166.780
##   Loglikelihood unrestricted model (H1)       -149.773
##                                                       
##   Akaike (AIC)                                 495.560
##   Bayesian (BIC)                               799.775
##   Sample-size adjusted Bayesian (BIC)          542.864
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.063
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.108
##   P-value RMSEA <= 0.05                          0.306
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.035
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [THOMAS]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.191    0.548
##     BSS9_rescale      1.147    0.237    4.843    0.000    0.219    0.696
##     BSS15_rescale     1.410    0.285    4.952    0.000    0.269    0.867
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATION_rscl    0.062    0.062    1.001    0.317    0.324    0.107
##     SAD_rescale       0.209    0.071    2.931    0.003    1.094    0.364
##     HOPELESS_rescl    0.131    0.066    1.977    0.048    0.688    0.233
##     FATIGUE_rescal    0.008    0.058    0.141    0.888    0.043    0.014
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.035    0.011    3.108    0.002    0.035    0.323
##     FATIGUE_rescal        0.016    0.011    1.514    0.130    0.016    0.152
##     HOPELESS_rescl        0.044    0.012    3.720    0.000    0.044    0.396
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.028    0.011    2.495    0.013    0.028    0.255
##     HOPELESS_rescl        0.047    0.012    3.898    0.000    0.047    0.418
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.029    0.011    2.572    0.010    0.029    0.263
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.208    0.065    3.174    0.002    0.208    0.597
##    .BSS9_rescale      0.059    0.065    0.906    0.365    0.059    0.187
##    .BSS15_rescale     0.091    0.068    1.336    0.182    0.091    0.293
##     AGITATION_rscl    0.500    0.033   15.338    0.000    0.500    1.519
##     SAD_rescale       0.507    0.033   15.388    0.000    0.507    1.524
##     HOPELESS_rescl    0.552    0.033   16.493    0.000    0.552    1.633
##     FATIGUE_rescal    0.588    0.032   18.150    0.000    0.588    1.797
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.085    0.013    6.420    0.000    0.085    0.700
##    .BSS9_rescale      0.051    0.010    5.282    0.000    0.051    0.516
##    .BSS15_rescale     0.024    0.010    2.403    0.016    0.024    0.249
##     AGITATION_rscl    0.108    0.015    7.141    0.000    0.108    1.000
##     SAD_rescale       0.111    0.015    7.141    0.000    0.111    1.000
##     HOPELESS_rescl    0.114    0.016    7.141    0.000    0.114    1.000
##     FATIGUE_rescal    0.107    0.015    7.141    0.000    0.107    1.000
##    .BSS               0.025    0.009    2.679    0.007    0.682    0.682
## 
## 
## Group 2 [EVAN]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.088    0.296
##     BSS9_rescale      2.112    0.718    2.944    0.003    0.186    0.966
##     BSS15_rescale     1.424    0.498    2.857    0.004    0.126    0.681
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATION_rscl    0.012    0.027    0.420    0.674    0.130    0.033
##     SAD_rescale       0.111    0.056    1.966    0.049    1.259    0.344
##     HOPELESS_rescl    0.110    0.057    1.934    0.053    1.246    0.335
##     FATIGUE_rescal    0.073    0.035    2.100    0.036    0.824    0.225
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.034    0.008    4.398    0.000    0.034    0.490
##     FATIGUE_rescal        0.017    0.007    2.434    0.015    0.017    0.251
##     HOPELESS_rescl        0.039    0.008    4.957    0.000    0.039    0.571
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.040    0.008    4.687    0.000    0.040    0.531
##     HOPELESS_rescl        0.063    0.010    6.496    0.000    0.063    0.854
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.032    0.008    4.021    0.000    0.032    0.439
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.133    0.046    2.925    0.003    0.133    0.448
##    .BSS9_rescale     -0.101    0.022   -4.657    0.000   -0.101   -0.522
##    .BSS15_rescale    -0.047    0.027   -1.749    0.080   -0.047   -0.254
##     AGITATION_rscl    0.246    0.025    9.658    0.000    0.246    0.966
##     SAD_rescale       0.336    0.027   12.310    0.000    0.336    1.231
##     HOPELESS_rescl    0.340    0.027   12.653    0.000    0.340    1.265
##     FATIGUE_rescal    0.333    0.027   12.175    0.000    0.333    1.217
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.081    0.011    7.025    0.000    0.081    0.912
##    .BSS9_rescale      0.003    0.003    0.898    0.369    0.003    0.068
##    .BSS15_rescale     0.018    0.003    6.324    0.000    0.018    0.536
##     AGITATION_rscl    0.065    0.009    7.071    0.000    0.065    1.000
##     SAD_rescale       0.075    0.011    7.071    0.000    0.075    1.000
##     HOPELESS_rescl    0.072    0.010    7.071    0.000    0.072    1.000
##     FATIGUE_rescal    0.075    0.011    7.071    0.000    0.075    1.000
##    .BSS               0.003    0.002    1.455    0.146    0.345    0.345
## 
## 
## Group 3 [ABBY]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.199    0.595
##     BSS9_rescale      0.874    0.321    2.718    0.007    0.174    0.410
##     BSS15_rescale     0.733    0.273    2.681    0.007    0.146    0.401
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATION_rscl    0.078    0.089    0.885    0.376    0.394    0.114
##     SAD_rescale       0.169    0.102    1.652    0.098    0.850    0.252
##     HOPELESS_rescl    0.190    0.091    2.100    0.036    0.955    0.319
##     FATIGUE_rescal    0.068    0.093    0.725    0.469    0.339    0.101
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.022    0.008    2.648    0.008    0.022    0.256
##     FATIGUE_rescal        0.016    0.008    1.913    0.056    0.016    0.182
##     HOPELESS_rescl        0.021    0.009    2.240    0.025    0.021    0.215
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.037    0.009    4.093    0.000    0.037    0.415
##     HOPELESS_rescl        0.050    0.010    4.802    0.000    0.050    0.504
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.039    0.010    3.864    0.000    0.039    0.388
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.406    0.075    5.406    0.000    0.406    1.215
##    .BSS9_rescale      0.390    0.089    4.376    0.000    0.390    0.920
##    .BSS15_rescale     0.558    0.076    7.325    0.000    0.558    1.532
##     AGITATION_rscl    0.418    0.027   15.454    0.000    0.418    1.447
##     SAD_rescale       0.488    0.028   17.568    0.000    0.488    1.645
##     HOPELESS_rescl    0.515    0.031   16.464    0.000    0.515    1.542
##     FATIGUE_rescal    0.632    0.028   22.676    0.000    0.632    2.124
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.072    0.016    4.453    0.000    0.072    0.645
##    .BSS9_rescale      0.150    0.023    6.478    0.000    0.150    0.832
##    .BSS15_rescale     0.111    0.017    6.538    0.000    0.111    0.839
##     AGITATION_rscl    0.083    0.011    7.550    0.000    0.083    1.000
##     SAD_rescale       0.088    0.012    7.550    0.000    0.088    1.000
##     HOPELESS_rescl    0.111    0.015    7.550    0.000    0.111    1.000
##     FATIGUE_rescal    0.088    0.012    7.550    0.000    0.088    1.000
##    .BSS               0.026    0.014    1.886    0.059    0.650    0.650

