1 List of Mergers

files = paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/Ultimate Panel Data/",as.character(2000:2016),".fst")

panel = lapply(files, read_fst, as.data.table = TRUE,columns=c("respondentid","agencycode","reportername","asofdate","parentname","parentidentifier","reporterhomecity","reporterhomestate","rssd"))
panel <- do.call(rbind , panel)

panel[,asofdate:=as.integer(asofdate)]
panel <- panel[!duplicated(panel[,c("respondentid","agencycode","asofdate")])]
panel[,parentidentifier:=stri_trim(parentidentifier)]

panel[,rssd:=as.numeric(rssd)]

panel[,hmda_id:=paste0(agencycode,"-",respondentid)]

files <- NULL
files  <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_NP/",full.names = TRUE)
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_RF/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_NP/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_RF/",full.names = TRUE))

hmda = lapply(files, read_fst, as.data.table = TRUE,
              columns=c("asofdate","respondentid","agencycode","state","countycode","msa"))
hmda <- do.call(rbind , hmda)
hmda[,lender:=paste0(agencycode,"-",respondentid)]
hmda[,countycode:=paste0(state,countycode)]


cbsa_fips <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/cbsa_countyfips.csv")
cbsa_fips[,fips:=ifelse(nchar(fips)==4,paste0("0",fips),paste0(fips))]

hmda <- merge(hmda,cbsa_fips,by.x="countycode",by.y="fips",all.x=T)
hmda[,c("agencycode","respondentid"):=list(NULL)]

gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells    2088699   111.6    3908912   208.8    2932991   156.7
## Vcells 2223686011 16965.4 6908872861 52710.6 7104843326 54205.7
mergers <- list()

temp <- list(1,"BANK ONE - JPMORGAN CHASE 2004",
             c("1-0000000008","1-0000007621","1-0000003106","1-0000011230","1-0000013655","1-0000013759","1-0000013914","1-0000014320","1-0000015184","1-0000018785","1-0000021969","1-0000023237","2-0000331647","3-0000002487"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2000,"JPMORGAN CHASE BANK, NA",2004)
mergers[[1]] <- temp

temp <- list(2,"COUNTRYWIDE - BANK OF AMERIC 2009" ,c("1-0000024141","2-0001644643","2-0003267484","7-20-2241771","1-0000024141","4-0000018039"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2009)
mergers[[2]] <- temp

temp <- list(3,"FLEET NA - BANK OF AMERICA 2005",c("1-0000000200"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[3]] <- temp

temp <- list(4,"WACHOVIA BK NA - WELLS FARGO 2010", c("1-0000000001","1-0000022559","1-56-0811711"), panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2009)
mergers[[4]] <- temp

temp <- list(5,"LASALLE BK - BANK OF AMERICA 2008",panel[substr(reportername,1,7)=="LASALLE" & asofdate<=2005]$hmda_id,c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[5]] <- temp


temp <- list(6,"ABN AMRO MTG GROUP - CITI BANK 2007",c("1-36-3744610"),unique(panel[parentidentifier=="0001951350"]$hmda_id),
             2004,"CITIMORTGAGE, INC.",2007)
mergers[[6]] <- temp

temp <- list(7,"UNION PLANTERS BANK - REGIONS FINANCIAL CORP 2004",
             c("1-0000013349"),
             c("9-0000233031","2-0000233031"),
             2002,c("REGIONS BANK"),2004)
mergers[[7]] <- temp

temp <- list(8,"AmSouth Bancorporation - REGIONS FINANCIAL CORP 2006",
             c("2-0000245333"),
             c("9-0000233031","2-0000233031"),
             2004,c("REGIONS BANK"),2006)
mergers[[8]] <- temp


temp <- list(9,"Washington Mutual - JPMORGAN CHASE 2008",
             c("4-0000008551","4-0000011905"),
             unique(c(unique(panel[parentidentifier %in% c("0000002370","0000000008","0001039502","0000852218","0001040795"),]$hmda_id),"2-0000852218","1-0000023160","2-0000043557","1-22-1092200","1-0000000008")),
             2005,"JPMORGAN CHASE BANK, NA",
             2008)
mergers[[9]] <- temp



## target operated in 5 msas; small share.
temp <- list(10,"Greater Bay Bank - Wells Fargo 2007",
             c("1-0000024489"),
             panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,c("WELLS FARGO BANK, N.A."),2007)
mergers[[10]] <- temp


temp <- list(11,"MBNA NA - BANK OF AMERICA 2005",c("1-0000024095"),c("1-0000013044"),
             2003,"BANK OF AMERICA, N.A.",2005)
mergers[[11]] <- temp

temp <- list(12,"Merrill Lynch - BANK OF AMERICA 2008",c("2-0000421203","7-13-3403204","3-13-3098068","3-13-3399559","3-0000027374","3-0000091363","3-13-3399559","4-0000014460","3-68-0518519","4-0000014460", "4-0133098068"),c("1-0000013044"),
             2005,"BANK OF AMERICA, N.A.",2008)
mergers[[12]] <- temp


temp <- list(13,"FIRST INTERSTATE BK CA  - Wells Fargo 1996",c("2-0000669667"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,1994,"WELLS FARGO BANK, N.A.",1996)
mergers[[13]] <- temp

temp <- list(14,"PACIFIC NORTHWEST  - Wells Fargo 2004",c("3-0000030887","3-0000027346"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2002,"WELLS FARGO BANK, N.A.",2004)
mergers[[14]] <- temp


temp <- list(15,"MERIDIAN MOME MORTGAGE, LP  - Wells Fargo 2010",c("1-74-3082948"),panel[substr(reportername,1,7)=="WELLS F"]$hmda_id,
             2005,"WELLS FARGO BANK, N.A.",2010)
mergers[[15]] <- temp


temp <- list(16,"The Leader Mtg Co - US Bank 2004",
             c("7-3814209995"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2002,c("U.S. BANK N.A."),2004)
mergers[[16]] <- temp

temp <- list(17,"PFF BANK & TRUST  - US Bank 2008",
             c("4-0000001405"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[17]] <- temp


temp <- list(18,"DOWNEY SAVINGS AND LOAN ASSOCIATION, F.A.   - US Bank 2008",
             c("4-0000006189"),
             panel[substr(reportername,1,5)=="U S B"]$hmda_id,
             2005,c("U.S. BANK N.A."),2008)
mergers[[18]] <- temp


cbsas <- unique(hmda$cbsa)
yrs <- 2000:2016
acqbanks <- NULL
for(i in 1:length(mergers)) {
  acqbanks <- c(acqbanks,mergers[[i]][6][[1]])
}
acqbanks <- c(unique(acqbanks),"other")

cbsas1 <- merge(cbsas,yrs)
cbsas2 <- merge(cbsas,acqbanks)

cbsas <- merge(cbsas1,cbsas2,by="x")
names(cbsas) <- c("cbsa","acyr","bank")
cbsas <- data.table(cbsas)

cbsas[,bank:=as.character(bank)]
cbsas[,acqbank:=0]
cbsas[,pred_share:=0]
cbsas[,suc_share:=0]


cbsa_bnk <- NULL
lender_bank <- NULL
sumtable <- NULL
for(i in 1:length(mergers)) {
  # print(i)
  mid=mergers[[i]][1][[1]]
  mname=mergers[[i]][2][[1]]
  pred_hmda_id=mergers[[i]][3][[1]]
  suc_hmda_id=mergers[[i]][4][[1]]
  yr=mergers[[i]][5][[1]]
  acname = mergers[[i]][6][[1]]
  acyr = mergers[[i]][7][[1]]

  temp <- hmda[asofdate == yr ]
  temp[,pred:=ifelse(lender %in% pred_hmda_id,1,0)]
  cw <- temp[,.(pred_share=mean(pred)),by=.(cbsa)]
  
  temp1 <- hmda[asofdate == (acyr-1) ]
  temp1[,suc:=ifelse(lender %in% suc_hmda_id,1,0)]
  cw1 <- temp1[,.(suc_share=mean(suc)),by=.(cbsa)]
  
  cw <- merge(cw,cw1,by="cbsa",all.x=T)
  cw <- cw[!is.na(cbsa)]
  cw[is.na(cw)] <- 0
  
  cw[,joint_share:=pred_share+suc_share]
  cw[,bank:=acname]
  cw[,acyr:=acyr]

  cw[,c("joint_share"):=list(NULL)]
  cbsa_bnk <- rbind(cbsa_bnk,cw)
}


cbsa_bnk[,acqbank:=1]


cbsa_bnk <- rbind(cbsa_bnk,cbsas)
cbsa_bnk <- cbsa_bnk[!duplicated(cbsa_bnk[,c("cbsa","acyr","bank")])]
cbsa_bnk <- cbsa_bnk[!is.na(cbsa)]


cbsa_bnk_1 <- cbsa_bnk[,c("cbsa","pred_share","bank","acyr")]

names(cbsa_bnk_1) <- c("cbsa","pred_share_1","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_2","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_3","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_4","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_5","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_6","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_7","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_8","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

names(cbsa_bnk_1) <- c("cbsa","pred_share_9","bank","acyr")
cbsa_bnk_1[,acyr:=acyr+1]
cbsa_bnk <- merge(cbsa_bnk,cbsa_bnk_1,by=c("cbsa","bank","acyr"),all.x = T)