Multigroup SEM w/equality constraints

## lavaan 0.6-7 ended normally after 151 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         81
##   Number of equality constraints                     8
##                                                       
##   Number of observations per group:                   
##     THOMAS                                         102
##     EVAN                                           100
##     ABBY                                           114
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                38.255
##   Degrees of freedom                                32
##   P-value (Chi-square)                           0.207
##   Test statistic for each group:
##     THOMAS                                      10.165
##     EVAN                                        21.591
##     ABBY                                         6.500
## 
## Model Test Baseline Model:
## 
##   Test statistic                               660.037
##   Degrees of freedom                                63
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990
##   Tucker-Lewis Index (TLI)                       0.979
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -168.900
##   Loglikelihood unrestricted model (H1)       -149.773
##                                                       
##   Akaike (AIC)                                 483.801
##   Bayesian (BIC)                               757.970
##   Sample-size adjusted Bayesian (BIC)          526.433
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.043
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.088
##   P-value RMSEA <= 0.05                          0.557
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.046
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [THOMAS]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.182    0.525
##     BSS9_rescale      1.191    0.228    5.217    0.000    0.216    0.690
##     BSS15_rescale     1.495    0.263    5.686    0.000    0.272    0.879
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATI (.p4.)    0.030    0.028    1.050    0.294    0.164    0.054
##     SAD_rsc (.p5.)    0.167    0.042    3.922    0.000    0.916    0.305
##     HOPELES (.p6.)    0.130    0.039    3.314    0.001    0.717    0.243
##     FATIGUE (.p7.)    0.071    0.028    2.542    0.011    0.389    0.127
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.035    0.011    3.108    0.002    0.035    0.323
##     FATIGUE_rescal        0.016    0.011    1.514    0.130    0.016    0.152
##     HOPELESS_rescl        0.044    0.012    3.720    0.000    0.044    0.396
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.028    0.011    2.495    0.013    0.028    0.255
##     HOPELESS_rescl        0.047    0.012    3.898    0.000    0.047    0.418
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.029    0.011    2.572    0.010    0.029    0.263
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.209    0.048    4.373    0.000    0.209    0.603
##    .BSS9_rescale      0.051    0.058    0.872    0.383    0.051    0.161
##    .BSS15_rescale     0.074    0.060    1.244    0.214    0.074    0.240
##     AGITATION_rscl    0.500    0.033   15.338    0.000    0.500    1.519
##     SAD_rescale       0.507    0.033   15.388    0.000    0.507    1.524
##     HOPELESS_rescl    0.552    0.033   16.493    0.000    0.552    1.633
##     FATIGUE_rescal    0.588    0.032   18.150    0.000    0.588    1.797
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.087    0.013    6.556    0.000    0.087    0.724
##    .BSS9_rescale      0.052    0.010    5.284    0.000    0.052    0.524
##    .BSS15_rescale     0.022    0.010    2.131    0.033    0.022    0.228
##     AGITATION_rscl    0.108    0.015    7.141    0.000    0.108    1.000
##     SAD_rescale       0.111    0.015    7.141    0.000    0.111    1.000
##     HOPELESS_rescl    0.114    0.016    7.141    0.000    0.114    1.000
##     FATIGUE_rescal    0.107    0.015    7.141    0.000    0.107    1.000
##    .BSS               0.023    0.008    2.934    0.003    0.708    0.708
## 
## 
## Group 2 [EVAN]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.115    0.375
##     BSS9_rescale      1.643    0.271    6.057    0.000    0.189    0.969
##     BSS15_rescale     1.100    0.218    5.038    0.000    0.126    0.682
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATI (.p4.)    0.030    0.028    1.050    0.294    0.258    0.066
##     SAD_rsc (.p5.)    0.167    0.042    3.922    0.000    1.448    0.395
##     HOPELES (.p6.)    0.130    0.039    3.314    0.001    1.133    0.305
##     FATIGUE (.p7.)    0.071    0.028    2.542    0.011    0.615    0.168
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.034    0.008    4.398    0.000    0.034    0.490
##     FATIGUE_rescal        0.017    0.007    2.434    0.015    0.017    0.251
##     HOPELESS_rescl        0.039    0.008    4.957    0.000    0.039    0.571
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.040    0.008    4.687    0.000    0.040    0.531
##     HOPELESS_rescl        0.063    0.010    6.496    0.000    0.063    0.854
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.032    0.008    4.021    0.000    0.032    0.439
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.104    0.036    2.889    0.004    0.104    0.338
##    .BSS9_rescale     -0.101    0.021   -4.804    0.000   -0.101   -0.520
##    .BSS15_rescale    -0.046    0.026   -1.770    0.077   -0.046   -0.249
##     AGITATION_rscl    0.246    0.025    9.658    0.000    0.246    0.966
##     SAD_rescale       0.336    0.027   12.310    0.000    0.336    1.231
##     HOPELESS_rescl    0.340    0.027   12.653    0.000    0.340    1.265
##     FATIGUE_rescal    0.333    0.027   12.175    0.000    0.333    1.217
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.081    0.012    6.999    0.000    0.081    0.860
##    .BSS9_rescale      0.002    0.003    0.869    0.385    0.002    0.061
##    .BSS15_rescale     0.018    0.003    6.382    0.000    0.018    0.534
##     AGITATION_rscl    0.065    0.009    7.071    0.000    0.065    1.000
##     SAD_rescale       0.075    0.011    7.071    0.000    0.075    1.000
##     HOPELESS_rescl    0.072    0.010    7.071    0.000    0.072    1.000
##     FATIGUE_rescal    0.075    0.011    7.071    0.000    0.075    1.000
##    .BSS               0.005    0.002    2.565    0.010    0.343    0.343
## 
## 
## Group 3 [ABBY]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.174    0.530
##     BSS9_rescale      1.000    0.370    2.706    0.007    0.174    0.411
##     BSS15_rescale     0.865    0.318    2.718    0.007    0.150    0.413
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATI (.p4.)    0.030    0.028    1.050    0.294    0.171    0.049
##     SAD_rsc (.p5.)    0.167    0.042    3.922    0.000    0.959    0.285
##     HOPELES (.p6.)    0.130    0.039    3.314    0.001    0.751    0.251
##     FATIGUE (.p7.)    0.071    0.028    2.542    0.011    0.407    0.121
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.022    0.008    2.648    0.008    0.022    0.256
##     FATIGUE_rescal        0.016    0.008    1.913    0.056    0.016    0.182
##     HOPELESS_rescl        0.021    0.009    2.240    0.025    0.021    0.215
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.037    0.009    4.093    0.000    0.037    0.415
##     HOPELESS_rescl        0.050    0.010    4.802    0.000    0.050    0.504
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.039    0.010    3.864    0.000    0.039    0.388
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.457    0.045   10.252    0.000    0.457    1.395
##    .BSS9_rescale      0.408    0.083    4.898    0.000    0.408    0.965
##    .BSS15_rescale     0.568    0.072    7.920    0.000    0.568    1.564
##     AGITATION_rscl    0.418    0.027   15.454    0.000    0.418    1.447
##     SAD_rescale       0.488    0.028   17.568    0.000    0.488    1.645
##     HOPELESS_rescl    0.515    0.031   16.464    0.000    0.515    1.542
##     FATIGUE_rescal    0.632    0.028   22.676    0.000    0.632    2.124
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.077    0.015    5.124    0.000    0.077    0.719
##    .BSS9_rescale      0.149    0.024    6.288    0.000    0.149    0.831
##    .BSS15_rescale     0.109    0.017    6.267    0.000    0.109    0.829
##     AGITATION_rscl    0.083    0.011    7.550    0.000    0.083    1.000
##     SAD_rescale       0.088    0.012    7.550    0.000    0.088    1.000
##     HOPELESS_rescl    0.111    0.015    7.550    0.000    0.111    1.000
##     FATIGUE_rescal    0.088    0.012    7.550    0.000    0.088    1.000
##    .BSS               0.021    0.011    1.840    0.066    0.700    0.700