cbsa_bnk[,pred_share_1:=ifelse(is.na(pred_share_1),0,pred_share_1)]
cbsa_bnk[,pred_share_2:=ifelse(is.na(pred_share_2),0,pred_share_2)]
cbsa_bnk[,pred_share_3:=ifelse(is.na(pred_share_3),0,pred_share_3)]
cbsa_bnk[,pred_share_4:=ifelse(is.na(pred_share_4),0,pred_share_4)]
cbsa_bnk[,pred_share_5:=ifelse(is.na(pred_share_5),0,pred_share_5)]
cbsa_bnk[,pred_share_6:=ifelse(is.na(pred_share_6),0,pred_share_6)]
cbsa_bnk[,pred_share_7:=ifelse(is.na(pred_share_7),0,pred_share_7)]
cbsa_bnk[,pred_share_8:=ifelse(is.na(pred_share_8),0,pred_share_8)]
cbsa_bnk[,pred_share_9:=ifelse(is.na(pred_share_9),0,pred_share_9)]

cbsa_bnk[,msinc13:=pred_share_1+pred_share_2+pred_share_3+0.00001]
cbsa_bnk[,msinc46:=pred_share_4+pred_share_5+pred_share_6+0.00001]
cbsa_bnk[,msinc79:=pred_share_7+pred_share_8+pred_share_9+0.00001]
 

cbsa_bnk[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

cbsa_bnk[,msinc46G:=ifelse(msinc46<=0.0001,"0. 0",
                           ifelse(msinc46<0.01,"1. Less than 1pct",
                           ifelse(msinc46<0.05,"2. 1 - 5pct",
                                  ifelse(msinc46<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]


cbsa_bnk[,msinc79G:=ifelse(msinc79<=0.0001,"0. 0",
                           ifelse(msinc79<0.01,"1. Less than 1pct",
                           ifelse(msinc79<0.05,"2. 1 - 5pct",
                                  ifelse(msinc79<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

1.1 Step 1: Identifying Lenders

We identified lenders that are consistently identified across in freddie and fannie data sets. Freddie and fannie identify lenders with a total loan amount epresenting 1% or more of the total loan amount of all loans in the Dataset for a given calendar quarter. Otherwise, the lender name is set to “Other Sellers”. The lists of Freddie and Fannie lenders with the corresponding number of loans in each year are available here{:target="_blank“} and here{:target=”_blank"}, respectively.

List of Lenders Identified
  • Bank of America
  • JPMorgan Chase
  • Wells Fargo
  • US Bank
  • Flagstar FSB
  • Fifth Thrid Bank
  • Regions Financial Corp

1.2 Step 2: Identifying mergers

We identified all the mergers since 1995 where the acquirer is one the selected banks in the list above. The list of all identified mergers is available here{:target="_blank"}

1.3 Step 3: Identifying targets present in HMDA data

Next, we exclude mergers if the target is not present in HMDA data. The list of selected mergers is available here{:target="_blank"}

1.4 Step 4: Identify ‘large’ targets

Criteria: at least one MSA where target had 5% or more market share.

2 Summary Statistics

2.1 Freddie

freddie <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Freddie/Acq",full.names = TRUE)
freddie = lapply(freddie, read_fst,as.data.table=T, columns = c("fico","dt_first_pi","cd_msa","ltv","dti","orig_upb","int_rt","prop_type","zipcode","id_loan","orig_loan_term","seller_name","loan_purpose","cltv"))
freddie <- do.call(rbind , freddie)

freddie <- freddie[orig_loan_term==360 & prop_type=="SF"]
freddie[,loanyr:=year(dt_first_pi)]
freddie[,msa:=cd_msa]
freddie[,c("orig_loan_term","dt_first_pi","prop_type","cd_msa"):=list(NULL)]
freddie[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A."),"JPMORGAN CHASE BANK, NA",seller_name)]
freddie[,seller_name:= ifelse(seller_name %in%  c("CITIMORTGAGE, INC.","ABN AMRO, NKA CITIMORTGAGE INC.","CITIMORTGAGE, INC."),"CITIMORTGAGE, INC.",seller_name)]
freddie[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A."),"WELLS FARGO BANK, N.A.",seller_name)]

freddie[,bank:=seller_name]
freddie[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
freddie[,freddie:=1]
freddie[,newpurchase:=ifelse(loan_purpose=="P",1,0)]
freddie[,ltvorg:=ltv]
freddie[,ltv:=cltv]
vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","newpurchase")

stargazer(freddie[,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ========================================================================
## Statistic       N         Mean      St. Dev.   Pctl(25) Median  Pctl(75)
## ------------------------------------------------------------------------
## fico        16,245,111   748.509     395.911     695      741     776   
## ltv         16,245,111   74.400      17.381       67      79       85   
## dti         16,245,111   47.668      113.969      26      35       43   
## orig_upb    16,245,111 189,852.800 107,056.600 111,000  165,000 245,000 
## int_rt      16,245,111    5.699       1.234     4.750    5.875   6.625  
## loanyr      16,245,111  2,007.242     5.630     2,003    2,006   2,012  
## newpurchase 16,245,111    0.420       0.494       0        0       1    
## ------------------------------------------------------------------------

2.2 Fannie

fannie <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Fannie/Acq",full.names = TRUE)
fannie = lapply(fannie, read_fst,as.data.table=T, columns = c("loan_identifier","seller_name","original_interest_rate","original_upb","original_loan_term","origination_date","original_ltv","original_dti","credit_score","property_type","property_state","zip_code","msa","loan_purpose","original_cltv"))
fannie <- do.call(rbind , fannie)

fannie <- fannie[original_loan_term==360 & property_type=="SF"]
fannie[,loanyr:=year(origination_date)]
fannie[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A."),"JPMORGAN CHASE BANK, NA",seller_name)]
fannie[,seller_name:= ifelse(seller_name %in%  c("CITIMORTGAGE, INC.","ABN AMRO, NKA CITIMORTGAGE INC.","CITIMORTGAGE, INC."),"CITIMORTGAGE, INC.",seller_name)]
fannie[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A."),"WELLS FARGO BANK, N.A.",seller_name)]

fannie[,bank:=seller_name]
fannie[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
fannie[,freddie:=0]
fannie[,ltvorg:=original_ltv]
setnames(fannie,"zip_code","zipcode")
setnames(fannie,"original_ltv","ltv")
setnames(fannie,"original_upb","orig_upb")
setnames(fannie,"original_interest_rate","int_rt")
setnames(fannie,"loan_identifier","id_loan")
setnames(fannie,"credit_score","fico")
setnames(fannie,"original_dti","dti")
setnames(fannie,"original_cltv","cltv")

fannie[,c("property_type","property_state","original_loan_term","origination_date"):=list(NULL)]
fannie[,loan_purpose:=ifelse(loan_purpose=="R","N",loan_purpose)]

fannie <- fannie[loan_purpose != "U"]
fannie[,id_loan:=as.character(id_loan)]

fannie[,newpurchase:=ifelse(loan_purpose=="P",1,0)]
fannie[,ltv:=cltv]
vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","newpurchase")

stargazer(fannie[,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ========================================================================
## Statistic       N         Mean      St. Dev.   Pctl(25) Median  Pctl(75)
## ------------------------------------------------------------------------
## fico        20,256,524   736.426     54.519    700.000  747.000 781.000 
## ltv         20,136,791   74.006      16.287     66.000  78.000   84.000 
## dti         19,924,305   34.426      11.429     26.000  35.000   42.000 
## orig_upb    20,348,007 197,397.000 111,678.300 115,000  172,000 254,000 
## int_rt      20,348,004    5.542       1.240     4.500    5.625   6.375  
## loanyr      20,348,007  2,007.760     5.680     2,003    2,007   2,013  
## newpurchase 20,348,007    0.410       0.492       0        0       1    
## ------------------------------------------------------------------------

2.3 Moodys

moodys <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Moodys/0001/LoanChars.fst",as.data.table = TRUE, columns=c("loanid","loanoriginationdate","zipcode","originalloanbalance","originalcltv","state","originator","armflag","originalfico","originalterm","originalltv","documentationtype","originalinterestrate","purposetype","assettype")) 

cbsa <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/ZIP_CBSA.csv")
cbsa[,ZIP:=ifelse(nchar(ZIP)==3,paste0("00",ZIP),ifelse(nchar(ZIP)==4,paste0("0",ZIP),paste0(ZIP)))]
setorder(cbsa,ZIP,-RES_RATIO)
cbsa <- cbsa[!duplicated(cbsa[,c("ZIP")])]
cbsa[,c("RES_RATIO","BUS_RATIO","OTH_RATIO","TOT_RATIO"):=list(NULL)]
names(cbsa) <- c("zipcode","msa")
moodys <- merge(moodys,cbsa,by=c("zipcode"))

# moodys <- moodys[originalterm==360 & armflag=="F"]
moodys[,loanyr:=as.numeric(substr(loanoriginationdate,1,4))]
moodys[,seller_name:= originator]
moodys[,seller_name:= ifelse(seller_name %in% c("JPMORGAN CHASE BANK, NA","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","CHASE MANHATTAN MORTGAGE CORPORATION","CHASE HOME FINANCE LLC","CHASE HOME FINANCE","CHASE HOME FINANCE, LLC","JPMORGAN CHASE BANK, NATIONAL ASSOCIATION","JPMORGAN CHASE BANK, N.A.","JP MORGAN CHASE BANK NA","CHASE MANHATTAN MORTGAGE CORP"),"JPMORGAN CHASE BANK, NA",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in%  c("B OF A"),"BANK OF AMERICA, N.A.",seller_name)]
moodys[,seller_name:= ifelse(seller_name %in% c("WELLS FARGO HOME MORTGAGE, INC.","WELLS FARGO BANK, N.A.","WELLS FARGO BANK N.A"," WELLS FARGO HOME MTG, INC"),"WELLS FARGO BANK, N.A.",seller_name)]

moodys[,int_rt:=originalinterestrate]
moodys[,dti:=0]
moodys[,ltv:=originalcltv]
moodys[,ltvorg:=originalltv]
moodys[,fico:=originalfico]
moodys[,orig_upb:= originalloanbalance]