Multigroup SEM w/equality constraints - fatigue only

## lavaan 0.6-7 ended normally after 163 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         81
##   Number of equality constraints                     2
##                                                       
##   Number of observations per group:                   
##     THOMAS                                         102
##     EVAN                                           100
##     ABBY                                           114
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                34.954
##   Degrees of freedom                                26
##   P-value (Chi-square)                           0.113
##   Test statistic for each group:
##     THOMAS                                       9.190
##     EVAN                                        20.218
##     ABBY                                         5.546
## 
## Model Test Baseline Model:
## 
##   Test statistic                               660.037
##   Degrees of freedom                                63
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.985
##   Tucker-Lewis Index (TLI)                       0.964
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -167.250
##   Loglikelihood unrestricted model (H1)       -149.773
##                                                       
##   Akaike (AIC)                                 492.500
##   Bayesian (BIC)                               789.203
##   Sample-size adjusted Bayesian (BIC)          538.635
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.057
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.102
##   P-value RMSEA <= 0.05                          0.375
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## 
## Group 1 [THOMAS]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.195    0.556
##     BSS9_rescale      1.125    0.227    4.964    0.000    0.219    0.696
##     BSS15_rescale     1.390    0.272    5.112    0.000    0.271    0.870
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATI           0.062    0.063    0.985    0.325    0.316    0.104
##     SAD_rsc           0.203    0.071    2.852    0.004    1.040    0.346
##     HOPELES           0.124    0.067    1.868    0.062    0.637    0.215
##     FATIGUE (.p7.)    0.059    0.026    2.227    0.026    0.303    0.099
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.035    0.011    3.108    0.002    0.035    0.323
##     FATIGUE_rescal        0.016    0.011    1.514    0.130    0.016    0.152
##     HOPELESS_rescl        0.044    0.012    3.720    0.000    0.044    0.396
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.028    0.011    2.495    0.013    0.028    0.255
##     HOPELESS_rescl        0.047    0.012    3.898    0.000    0.047    0.418
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.029    0.011    2.572    0.010    0.029    0.263
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.185    0.062    2.957    0.003    0.185    0.526
##    .BSS9_rescale      0.037    0.062    0.604    0.546    0.037    0.118
##    .BSS15_rescale     0.063    0.063    1.001    0.317    0.063    0.202
##     AGITATION_rscl    0.500    0.033   15.338    0.000    0.500    1.519
##     SAD_rescale       0.507    0.033   15.388    0.000    0.507    1.524
##     HOPELESS_rescl    0.552    0.033   16.493    0.000    0.552    1.633
##     FATIGUE_rescal    0.588    0.032   18.150    0.000    0.588    1.797
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.085    0.013    6.408    0.000    0.085    0.691
##    .BSS9_rescale      0.051    0.010    5.323    0.000    0.051    0.515
##    .BSS15_rescale     0.024    0.010    2.384    0.017    0.024    0.243
##     AGITATION_rscl    0.108    0.015    7.141    0.000    0.108    1.000
##     SAD_rescale       0.111    0.015    7.141    0.000    0.111    1.000
##     HOPELESS_rescl    0.114    0.016    7.141    0.000    0.114    1.000
##     FATIGUE_rescal    0.107    0.015    7.141    0.000    0.107    1.000
##    .BSS               0.026    0.009    2.751    0.006    0.678    0.678
## 
## 
## Group 2 [EVAN]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.079    0.269
##     BSS9_rescale      2.339    0.816    2.867    0.004    0.186    0.966
##     BSS15_rescale     1.575    0.568    2.774    0.006    0.125    0.679
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATI           0.010    0.025    0.417    0.677    0.130    0.033
##     SAD_rsc           0.105    0.054    1.945    0.052    1.316    0.359
##     HOPELES           0.099    0.052    1.908    0.056    1.241    0.333
##     FATIGUE (.p7.)    0.059    0.026    2.227    0.026    0.743    0.203
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.034    0.008    4.398    0.000    0.034    0.490
##     FATIGUE_rescal        0.017    0.007    2.434    0.015    0.017    0.251
##     HOPELESS_rescl        0.039    0.008    4.957    0.000    0.039    0.571
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.040    0.008    4.687    0.000    0.040    0.531
##     HOPELESS_rescl        0.063    0.010    6.496    0.000    0.063    0.854
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.032    0.008    4.021    0.000    0.032    0.439
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.144    0.043    3.357    0.001    0.144    0.488
##    .BSS9_rescale     -0.098    0.021   -4.590    0.000   -0.098   -0.512
##    .BSS15_rescale    -0.045    0.027   -1.692    0.091   -0.045   -0.245
##     AGITATION_rscl    0.246    0.025    9.658    0.000    0.246    0.966
##     SAD_rescale       0.336    0.027   12.310    0.000    0.336    1.231
##     HOPELESS_rescl    0.340    0.027   12.653    0.000    0.340    1.265
##     FATIGUE_rescal    0.333    0.027   12.175    0.000    0.333    1.217
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.081    0.011    7.035    0.000    0.081    0.928
##    .BSS9_rescale      0.002    0.003    0.871    0.384    0.002    0.067
##    .BSS15_rescale     0.018    0.003    6.317    0.000    0.018    0.539
##     AGITATION_rscl    0.065    0.009    7.071    0.000    0.065    1.000
##     SAD_rescale       0.075    0.011    7.071    0.000    0.075    1.000
##     HOPELESS_rescl    0.072    0.010    7.071    0.000    0.072    1.000
##     FATIGUE_rescal    0.075    0.011    7.071    0.000    0.075    1.000
##    .BSS               0.002    0.002    1.407    0.159    0.348    0.348
## 
## 
## Group 3 [ABBY]:
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS =~                                                                
##     BSS1_rescale      1.000                               0.199    0.595
##     BSS9_rescale      0.875    0.322    2.719    0.007    0.174    0.410
##     BSS15_rescale     0.734    0.274    2.681    0.007    0.146    0.401
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   BSS ~                                                                 
##     AGITATI           0.079    0.088    0.892    0.372    0.397    0.115
##     SAD_rsc           0.172    0.100    1.721    0.085    0.864    0.256
##     HOPELES           0.192    0.089    2.152    0.031    0.964    0.322
##     FATIGUE (.p7.)    0.059    0.026    2.227    0.026    0.297    0.088
## 
## Covariances:
##                        Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   AGITATION_rescale ~~                                                      
##     SAD_rescale           0.022    0.008    2.648    0.008    0.022    0.256
##     FATIGUE_rescal        0.016    0.008    1.913    0.056    0.016    0.182
##     HOPELESS_rescl        0.021    0.009    2.240    0.025    0.021    0.215
##   SAD_rescale ~~                                                            
##     FATIGUE_rescal        0.037    0.009    4.093    0.000    0.037    0.415
##     HOPELESS_rescl        0.050    0.010    4.802    0.000    0.050    0.504
##   HOPELESS_rescale ~~                                                       
##     FATIGUE_rescal        0.039    0.010    3.864    0.000    0.039    0.388
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.410    0.067    6.150    0.000    0.410    1.225
##    .BSS9_rescale      0.393    0.085    4.605    0.000    0.393    0.926
##    .BSS15_rescale     0.560    0.073    7.683    0.000    0.560    1.538
##     AGITATION_rscl    0.418    0.027   15.454    0.000    0.418    1.447
##     SAD_rescale       0.488    0.028   17.568    0.000    0.488    1.645
##     HOPELESS_rescl    0.515    0.031   16.464    0.000    0.515    1.542
##     FATIGUE_rescal    0.632    0.028   22.676    0.000    0.632    2.124
##    .BSS               0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .BSS1_rescale      0.072    0.016    4.461    0.000    0.072    0.646
##    .BSS9_rescale      0.150    0.023    6.475    0.000    0.150    0.832
##    .BSS15_rescale     0.111    0.017    6.536    0.000    0.111    0.840
##     AGITATION_rscl    0.083    0.011    7.550    0.000    0.083    1.000
##     SAD_rescale       0.088    0.012    7.550    0.000    0.088    1.000
##     HOPELESS_rescl    0.111    0.015    7.550    0.000    0.111    1.000
##     FATIGUE_rescal    0.088    0.012    7.550    0.000    0.088    1.000
##    .BSS               0.026    0.014    1.886    0.059    0.651    0.651