# moodys[,c("originalinterestrate","originalltv","originalfico","originalloanbalance","msacode","csacode","divcode","loanoriginationdate","armflag","originalterm"):=list(NULL)]

moodys[,fulldocumentation:=ifelse(documentationtype=="FU",1,0)]
gc()
##              used    (Mb) gc trigger    (Mb)   max used    (Mb)
## Ncells   38861452  2075.5   58590452  3129.1   40147438  2144.2
## Vcells 3593737030 27418.1 6908872861 52710.6 7104843326 54205.7
moodys[,bank:=seller_name]
moodys[,bank:=ifelse(bank %in% unique(cbsa_bnk$bank),bank,"other")]
moodys[,newpurchase:=ifelse(purposetype=="PUR",1,0)]

moodys <- moodys[assettype != "UN"]
vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")

temp <- moodys[ originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ======================================================================================
## Statistic             N        Mean      St. Dev.    Pctl(25)    Median     Pctl(75)  
## --------------------------------------------------------------------------------------
## fico              3,931,302   681.319     69.930     632.000     684.000     737.000  
## ltv               3,701,324   80.358      17.069      72.040     80.000      95.000   
## orig_upb          4,084,713 236,227.000 217,261.500 87,000.000 162,900.000 342,000.000
## int_rt            4,083,067    7.376       2.070      6.125       6.875       8.250   
## loanyr            4,076,804  2,004.672     2.223    2,004.000   2,005.000   2,006.000 
## fulldocumentation 4,085,004    0.407       0.491        0           0           1     
## newpurchase       4,085,004    0.412       0.492        0           0           1     
## --------------------------------------------------------------------------------------
vars <- c("fico","ltv","dti","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")

temp <- moodys[assettype=="Prime" & originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","dti","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## =======================================================================================
## Statistic             N        Mean      St. Dev.    Pctl(25)     Median     Pctl(75)  
## ---------------------------------------------------------------------------------------
## fico              2,158,190   726.768     41.403      691.000     725.000     760.000  
## ltv               1,990,839   79.131      17.441      70.000      80.000      94.930   
## dti               2,195,857    0.000       0.000         0           0           0     
## orig_upb          2,195,652 298,550.900 249,089.600 113,000.000 231,900.000 441,000.000
## int_rt            2,195,442    6.957       1.772       6.000       6.500       7.375   
## loanyr            2,195,370  2,004.765     2.208     2,004.000   2,005.000   2,006.000 
## fulldocumentation 2,195,857    0.387       0.487         0           0           1     
## newpurchase       2,195,857    0.463       0.499         0           0           1     
## ---------------------------------------------------------------------------------------
temp <- moodys[assettype=="Alt-A" & originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ====================================================================================
## Statistic            N       Mean      St. Dev.    Pctl(25)    Median     Pctl(75)  
## ------------------------------------------------------------------------------------
## fico              836,480   660.313     41.997     633.000     647.000     663.000  
## ltv               788,635   82.385      16.836      75.000     82.900      98.000   
## orig_upb          869,952 186,927.700 165,143.600 76,000.000 138,000.000 245,000.000
## int_rt            869,542    7.617       2.229      6.250       7.000       8.825   
## loanyr            866,808  2,004.815     2.023    2,004.000   2,005.000   2,006.000 
## fulldocumentation 869,955    0.361       0.480        0           0           1     
## newpurchase       869,955    0.396       0.489        0           0           1     
## ------------------------------------------------------------------------------------
temp <- moodys[assettype=="Subprime" & originalterm==360 & armflag=="F"]

stargazer(temp[,c("fico","ltv","orig_upb","int_rt","loanyr","fulldocumentation","newpurchase")],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ======================================================================================
## Statistic             N        Mean      St. Dev.    Pctl(25)    Median     Pctl(75)  
## --------------------------------------------------------------------------------------
## fico               936,632    595.358     49.573     566.000     596.000     616.000  
## ltv                921,850    81.273      16.209      74.850     80.000      95.000   
## orig_upb          1,019,109 144,035.000 115,299.700 67,000.000 111,200.000 185,000.000
## int_rt            1,018,083    8.073       2.293      6.750       7.875       9.550   
## loanyr            1,014,626  2,004.349     2.380    2,004.000   2,005.000   2,006.000 
## fulldocumentation 1,019,192    0.490       0.500        0           0           1     
## newpurchase       1,019,192    0.318       0.466        0           0           1     
## --------------------------------------------------------------------------------------

3 Descriptive Statistics: Market Share Changes

3.1 msinc13

print(ggplot(cbsa_bnk[msinc13>0.00001],aes(x=msinc13*100))+geom_histogram(fill="royalblue",alpha=0.3,color="royalblue")+theme_minimal()+labs(x=bquote(MSAcq^{1-3}~"(%)"),y="Frequency")+scale_y_continuous(labels = function(x) format(x, big.mark = ",",scientific = FALSE)))

3.2 msinc46

print(ggplot(cbsa_bnk[msinc46>0.00001],aes(x=msinc46*100))+geom_histogram(fill="royalblue",alpha=0.3,color="royalblue")+theme_minimal()+labs(x=bquote(MSAcq^{4-6}~"(%)"),y="Frequency")+scale_y_continuous(labels = function(x) format(x, big.mark = ",",scientific = FALSE)))

4 Dep. Var: Interest Rate

\[ interest rate = \Sigma_{bin} \beta_{bin} \times msinc13 \in bin+ \Sigma_{bin}\beta_{bin} \times msinc46 \in bin+fico+ltv+dti+log(loanamount) +BANK*MSA\text{ }FE+YR\text{ }FE\]

\(msinc13\) : Change in market share in last 3 years
\(msinc46\) : Change in market share 4-6 years

4.1 Panel A

4.1.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]


  r <- list()
  r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

  r[[2]] <- felm(int_rt~newpurchase*msinc13+newpurchase*msinc46+fico+ltv+dti+log(orig_upb)+freddie|bank_msa+loanyr|0|msa,data=regsample)
  
  r[[3]] <- felm(int_rt~msinc13+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+dti+log(orig_upb)+freddie|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
# regsample[,yr_msa:=paste(loanyr,msa)]

  r[[5]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+fulldocumentation+log(orig_upb)+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
    .printtable(r,column.labels = c("GSE","GSE","GSE <= 2007","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects",rep("MSA*Bank, Yr",6))))
## 
## =======================================================================================================
##                                                        Dependent variable:                             
##                           -----------------------------------------------------------------------------
##                               GSE          GSE      GSE <= 2007  GSE <= 2007    Moody's      Moody's   
##                               (1)          (2)          (3)          (4)          (5)          (6)     
## -------------------------------------------------------------------------------------------------------
## msinc13                     0.770***     0.872***     0.498***     1.120***     8.386***    11.463***  
##                             (0.047)      (0.061)      (0.146)      (0.171)      (1.739)      (1.709)   
## msinc46                     0.240***      0.179*                                                       
##                             (0.086)      (0.106)                                                       
## fico                       -0.0001***   -0.0001***  -0.00003***  -0.00003***   -0.003***    -0.003***  
##                            (0.00001)    (0.00001)    (0.00000)    (0.00000)     (0.0001)     (0.0001)  
## ltv                         0.004***     0.004***     0.004***     0.004***     0.017***     0.017***  
##                             (0.0001)     (0.0001)     (0.0001)     (0.0001)     (0.001)      (0.001)   
## dti                        0.0001***    0.0001***    0.0001***    0.0001***                            
##                            (0.00001)    (0.00001)    (0.00001)    (0.00001)                            
## fulldocumentation                                                              -0.224***    -0.224***  
##                                                                                 (0.010)      (0.010)   
## log(orig_upb)              -0.228***    -0.228***    -0.236***    -0.236***    -1.090***    -1.089***  
##                             (0.006)      (0.006)      (0.005)      (0.005)      (0.018)      (0.018)   
## freddie                     0.045***     0.045***     0.052***     0.052***                            
##                             (0.002)      (0.002)      (0.003)      (0.003)                             
## newpurchase:msinc13                     -0.260***                 -1.504***                 -7.658***  
##                                          (0.062)                   (0.122)                   (0.837)   
## newpurchase:msinc46                       0.150                                                        
##                                          (0.113)                                                       
## newpurchase                 0.025***     0.025***     0.015***     0.016***     0.123***     0.125***  
##                             (0.004)      (0.004)      (0.003)      (0.003)      (0.020)      (0.020)   
## factor(assettype)Alt-A                                                          0.110***     0.110***  
##                                                                                 (0.007)      (0.007)   
## factor(assettype)Subprime                                                       0.409***     0.409***  
##                                                                                 (0.014)      (0.014)   
## -------------------------------------------------------------------------------------------------------
## Fixed Effects             MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations               23,793,279   23,793,279   13,622,426   13,622,426   3,026,530    3,026,530  
## Adjusted R2                  0.896        0.896        0.751        0.751        0.483        0.483    
## =======================================================================================================
## Note:                                                                       *p<0.1; **p<0.05; ***p<0.01
## 