Comparision between constrained and free models

## Chi-Squared Difference Test
## 
##                             Df    AIC    BIC  Chisq Chisq diff Df diff
## All_SEM.fit.groups          24 495.56 799.77 34.014                   
## All_SEM.fit.groups.equality 32 483.80 757.97 38.255      4.241       8
##                             Pr(>Chisq)
## All_SEM.fit.groups                    
## All_SEM.fit.groups.equality     0.8348
## Chi-Squared Difference Test
## 
##                              Df    AIC    BIC  Chisq Chisq diff Df diff
## All_SEM.fit.groups           24 495.56 799.77 34.014                   
## All_SEM.fit.groups.equality2 26 492.50 789.20 34.954    0.93974       2
##                              Pr(>Chisq)
## All_SEM.fit.groups                     
## All_SEM.fit.groups.equality2     0.6251

SEM output with self-hate

Self-hate SEM

Thomas’ Data (Self hate)

Abby’s Data (Self hate)

Comparision between constrained and free models

## Chi-Squared Difference Test
## 
##                                Df    AIC    BIC  Chisq Chisq diff Df diff
## All_SEM.fit.sh.groups          20 799.81 1029.3 15.913                   
## All_SEM.fit.sh.groups.equality 25 790.62 1003.3 16.732    0.81895       5
##                                Pr(>Chisq)
## All_SEM.fit.sh.groups                    
## All_SEM.fit.sh.groups.equality     0.9758