4.1.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(int_rt~msinc13+msinc46+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|seller_name+yr_msa|0|yr_msa,data=regsample)

  r[[2]] <- felm(int_rt~newpurchase*msinc13+newpurchase*msinc46+fico+ltv+dti+log(orig_upb)+freddie|seller_name+yr_msa|0|yr_msa,data=regsample)
  
  r[[3]] <- felm(int_rt~msinc13+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|seller_name+yr_msa|0|yr_msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+dti+log(orig_upb)+freddie|seller_name+yr_msa|0|yr_msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[5]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|seller_name+yr_msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(int_rt~newpurchase*msinc13+fico+ltv+fulldocumentation+log(orig_upb)+factor(assettype)|seller_name+yr_msa|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
    .printtable(r,column.labels = c("GSE","GSE","GSE <= 2007","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects",rep("MSA*Year, Bank",6))))
## 
## ===================================================================================================================
##                                                              Dependent variable:                                   
##                           -----------------------------------------------------------------------------------------
##                                GSE            GSE        GSE <= 2007    GSE <= 2007      Moody's        Moody's    
##                                (1)            (2)            (3)            (4)            (5)            (6)      
## -------------------------------------------------------------------------------------------------------------------
## msinc13                      0.636***       0.768***       0.537***       1.181***       6.128***       9.079***   
##                              (0.058)        (0.069)        (0.080)        (0.103)        (0.747)        (0.737)    
## msinc46                       0.105          0.085                                                                 
##                              (0.076)        (0.108)                                                                
## fico                        -0.0001***     -0.0001***    -0.00003***    -0.00003***     -0.003***      -0.003***   
##                             (0.00000)      (0.00000)      (0.00000)      (0.00000)       (0.0001)       (0.0001)   
## ltv                          0.004***       0.004***       0.004***       0.004***       0.018***       0.018***   
##                             (0.00004)      (0.00004)       (0.0001)       (0.0001)       (0.001)        (0.001)    
## dti                         0.0001***      0.0001***      0.0001***      0.0001***                                 
##                             (0.00000)      (0.00000)      (0.00000)      (0.00000)                                 
## fulldocumentation                                                                       -0.222***      -0.222***   
##                                                                                          (0.010)        (0.010)    
## log(orig_upb)               -0.232***      -0.232***      -0.240***      -0.240***      -1.108***      -1.108***   
##                              (0.002)        (0.002)        (0.002)        (0.002)        (0.018)        (0.018)    
## freddie                      0.048***       0.048***       0.056***       0.056***                                 
##                              (0.003)        (0.003)        (0.003)        (0.003)                                  
## newpurchase:msinc13                        -0.344***                     -1.529***                     -7.559***   
##                                             (0.065)                       (0.102)                       (1.075)    
## newpurchase:msinc46                          0.039                                                                 
##                                             (0.140)                                                                
## newpurchase                  0.024***       0.025***       0.013***       0.014***       0.121***       0.123***   
##                              (0.002)        (0.002)        (0.003)        (0.003)        (0.020)        (0.021)    
## factor(assettype)Alt-A                                                                   0.111***       0.111***   
##                                                                                          (0.007)        (0.007)    
## factor(assettype)Subprime                                                                0.403***       0.403***   
##                                                                                          (0.013)        (0.013)    
## -------------------------------------------------------------------------------------------------------------------
## Fixed Effects             MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank
## Observations                23,793,279     23,793,279     13,622,426     13,622,426     3,026,530      3,026,530   
## Adjusted R2                   0.896          0.896          0.749          0.749          0.467          0.468     
## ===================================================================================================================
## Note:                                                                                   *p<0.1; **p<0.05; ***p<0.01
## 

4.2 Panel B

4.2.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]


  r <- list()
  r[[1]] <- felm(int_rt~factor(msinc13G)+factor(msinc46G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)
  
  r[[2]] <- felm(int_rt~factor(msinc13G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])


regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
# regsample[,msinccat13:=ifelse(msinc13<=0,"0",ifelse(msinc13<= 0.02 ,"Less than 2%",ifelse(msinc13<0.05,"Less than 5%","More than 5%")))]
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]

  r[[3]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  

  .printtable(r,column.labels = c("GSE","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## =========================================================================
##                                             Dependent variable:          
##                                    --------------------------------------
##                                        GSE      GSE <= 2007    Moody's   
##                                        (1)          (2)          (3)     
## -------------------------------------------------------------------------
## factor(msinc13G)1. Less than 1pct    0.051***     0.032***      -0.017   
##                                      (0.003)      (0.005)      (0.022)   
## factor(msinc13G)2. 1 - 5pct          0.045***     0.026***     0.320***  
##                                      (0.004)      (0.007)      (0.071)   
## factor(msinc13G)3. 5pct - 10pct      0.044***     0.031***     0.490***  
##                                      (0.006)      (0.010)      (0.119)   
## factor(msinc13G)4. More than 10pct   0.098***      0.066       1.514***  
##                                      (0.008)      (0.057)      (0.384)   
## factor(msinc46G)1. Less than 1pct    0.011***                            
##                                      (0.004)                             
## factor(msinc46G)2. 1 - 5pct          0.024***                            
##                                      (0.006)                             
## factor(msinc46G)3. 5pct - 10pct       0.004                              
##                                      (0.010)                             
## factor(msinc46G)4. More than 10pct    -0.001                             
##                                      (0.010)                             
## fico                                -0.0001***  -0.00003***   -0.003***  
##                                     (0.00001)    (0.00000)     (0.0001)  
## ltv                                  0.004***     0.004***     0.017***  
##                                      (0.0001)     (0.0001)     (0.001)   
## dti                                 0.0001***    0.0001***               
##                                     (0.00001)    (0.00001)               
## fulldocumentation                                             -0.223***  
##                                                                (0.010)   
## log(orig_upb)                       -0.228***    -0.236***    -1.090***  
##                                      (0.006)      (0.005)      (0.018)   
## freddie                              0.047***     0.051***               
##                                      (0.002)      (0.003)                
## newpurchase                          0.025***     0.015***     0.123***  
##                                      (0.004)      (0.003)      (0.020)   
## factor(assettype)Alt-A                                         0.110***  
##                                                                (0.007)   
## factor(assettype)Subprime                                      0.409***  
##                                                                (0.014)   
## -------------------------------------------------------------------------
## Fixed Effects                      MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations                        23,793,279   13,622,426   3,026,530  
## Adjusted R2                           0.896        0.751        0.483    
## =========================================================================
## Note:                                         *p<0.1; **p<0.05; ***p<0.01
## 

4.2.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]

regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(int_rt~factor(msinc13G)+factor(msinc46G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample)
  
  r[[2]] <- felm(int_rt~factor(msinc13G)+fico+ltv+dti+log(orig_upb)+freddie+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[loanyr<=2007])


regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
# regsample[,msinccat13:=ifelse(msinc13<=0,"0",ifelse(msinc13<= 0.02 ,"Less than 2%",ifelse(msinc13<0.05,"Less than 5%","More than 5%")))]
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[3]] <- felm(int_rt~factor(msinc13G)+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase+factor(assettype)|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F"])  

  .printtable(r,column.labels = c("GSE","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects","MSA*Year, Bank","MSA*Year, Bank","MSA*Year, Bank")))
## 
## ===============================================================================
##                                                Dependent variable:             
##                                    --------------------------------------------
##                                         GSE        GSE <= 2007      Moody's    
##                                         (1)            (2)            (3)      
## -------------------------------------------------------------------------------
## factor(msinc13G)1. Less than 1pct     0.049***       0.025***        -0.006    
##                                       (0.004)        (0.005)        (0.035)    
## factor(msinc13G)2. 1 - 5pct           0.043***       0.025***       0.272***   
##                                       (0.004)        (0.004)        (0.038)    
## factor(msinc13G)3. 5pct - 10pct       0.045***       0.032***       0.332***   
##                                       (0.005)        (0.005)        (0.048)    
## factor(msinc13G)4. More than 10pct    0.071***       0.065***       0.584**    
##                                       (0.012)        (0.022)        (0.259)    
## factor(msinc46G)1. Less than 1pct      0.004                                   
##                                       (0.004)                                  
## factor(msinc46G)2. 1 - 5pct           0.027***                                 
##                                       (0.005)                                  
## factor(msinc46G)3. 5pct - 10pct        0.013*                                  
##                                       (0.007)                                  
## factor(msinc46G)4. More than 10pct   -0.077***                                 
##                                       (0.010)                                  
## fico                                 -0.0001***    -0.00003***     -0.003***   
##                                      (0.00000)      (0.00000)       (0.0001)   
## ltv                                   0.004***       0.004***       0.018***   
##                                      (0.00004)       (0.0001)       (0.0004)   
## dti                                  0.0001***      0.0001***                  
##                                      (0.00000)      (0.00000)                  
## fulldocumentation                                                  -0.222***   
##                                                                     (0.009)    
## log(orig_upb)                        -0.232***      -0.240***      -1.108***   
##                                       (0.002)        (0.002)        (0.021)    
## freddie                               0.049***       0.055***                  
##                                       (0.003)        (0.003)                   
## newpurchase                           0.024***       0.013***       0.121***   
##                                       (0.002)        (0.003)        (0.013)    
## factor(assettype)Alt-A                                              0.111***   
##                                                                     (0.008)    
## factor(assettype)Subprime                                           0.403***   
##                                                                     (0.010)    
## -------------------------------------------------------------------------------
## Fixed Effects                      MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank
## Observations                         23,793,279     13,622,426     3,026,530   
## Adjusted R2                            0.896          0.749          0.467     
## ===============================================================================
## Note:                                               *p<0.1; **p<0.05; ***p<0.01
## 

4.3 Panel C

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,high_suc_share:=ifelse(suc_share>0.05,1,0)]
regsample[,logoneoverfico:=log(1/fico)]
regsample[,yr_msa:=paste(loanyr,msa)]

4.3.1 Bank-MSA and Year FE

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[2]] <- felm(int_rt~msinc13*fulldocumentation+fico+ltv+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
# r[[4]] <- felm(int_rt~msinc13*fulldocumentation+fico+ltv+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[6]] <- felm(int_rt~msinc13*fulldocumentation+fico+ltv+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")]) 

  
.printtable(r,column.labels = c("Prime","Prime","Alt-A","Alt-A","Subprime","Subprime"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ========================================================
##                            Dependent variable:          
##                   --------------------------------------
##                      Prime        Prime        Alt-A    
##                       (1)          (2)          (3)     
## --------------------------------------------------------
## msinc13              0.001       7.273***    58.195***  
##                     (0.700)      (2.008)      (5.228)   
## fico               -0.002***    -0.003***    -0.004***  
##                     (0.0001)     (0.0002)     (0.0002)  
## ltv                 0.013***     0.022***     0.022***  
##                     (0.001)      (0.001)      (0.001)   
## fulldocumentation  -0.149***    -0.350***    -0.297***  
##                     (0.010)      (0.015)      (0.015)   
## log(orig_upb)      -0.744***    -1.321***    -1.689***  
##                     (0.016)      (0.031)      (0.033)   
## newpurchase         0.083***     0.163***     0.206***  
##                     (0.012)      (0.021)      (0.033)   
## --------------------------------------------------------
## Fixed Effects     MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations       1,509,016     524,470      530,678   
## Adjusted R2          0.512        0.486        0.381    
## ========================================================
## Note:                        *p<0.1; **p<0.05; ***p<0.01
## 

4.3.2 Year-MSA and Bank FE

r <- list()
r[[1]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[2]] <- felm(int_rt~msinc13*fulldocumentation+fico+ltv+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
# r[[4]] <- felm(int_rt~msinc13*fulldocumentation+fico+ltv+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(int_rt~msinc13+fico+ltv+fulldocumentation+log(orig_upb)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[6]] <- felm(int_rt~msinc13*fulldocumentation+fico+ltv+log(orig_upb)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")]) 

  
.printtable(r,column.labels = c("Prime","Prime","Alt-A","Alt-A","Subprime","Subprime"),lines = list(c("Fixed Effects","MSA*Year, Bank","MSA*Year, Bank","MSA*Year, Bank","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ==============================================================
##                               Dependent variable:             
##                   --------------------------------------------
##                       Prime          Prime          Alt-A     
##                        (1)            (2)            (3)      
## --------------------------------------------------------------
## msinc13              1.966***       7.158***      13.057***   
##                      (0.725)        (1.267)        (2.083)    
## fico                -0.002***      -0.003***      -0.003***   
##                      (0.0001)       (0.0001)       (0.0002)   
## ltv                  0.013***       0.023***       0.022***   
##                      (0.0004)       (0.001)        (0.001)    
## fulldocumentation   -0.155***      -0.351***      -0.294***   
##                      (0.008)        (0.012)        (0.013)    
## log(orig_upb)       -0.763***      -1.344***      -1.691***   
##                      (0.019)        (0.034)        (0.028)    
## newpurchase          0.077***       0.165***       0.204***   
##                      (0.009)        (0.014)        (0.021)    
## --------------------------------------------------------------
## Fixed Effects     MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank
## Observations        1,509,016       524,470        530,678    
## Adjusted R2           0.487          0.466          0.367     
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
## 

5 Dep. Var: log(Loan amount)

5.1 Panel A

5.1.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~msinc13+msinc46+fico+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~newpurchase*msinc13+newpurchase*msinc46+fico+dti+log(homevalue)+freddie|bank_msa+loanyr|0|msa,data=regsample)
  
  r[[3]] <- felm(log(orig_upb)~msinc13+fico+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+dti+log(homevalue)+freddie|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]

  r[[5]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+fulldocumentation+log(homevalue)+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])
  
    .printtable(r,column.labels = c("GSE","GSE","GSE <= 2007","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects",rep("MSA*Bank, Yr",6))))
## 
## =======================================================================================================
##                                                        Dependent variable:                             
##                           -----------------------------------------------------------------------------
##                               GSE          GSE      GSE <= 2007  GSE <= 2007    Moody's      Moody's   
##                               (1)          (2)          (3)          (4)          (5)          (6)     
## -------------------------------------------------------------------------------------------------------
## msinc13                     0.118***      0.076       0.132**      0.196**      2.628***      0.393    
##                             (0.040)      (0.053)      (0.065)      (0.095)      (0.525)      (0.631)   
## msinc46                      -0.056     -0.191***                                                      
##                             (0.052)      (0.067)                                                       
## fico                      -0.00003***  -0.00003***  -0.00003***  -0.00003***   0.0004***    0.0004***  
##                            (0.00000)    (0.00000)    (0.00000)    (0.00000)    (0.00002)    (0.00002)  
## dti                        0.00003***   0.00003***   0.00002***   0.00002***                           
##                            (0.00001)    (0.00001)    (0.00001)    (0.00001)                            
## fulldocumentation                                                               0.037***     0.037***  
##                                                                                 (0.003)      (0.003)   
## log(homevalue)              0.840***     0.840***     0.822***     0.822***     0.838***     0.838***  
##                             (0.010)      (0.010)      (0.010)      (0.010)      (0.005)      (0.005)   
## freddie                    -0.014***    -0.014***    -0.009***    -0.009***                            
##                             (0.001)      (0.001)      (0.001)      (0.001)                             
## newpurchase:msinc13                       0.121*                    -0.156                   5.569***  
##                                          (0.066)                   (0.117)                   (0.469)   
## newpurchase:msinc46                      0.372***                                                      
##                                          (0.067)                                                       
## newpurchase                 0.131***     0.130***     0.112***     0.112***    -0.086***    -0.087***  
##                             (0.003)      (0.003)      (0.004)      (0.004)      (0.010)      (0.010)   
## factor(assettype)Alt-A                                                         -0.083***    -0.083***  
##                                                                                 (0.004)      (0.004)   
## factor(assettype)Subprime                                                      -0.034***    -0.034***  
##                                                                                 (0.005)      (0.005)   
## -------------------------------------------------------------------------------------------------------
## Fixed Effects             MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations               23,889,212   23,889,212   13,718,103   13,718,103   3,272,969    3,272,969  
## Adjusted R2                  0.816        0.816        0.778        0.778        0.748        0.748    
## =======================================================================================================
## Note:                                                                       *p<0.1; **p<0.05; ***p<0.01
## 

5.1.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~msinc13+msinc46+fico+dti+log(homevalue)+freddie+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample)

  r[[2]] <- felm(log(orig_upb)~newpurchase*msinc13+newpurchase*msinc46+fico+dti+log(homevalue)+freddie|yr_msa+seller_name|0|yr_msa,data=regsample)
  
  r[[3]] <- felm(log(orig_upb)~msinc13+fico+dti+log(homevalue)+freddie+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[loanyr<=2007])

  r[[4]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+dti+log(homevalue)+freddie|bank_msa+seller_name|0|msa,data=regsample[loanyr<=2007])
  
  

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[5]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F"])  
  r[[6]] <- felm(log(orig_upb)~newpurchase*msinc13+fico+fulldocumentation+log(homevalue)+factor(assettype)|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F"])
  
    .printtable(r,column.labels = c("GSE","GSE","GSE <= 2007","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects",rep("MSA*Year, Bank",6))))
## 
## ===================================================================================================================
##                                                              Dependent variable:                                   
##                           -----------------------------------------------------------------------------------------
##                                GSE            GSE        GSE <= 2007    GSE <= 2007      Moody's        Moody's    
##                                (1)            (2)            (3)            (4)            (5)            (6)      
## -------------------------------------------------------------------------------------------------------------------
## msinc13                       0.038*         -0.036         0.062*         0.208*        0.719**       -1.404***   
##                              (0.020)        (0.032)        (0.033)        (0.110)        (0.327)        (0.447)    
## msinc46                     -0.197***      -0.371***                                                               
##                              (0.033)        (0.046)                                                                
## fico                       -0.00003***    -0.00003***    -0.00003***    -0.00003***     0.0004***      0.0004***   
##                             (0.00000)      (0.00000)      (0.00000)      (0.00000)      (0.00004)      (0.00004)   
## dti                         0.00003***     0.00003***     0.00002***     0.00002***                                
##                             (0.00000)      (0.00000)      (0.00000)      (0.00001)                                 
## fulldocumentation                                                                        0.038***       0.038***   
##                                                                                          (0.002)        (0.002)    
## log(homevalue)               0.841***       0.842***       0.826***       0.821***       0.838***       0.838***   
##                              (0.003)        (0.003)        (0.004)        (0.010)        (0.003)        (0.003)    
## freddie                     -0.014***      -0.014***      -0.009***      -0.010***                                 
##                              (0.001)        (0.001)        (0.001)        (0.001)                                  
## newpurchase:msinc13                         0.204***                       -0.141                       5.436***   
##                                             (0.061)                       (0.115)                       (0.415)    
## newpurchase:msinc46                         0.487***                                                               
##                                             (0.055)                                                                
## newpurchase                  0.130***       0.129***       0.110***       0.110***      -0.093***      -0.094***   
##                              (0.001)        (0.001)        (0.002)        (0.004)        (0.007)        (0.007)    
## factor(assettype)Alt-A                                                                  -0.087***      -0.087***   
##                                                                                          (0.003)        (0.003)    
## factor(assettype)Subprime                                                               -0.035***      -0.035***   
##                                                                                          (0.005)        (0.005)    
## -------------------------------------------------------------------------------------------------------------------
## Fixed Effects             MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank
## Observations                23,889,212     23,889,212     13,718,103     13,718,103     3,272,969      3,272,969   
## Adjusted R2                   0.817          0.817          0.778          0.777          0.743          0.743     
## ===================================================================================================================
## Note:                                                                                   *p<0.1; **p<0.05; ***p<0.01
## 

5.2 Panel B

5.2.1 Bank-MSA and Year FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~factor(msinc13G)+factor(msinc46G)+fico+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample)
  
  r[[2]] <- felm(log(orig_upb)~factor(msinc13G)+fico+dti+log(homevalue)+freddie+newpurchase|bank_msa+loanyr|0|msa,data=regsample[loanyr<=2007])


regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
# regsample[,msinccat13:=ifelse(msinc13<=0,"0",ifelse(msinc13<= 0.02 ,"Less than 2%",ifelse(msinc13<0.05,"Less than 5%","More than 5%")))]
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]

  r[[3]] <- felm(log(orig_upb)~factor(msinc13G)+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F"])  

  .printtable(r,column.labels = c("GSE","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## =========================================================================
##                                             Dependent variable:          
##                                    --------------------------------------
##                                        GSE      GSE <= 2007    Moody's   
##                                        (1)          (2)          (3)     
## -------------------------------------------------------------------------
## factor(msinc13G)1. Less than 1pct     0.003        0.002        0.011    
##                                      (0.002)      (0.003)      (0.007)   
## factor(msinc13G)2. 1 - 5pct           0.002        0.002       0.126***  
##                                      (0.003)      (0.003)      (0.018)   
## factor(msinc13G)3. 5pct - 10pct       0.010*       0.009*      0.113***  
##                                      (0.006)      (0.005)      (0.031)   
## factor(msinc13G)4. More than 10pct    0.001        0.007       0.320***  
##                                      (0.008)      (0.024)      (0.026)   
## factor(msinc46G)1. Less than 1pct     0.001                              
##                                      (0.003)                             
## factor(msinc46G)2. 1 - 5pct          0.007***                            
##                                      (0.002)                             
## factor(msinc46G)3. 5pct - 10pct       -0.005                             
##                                      (0.006)                             
## factor(msinc46G)4. More than 10pct  -0.039***                            
##                                      (0.014)                             
## fico                               -0.00003***  -0.00003***   0.0004***  
##                                     (0.00000)    (0.00000)    (0.00002)  
## dti                                 0.00003***   0.00002***              
##                                     (0.00001)    (0.00001)               
## fulldocumentation                                              0.037***  
##                                                                (0.003)   
## log(homevalue)                       0.840***     0.822***     0.838***  
##                                      (0.010)      (0.010)      (0.005)   
## freddie                             -0.014***    -0.009***               
##                                      (0.001)      (0.001)                
## newpurchase                          0.131***     0.112***    -0.086***  
##                                      (0.003)      (0.004)      (0.010)   
## factor(assettype)Alt-A                                        -0.083***  
##                                                                (0.004)   
## factor(assettype)Subprime                                     -0.034***  
##                                                                (0.005)   
## -------------------------------------------------------------------------
## Fixed Effects                      MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations                        23,889,212   13,718,103   3,272,969  
## Adjusted R2                           0.816        0.778        0.748    
## =========================================================================
## Note:                                         *p<0.1; **p<0.05; ***p<0.01
## 

5.2.2 Year-MSA and Bank FE

regsample <- rbind(freddie,fannie)

regsample <- merge(regsample,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))

regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,yr_msa:=paste(loanyr,msa)]

  r <- list()
  r[[1]] <- felm(log(orig_upb)~factor(msinc13G)+factor(msinc46G)+fico+dti+log(homevalue)+freddie+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample)
  
  r[[2]] <- felm(log(orig_upb)~factor(msinc13G)+fico+dti+log(homevalue)+freddie+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[loanyr<=2007])


regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
# regsample[,msinccat13:=ifelse(msinc13<=0,"0",ifelse(msinc13<= 0.02 ,"Less than 2%",ifelse(msinc13<0.05,"Less than 5%","More than 5%")))]
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,yr_msa:=paste(loanyr,msa)]

  r[[3]] <- felm(log(orig_upb)~factor(msinc13G)+fico+fulldocumentation+log(homevalue)+newpurchase+factor(assettype)|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F"])  

  .printtable(r,column.labels = c("GSE","GSE <= 2007","Moody's","Moody's"),lines = list(c("Fixed Effects",rep("MSA*Bank, Yr",4))))
## 
## =========================================================================
##                                             Dependent variable:          
##                                    --------------------------------------
##                                        GSE      GSE <= 2007    Moody's   
##                                        (1)          (2)          (3)     
## -------------------------------------------------------------------------
## factor(msinc13G)1. Less than 1pct    0.002**      0.004***     0.025**   
##                                      (0.001)      (0.001)      (0.012)   
## factor(msinc13G)2. 1 - 5pct          0.005***     0.004**      0.065***  
##                                      (0.001)      (0.002)      (0.019)   
## factor(msinc13G)3. 5pct - 10pct       0.003       0.006**      0.058***  
##                                      (0.002)      (0.003)      (0.018)   
## factor(msinc13G)4. More than 10pct    0.001        -0.009       -0.006   
##                                      (0.003)      (0.019)      (0.057)   
## factor(msinc46G)1. Less than 1pct    -0.002**                            
##                                      (0.001)                             
## factor(msinc46G)2. 1 - 5pct          -0.0002                             
##                                      (0.001)                             
## factor(msinc46G)3. 5pct - 10pct      -0.008**                            
##                                      (0.003)                             
## factor(msinc46G)4. More than 10pct  -0.067***                            
##                                      (0.006)                             
## fico                               -0.00003***  -0.00003***   0.0004***  
##                                     (0.00000)    (0.00000)    (0.00004)  
## dti                                 0.00003***   0.00002***              
##                                     (0.00000)    (0.00000)               
## fulldocumentation                                              0.038***  
##                                                                (0.002)   
## log(homevalue)                       0.841***     0.826***     0.838***  
##                                      (0.003)      (0.004)      (0.003)   
## freddie                             -0.014***    -0.009***               
##                                      (0.001)      (0.001)                
## newpurchase                          0.130***     0.110***    -0.093***  
##                                      (0.001)      (0.002)      (0.007)   
## factor(assettype)Alt-A                                        -0.087***  
##                                                                (0.003)   
## factor(assettype)Subprime                                     -0.035***  
##                                                                (0.005)   
## -------------------------------------------------------------------------
## Fixed Effects                      MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations                        23,889,212   13,718,103   3,272,969  
## Adjusted R2                           0.817        0.778        0.743    
## =========================================================================
## Note:                                         *p<0.1; **p<0.05; ***p<0.01
## 

5.3 Panel C

regsample <- merge(moodys,cbsa_bnk,by.x=c("bank","msa","loanyr"),by.y=c("bank","cbsa","acyr"))
regsample[,bank_msa:=paste(seller_name,msa)]
regsample[,homevalue:= orig_upb*100/ltvorg]
regsample[,assettype:=ifelse(assettype=="Prime","0Prime",assettype)]
regsample[,high_suc_share:=ifelse(suc_share>0.05,1,0)]
regsample[,logoneoverfico:=log(1/fico)]
regsample[,yr_msa:=paste(loanyr,msa)]

5.3.1 Bank-MSA and Year FE

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[2]] <- felm(log(orig_upb)~msinc13*fulldocumentation+fico+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
# r[[4]] <- felm(log(orig_upb)~msinc13*fulldocumentation+fico+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[6]] <- felm(log(orig_upb)~msinc13*fulldocumentation+fico+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")]) 

  
.printtable(r,column.labels = c("Prime","Alt-A","Subprime","Subprime"),lines = list(c("Fixed Effects","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr","MSA*Bank, Yr")))
## 
## ========================================================
##                            Dependent variable:          
##                   --------------------------------------
##                      Prime        Alt-A       Subprime  
##                       (1)          (2)          (3)     
## --------------------------------------------------------
## msinc13             1.401***     6.392***    -1.625***  
##                     (0.503)      (0.697)      (0.523)   
## fico                0.0001**    -0.0004***   -0.0005*** 
##                    (0.00002)     (0.0001)     (0.0001)  
## fulldocumentation   0.044***     0.078***    -0.046***  
##                     (0.002)      (0.004)      (0.004)   
## log(homevalue)      0.891***     0.854***     0.830***  
##                     (0.006)      (0.004)      (0.006)   
## newpurchase         0.037***    -0.167***    -0.296***  
##                     (0.008)      (0.008)      (0.011)   
## --------------------------------------------------------
## Fixed Effects     MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr
## Observations       1,560,476     535,050      538,243   
## Adjusted R2          0.801        0.656        0.640    
## ========================================================
## Note:                        *p<0.1; **p<0.05; ***p<0.01
## 

5.3.2 Year-MSA and Bank FE

r <- list()
r[[1]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[2]] <- felm(log(orig_upb)~msinc13*fulldocumentation+fico+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="0Prime"  & documentationtype %in% c("FU","NO","LO")])  
r[[2]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
# r[[4]] <- felm(log(orig_upb)~msinc13*fulldocumentation+fico+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Alt-A"  & documentationtype %in% c("FU","NO","LO")])
r[[3]] <- felm(log(orig_upb)~msinc13+fico+fulldocumentation+log(homevalue)+newpurchase|yr_msa+seller_name|0|yr_msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")])  
# r[[6]] <- felm(log(orig_upb)~msinc13*fulldocumentation+fico+log(homevalue)+newpurchase|bank_msa+loanyr|0|msa,data=regsample[originalterm==360 & armflag=="F" & assettype=="Subprime"  & documentationtype %in% c("FU","NO","LO")]) 

  
.printtable(r,column.labels = c("Prime","Alt-A","Subprime","Subprime"),lines = list(c("Fixed Effects",rep("MSA*Year, Bank",4))))
## 
## ==============================================================
##                               Dependent variable:             
##                   --------------------------------------------
##                       Prime          Alt-A         Subprime   
##                        (1)            (2)            (3)      
## --------------------------------------------------------------
## msinc13               0.472         2.031***        -0.272    
##                      (0.384)        (0.388)        (0.315)    
## fico                 0.0001**      -0.0004***     -0.0005***  
##                     (0.00003)       (0.0001)       (0.0001)   
## fulldocumentation    0.047***       0.077***      -0.048***   
##                      (0.002)        (0.003)        (0.004)    
## log(homevalue)       0.891***       0.855***       0.831***   
##                      (0.003)        (0.003)        (0.005)    
## newpurchase          0.031***      -0.175***      -0.301***   
##                      (0.005)        (0.010)        (0.009)    
## --------------------------------------------------------------
## Fixed Effects     MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank
## Observations        1,560,476       535,050        538,243    
## Adjusted R2           0.798          0.651          0.636     
## ==============================================================
## Note:                              *p<0.1; **p<0.05; ***p<0.01
## 

6 HMDA Data: New Purchases

cbsa_bnk <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_bnk.fst",as.data.table = T)

cbsa_bnk[,msinc13Q:=ifelse(msinc13<=0.0001,"Q0",
                           ifelse(msinc13<0.0027235,"Q1",
                                  ifelse(msinc13<0.0112596,"Q2",
                                         ifelse(msinc13<0.0366354,"Q3","Q4"))))]

cbsa_bnk[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]
                                         

cbsa_bnk[,msinc46Q:=ifelse(msinc46<=0.0001,"Q0",
                           ifelse(msinc46<0.0027235,"Q1",
                                  ifelse(msinc46<0.0112596,"Q2",
                                         ifelse(msinc46<0.0366354,"Q3","Q4"))))]

cbsa_bnk[,msinc46G:=ifelse(msinc46<=0.0001,"0. 0",
                           ifelse(msinc46<0.01,"1. Less than 1pct",
                           ifelse(msinc46<0.05,"2. 1 - 5pct",
                                  ifelse(msinc46<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]
# 
cbsa_share<- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_share.fst",as.data.table = T)

cbsa_share[,msinc13G:=ifelse(msinc13<=0.0001,"0. 0",
                           ifelse(msinc13<0.01,"1. Less than 1pct",
                           ifelse(msinc13<0.05,"2. 1 - 5pct",
                                  ifelse(msinc13<0.1,"3. 5pct - 10pct", "4. More than 10pct"))))]

cbsa_bnk_partrend <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_bnk_partrend.fst",as.data.table = T)

cbsa_share_partrend <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/cbsa_share_partrend.fst",as.data.table = T)
files <- NULL
files  <- list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_NP/",full.names = TRUE)
# files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/pre2004/OO_RF/",full.names = TRUE))
files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_NP/",full.names = TRUE))
# files  <- c(files,list.files(pattern="*.fst",path = "C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/HMDA/OO_RF/",full.names = TRUE))

files <- files[substr(files,100,103) %in% as.character(2000:2017)] #c("2014","2015","2016","2017","2018")

hmda = lapply(files, read_fst, as.data.table = TRUE,
              columns=c("asofdate","respondentid","agencycode","state","countycode","msa","actiontaken","applicantrace1","applicantincome","amountofloan","typeofpurchaser","typeofloan","applicantethnicity"))
hmda <- do.call(rbind , hmda)
# hmda <- hmda[asofd•ate>=2000 & asofdate<2017]

hmda[,lender:=paste0(agencycode,"-",respondentid)]
hmda[,countycode:=paste0(state,countycode)]

hmda[,approved:=ifelse(actiontaken %in% c("1"),1,0)]
hmda[,sold:=ifelse(typeofpurchaser !="0" & actiontaken=="1",1,ifelse(actiontaken=="1",0,NA))]
hmda[,nonwhite:=ifelse(applicantrace1=="5",0,1)]




lender_bank <- read_fst("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/lender_bank.fst",as.data.table = T)

hmda <- merge(hmda,lender_bank,by="lender",all.x=T)

cbsa_fips <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/Crosswalk Files/cbsa_countyfips.csv")
cbsa_fips[,fips:=ifelse(nchar(fips)==4,paste0("0",fips),paste0(fips))]

hmda <- merge(hmda,cbsa_fips,by.x="countycode",by.y="fips",all.x=T)


hmda <- merge(hmda,cbsa_bnk,by.x=c("bank","cbsa","asofdate"),by.y=c("bank","cbsa","acyr"),all.x=T)

hmda[,msinc13:=ifelse(is.na(msinc13),0.00001,msinc13)]
hmda[,msinc46:=ifelse(is.na(msinc46),0.00001,msinc46)]

hmda[,bank:=ifelse(is.na(bank),lender,bank)]
hmda[,msinc13G:=ifelse(is.na(msinc13G),"0. 0",msinc13G)]
hmda[,msinc46G:=ifelse(is.na(msinc46G),"0. 0",msinc46G)]

hmda[,bank_msa:=paste(bank,cbsa)]
hmda <- hmda[!is.na(cbsa)]

hmda[,applicantincome:=as.numeric(applicantincome)]
hmda[,amountofloan:=as.numeric(amountofloan)]

hmda <- hmda[applicantincome>0 & amountofloan>0]

hmda[,msinc13G:=factor(msinc13G)]
# hmda <- within(hmda, msinc13G <- relevel(msinc13G, ref = 1))
hmda[,msinc46G:=as.factor(msinc46G)]

hmda[,hispanic:=ifelse(applicantethnicity=="1",1,0)]
hmda[,race:=ifelse(hispanic==1,"hispanic",ifelse(applicantrace1=="5","0white",ifelse(applicantrace1=="3","black","other")))]
hmda[,black:=ifelse(applicantrace1=="3",1,0)]

hmda[,actiontaken:=as.numeric(actiontaken)]
hmda[,denied:=ifelse(actiontaken %in% c(3,7),1,0)]
hmda[,typeofloan:=as.numeric(typeofloan)]

hmda[,medianincome:=median(applicantincome,na.rm=T),by=asofdate]
hmda[,lowincome:=ifelse(applicantincome<medianincome,1,0)]

hmda[,racecat:=ifelse(hispanic==1,"hispanic",
                      ifelse(applicantrace1=="5","white",
                             ifelse(applicantrace1=="3","black",
                                    ifelse(applicantrace1=="2","asian",
                                           ifelse(applicantrace1=="4","native","na")))))]

hmda[,msa_yr:=paste(asofdate,cbsa)]
conflimit <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Projects/Bank Mergers/data/conforminglimits.csv")
names(conflimit) <- c("asofdate","conflimit")
conflimit[,conflimit:=floor(conflimit/1000)]

hmda <- merge(hmda,conflimit,by="asofdate")
hmda[,jumbo:=ifelse(typeofloan==1 & amountofloan>conflimit,1,ifelse(typeofloan==1,0,NA))]

6.1 Descriptive Statistics

6.1.1 Conventional Loans

vars <- c("amountofloan","applicantincome","approved","sold","nonwhite","asofdate","hispanic","black","jumbo")

stargazer(hmda[typeofloan==1,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ======================================================================
## Statistic           N        Mean    St. Dev. Pctl(25) Median Pctl(75)
## ----------------------------------------------------------------------
## amountofloan    45,419,402  226.928  266.683    104     180     297   
## applicantincome 45,419,402  104.931  129.053     53      80     122   
## approved        45,419,402   0.580    0.494      0       1       1    
## sold            26,331,998   0.753    0.431    1.000   1.000   1.000  
## nonwhite        45,419,402   0.291    0.454      0       0       1    
## asofdate        45,419,402 2,008.843  4.369    2,005   2,007   2,013  
## hispanic        45,419,402   0.118    0.323      0       0       0    
## black           45,419,402   0.069    0.254      0       0       0    
## jumbo           45,419,402   0.109    0.312      0       0       0    
## ----------------------------------------------------------------------

6.1.2 Conventional Loans - Race Distrubution

library(knitr)
racedist <- hmda[typeofloan==1,.N,by=racecat]
racedist[,frac:=N/sum(N)]

kable(racedist,digits = 2)
racecat N frac
white 27598083 0.61
na 6070242 0.13
hispanic 5371900 0.12
asian 3140842 0.07
black 3055700 0.07
native 182635 0.00

6.1.3 FHA Loans

stargazer(hmda[typeofloan==2,..vars],type="text",summary.stat = c("N","mean","sd","p25","median","p75"))
## 
## ======================================================================
## Statistic           N        Mean    St. Dev. Pctl(25) Median Pctl(75)
## ----------------------------------------------------------------------
## amountofloan    13,804,879  176.134  117.800    113     156     218   
## applicantincome 13,804,879  64.726    58.762     40      56      79   
## approved        13,804,879   0.530    0.499      0       1       1    
## sold            7,320,170    0.929    0.256    1.000   1.000   1.000  
## nonwhite        13,804,879   0.270    0.444      0       0       1    
## asofdate        13,804,879 2,011.284  3.605    2,009   2,011   2,014  
## hispanic        13,804,879   0.184    0.388      0       0       0    
## black           13,804,879   0.125    0.331      0       0       0    
## ----------------------------------------------------------------------

6.1.4 FHA Loans - Race Distrubution

library(knitr)
racedist <- hmda[typeofloan==2,.N,by=racecat]
racedist[,frac:=N/sum(N)]

kable(racedist,digits = 2)
racecat N frac
white 7775513 0.56
na 1319509 0.10
hispanic 2541756 0.18
black 1692617 0.12
asian 419495 0.03
native 55989 0.00

6.2 Regressions

6.2.1 Main Result

6.2.1.1 Bank-MSA and Year FE

r <- list()
r[[1]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|bank_msa+asofdate,data=hmda[actiontaken<=3 & typeofloan==1])
r[[2]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|bank_msa+asofdate,data=hmda[actiontaken<=3 & typeofloan==2])
r[[3]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|bank_msa+asofdate,data=hmda[typeofloan==1 & actiontaken<=3])
r[[4]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|bank_msa+asofdate,data=hmda[typeofloan==2 & actiontaken<=3])
r[[5]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|bank_msa+asofdate,data=hmda[typeofloan==1 & actiontaken<=3])
r[[6]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|bank_msa+asofdate,data=hmda[typeofloan==2 & actiontaken<=3])
r[[7]] <- felm(approved~msinc13*jumbo+msinc46*jumbo+log(applicantincome)+log(amountofloan)+factor(race)|bank_msa+asofdate,data=hmda[actiontaken<=3 & typeofloan==1])

.printtable(r,column.labels = c("Conventional","FHA","Conventional","FHA","Conventional","FHA"),lines = list(c("Fixed Effects",rep("MSA*Bank, Yr",6))))
## 
## =====================================================================================================================
##                                                                Dependent variable:                                   
##                              ----------------------------------------------------------------------------------------
##                              Conventional     FHA      Conventional     FHA      Conventional     FHA                
##                                  (1)          (2)          (3)          (4)          (5)          (6)         (7)    
## ---------------------------------------------------------------------------------------------------------------------
## msinc13                        0.651***    -0.541***     0.674***    -0.280***     0.588***    -0.325***    0.659*** 
##                                (0.013)      (0.018)      (0.015)      (0.024)      (0.016)      (0.022)     (0.014)  
## lowincome                                               -0.032***    -0.025***                                       
##                                                          (0.0002)     (0.0003)                                       
## jumbo                                                                                                      -0.057*** 
##                                                                                                             (0.0003) 
## msinc46                        1.149***    -0.685***     1.604***    -0.251***     1.238***    -0.404***    0.986*** 
##                                (0.021)      (0.042)      (0.025)      (0.058)      (0.024)      (0.047)     (0.022)  
## log(applicantincome)           0.035***     0.070***                               0.035***     0.070***    0.041*** 
##                                (0.0001)     (0.0003)                               (0.0001)     (0.0003)    (0.0001) 
## log(amountofloan)             -0.002***     0.004***     0.005***     0.043***    -0.002***     0.004***    0.006*** 
##                                (0.0001)     (0.0004)     (0.0001)     (0.0004)     (0.0001)     (0.0004)    (0.0001) 
## msinc13:factor(race)black                                                           0.063      -0.549***             
##                                                                                    (0.048)      (0.041)              
## msinc13:factor(race)hispanic                                                      -0.400***    -0.645***             
##                                                                                    (0.037)      (0.035)              
## msinc13:factor(race)other                                                          0.303***    -0.095***             
##                                                                                    (0.024)      (0.034)              
## factor(race)black:msinc46                                                         -1.369***    -0.588***             
##                                                                                    (0.088)      (0.081)              
## factor(race)hispanic:msinc46                                                      -1.798***    -0.886***             
##                                                                                    (0.081)      (0.088)              
## factor(race)other:msinc46                                                          0.286***    -0.567***             
##                                                                                    (0.049)      (0.082)              
## factor(race)black             -0.100***    -0.075***    -0.102***    -0.079***    -0.099***    -0.074***   -0.099*** 
##                                (0.0003)     (0.0004)     (0.0003)     (0.0004)     (0.0003)     (0.0004)    (0.0003) 
## factor(race)hispanic          -0.053***    -0.039***    -0.055***    -0.046***    -0.052***    -0.038***   -0.053*** 
##                                (0.0002)     (0.0004)     (0.0002)     (0.0004)     (0.0002)     (0.0004)    (0.0002) 
## factor(race)other             -0.053***    -0.054***    -0.053***    -0.057***    -0.053***    -0.054***   -0.052*** 
##                                (0.0002)     (0.0004)     (0.0002)     (0.0004)     (0.0002)     (0.0004)    (0.0002) 
## msinc13:lowincome                                       -0.123***    -0.430***                                       
##                                                          (0.021)      (0.026)                                        
## lowincome:msinc46                                       -1.258***    -0.638***                                       
##                                                          (0.038)      (0.058)                                        
## msinc13:jumbo                                                                                              -0.187*** 
##                                                                                                             (0.031)  
## jumbo:msinc46                                                                                               1.776*** 
##                                                                                                             (0.056)  
## ---------------------------------------------------------------------------------------------------------------------
## Fixed Effects                MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr MSA*Bank, Yr           
## Observations                  33,570,940   8,964,925    33,570,940   8,964,925    33,570,940   8,964,925   33,570,940
## Adjusted R2                     0.161        0.109        0.160        0.106        0.161        0.109       0.162   
## =====================================================================================================================
## Note:                                                                                     *p<0.1; **p<0.05; ***p<0.01
## 

6.2.1.2 Year-MSA and Bank FE

r <- list()
r[[1]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|msa_yr+bank,data=hmda[actiontaken<=3 & typeofloan==1])
r[[2]] <- felm(approved~msinc13+msinc46+log(applicantincome)+log(amountofloan)+factor(race)|msa_yr+bank,data=hmda[actiontaken<=3 & typeofloan==2])
r[[3]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|msa_yr+bank,data=hmda[typeofloan==1 & actiontaken<=3])
r[[4]] <- felm(approved~msinc13*lowincome+msinc46*lowincome+log(amountofloan)+factor(race)|msa_yr+bank,data=hmda[typeofloan==2 & actiontaken<=3])
r[[5]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|msa_yr+bank,data=hmda[typeofloan==1 & actiontaken<=3])
r[[6]] <- felm(approved~msinc13*factor(race)+msinc46*factor(race)+log(applicantincome)+log(amountofloan)|msa_yr+bank,data=hmda[typeofloan==2 & actiontaken<=3])
r[[7]] <- felm(approved~msinc13*jumbo+msinc46*jumbo+log(applicantincome)+log(amountofloan)+factor(race)|msa_yr+bank,data=hmda[actiontaken<=3 & typeofloan==1])

.printtable(r,column.labels = c("Conventional","FHA","Conventional","FHA","Conventional","FHA"),lines = list(c("Fixed Effects",rep("MSA*Year, Bank",6))))
## 
## =================================================================================================================================
##                                                                      Dependent variable:                                         
##                              ----------------------------------------------------------------------------------------------------
##                               Conventional       FHA        Conventional       FHA        Conventional       FHA                 
##                                   (1)            (2)            (3)            (4)            (5)            (6)          (7)    
## ---------------------------------------------------------------------------------------------------------------------------------
## msinc13                         0.495***      -0.546***       0.543***      -0.316***       0.421***      -0.320***     0.497*** 
##                                 (0.012)        (0.017)        (0.014)        (0.023)        (0.014)        (0.021)      (0.012)  
## lowincome                                                    -0.034***      -0.025***                                            
##                                                               (0.0002)       (0.0003)                                            
## jumbo                                                                                                                  -0.061*** 
##                                                                                                                         (0.0003) 
## msinc46                         0.915***      -0.260***       1.380***        0.098*        0.999***        -0.016      0.743*** 
##                                 (0.021)        (0.033)        (0.025)        (0.050)        (0.023)        (0.039)      (0.022)  
## log(applicantincome)            0.037***       0.070***                                     0.037***       0.070***     0.042*** 
##                                 (0.0001)       (0.0003)                                     (0.0001)       (0.0003)     (0.0001) 
## log(amountofloan)              -0.002***       0.003***       0.005***       0.043***      -0.002***       0.003***     0.007*** 
##                                 (0.0001)       (0.0004)       (0.0001)       (0.0004)       (0.0001)       (0.0004)     (0.0001) 
## msinc13:factor(race)black                                                                   0.166***      -0.577***              
##                                                                                             (0.048)        (0.041)               
## msinc13:factor(race)hispanic                                                               -0.386***      -0.675***              
##                                                                                             (0.037)        (0.034)               
## msinc13:factor(race)other                                                                   0.353***      -0.118***              
##                                                                                             (0.024)        (0.034)               
## factor(race)black:msinc46                                                                  -1.117***      -0.509***              
##                                                                                             (0.088)        (0.080)               
## factor(race)hispanic:msinc46                                                               -1.782***      -1.039***              
##                                                                                             (0.082)        (0.085)               
## factor(race)other:msinc46                                                                   0.273***      -0.520***              
##                                                                                             (0.049)        (0.081)               
## factor(race)black              -0.106***      -0.078***      -0.108***      -0.081***      -0.106***      -0.077***    -0.106*** 
##                                 (0.0003)       (0.0004)       (0.0003)       (0.0004)       (0.0003)       (0.0004)     (0.0003) 
## factor(race)hispanic           -0.052***      -0.039***      -0.055***      -0.046***      -0.051***      -0.037***    -0.052*** 
##                                 (0.0002)       (0.0004)       (0.0002)       (0.0004)       (0.0002)       (0.0004)     (0.0002) 
## factor(race)other              -0.056***      -0.057***      -0.056***      -0.060***      -0.056***      -0.057***    -0.055*** 
##                                 (0.0002)       (0.0004)       (0.0002)       (0.0004)       (0.0002)       (0.0004)     (0.0002) 
## msinc13:lowincome                                            -0.143***      -0.379***                                            
##                                                               (0.021)        (0.026)                                             
## lowincome:msinc46                                            -1.256***      -0.527***                                            
##                                                               (0.038)        (0.057)                                             
## msinc13:jumbo                                                                                                          -0.164*** 
##                                                                                                                         (0.031)  
## jumbo:msinc46                                                                                                           1.775*** 
##                                                                                                                         (0.056)  
## ---------------------------------------------------------------------------------------------------------------------------------
## Fixed Effects                MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank MSA*Year, Bank           
## Observations                   33,570,940     8,964,925      33,570,940     8,964,925      33,570,940     8,964,925    33,570,940
## Adjusted R2                      0.149          0.095          0.148          0.091          0.149          0.095        0.150   
## =================================================================================================================================
## Note:                                                                                                 *p<0.1; **p<0.05; ***p<0.01
##