Initial Claims in Texas (TXICLAIMS)

claims <- 
  "TXICLAIMS" %>% 
  tq_get(get = "economic.data", 
         from = "2019-01-01") %>% 
  rename(claims = price) 


claims %>% 
    ggplot(aes(x = date, y = claims)) +
    geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "New Unemployment Claims _ Texas",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("Weekly from {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

tail(claims[,1:2],n=12) %>%
  kable() %>%
  kable_paper(full_width=F) %>%
  column_spec(1, color =  "blue") %>%
  column_spec(2, color =  "red") %>%
  kable_styling()
date claims
2020-07-25 76804
2020-08-01 62709
2020-08-08 52304
2020-08-15 61400
2020-08-22 52152
2020-08-29 56673
2020-09-05 65291
2020-09-12 49386
2020-09-19 48426
2020-09-26 41351
2020-10-03 42338
2020-10-10 44692
claims<- claims %>%
  mutate(
    year = year(date),
    month =  month(date, label = T, abbr  = T),
    week = week(date))
    
month <- claims %>%
             group_by(year,month)%>%
             summarise(Ave_count =sum(claims))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
  ggplot(data=month,aes(x=reorder(month,year),y = Ave_count,fill=month)) +
  geom_bar(stat = "identity")+
  labs( title = "New Unemployment Claims in Texas",
    subtitle = "Past 12 moths", x="",y="",
    caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") 

Continued Claims (Insured Unemployment) in Texas (TXCCLAIMS)

claims <- 
  "TXCCLAIMS" %>% 
  tq_get(get = "economic.data", 
         from = "2019-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
      geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "Continued Unemployment Claims (Insured Unemployment)_ Texas",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("Weekly from {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

tail(claims[,1:2],n=12) %>%
  kable() %>%
  kable_paper(full_width=F) %>%
  column_spec(1, color =  "blue") %>%
  column_spec(2, color =  "red") %>%
  kable_styling()
date claims
2020-07-18 1338900
2020-07-25 1228250
2020-08-01 1221540
2020-08-08 1101708
2020-08-15 1091961
2020-08-22 1017360
2020-08-29 1043117
2020-09-05 976588
2020-09-12 953168
2020-09-19 902269
2020-09-26 803025
2020-10-03 718231
claims<- claims %>%
  mutate(
    year = year(date),
    month =  month(date, label = T, abbr  = T),
    week = week(date))
    
month <- claims %>%
             group_by(year,month)%>%
             summarise(Ave_count =sum(claims))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
  ggplot(data=claims,aes(x=date,y = claims,fill=month)) +
  geom_bar(stat = "identity")+
  labs(
    x = "Weekly",
    title = "Continued Unemployment Claims in Texas",
    subtitle = str_glue("{min(claims$date)} through {max(claims$date)}"),
    caption = "Illustration by Joe Long", y = "", x = "") 

  ggplot(data=month,aes(x=reorder(month,year),y = Ave_count,fill=month)) +
  geom_bar(stat = "identity")+
  labs( title = "Continued Unemployment Claims in Texas",
    subtitle = "Past 12 moths", x="Monthly",y="",
    caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") 

## Initial Claims in Nevada (NVICLAIMS)

claims <- 
  "NVICLAIMS" %>% 
  tq_get(get = "economic.data", 
         from = "2019-01-01") %>% 
  rename(claims = price) 


claims %>% 
    ggplot(aes(x = date, y = claims)) +
    geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "New Unemployment Claims _ Nevada",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("Weekly from {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

tail(claims[,1:2],n=12) %>%
  kable() %>%
  kable_paper(full_width=F) %>%
  column_spec(1, color =  "blue") %>%
  column_spec(2, color =  "red") %>%
  kable_styling()
date claims
2020-07-25 18390
2020-08-01 13727
2020-08-08 17755
2020-08-15 10938
2020-08-22 8858
2020-08-29 8032
2020-09-05 7951
2020-09-12 8332
2020-09-19 8198
2020-09-26 7525
2020-10-03 7941
2020-10-10 8964
claims<- claims %>%
  mutate(
    year = year(date),
    month =  month(date, label = T, abbr  = T),
    week = week(date))
    
month <- claims %>%
             group_by(year,month)%>%
             summarise(Ave_count =sum(claims))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
  ggplot(data=month,aes(x=reorder(month,year),y = Ave_count,fill=month)) +
  geom_bar(stat = "identity")+
  labs( title = "New Unemployment Claims in Nevada",
    subtitle = "Past 12 moths", x="",y="",
    caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") 

Continued Claims (Insured Unemployment) in Nevada (NVCCLAIMS)

claims <- 
  "NVCCLAIMS" %>% 
  tq_get(get = "economic.data", 
         from = "2019-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
      geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "Continued Unemployment Claims (Insured Unemployment)_ Nevada",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("Weekly from {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

tail(claims[,1:2],n=12) %>%
  kable() %>%
  kable_paper(full_width=F) %>%
  column_spec(1, color =  "blue") %>%
  column_spec(2, color =  "red") %>%
  kable_styling()
date claims
2020-07-18 346138
2020-07-25 327954
2020-08-01 335968
2020-08-08 240346
2020-08-15 228203
2020-08-22 221599
2020-08-29 216187
2020-09-05 206166
2020-09-12 203408
2020-09-19 190613
2020-09-26 173629
2020-10-03 157205
claims<- claims %>%
  mutate(
    year = year(date),
    month =  month(date, label = T, abbr  = T),
    week = week(date))
    
month <- claims %>%
             group_by(year,month)%>%
             summarise(Ave_count =sum(claims))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
  ggplot(data=claims,aes(x=date,y = claims,fill=month)) +
  geom_bar(stat = "identity")+
  labs(
    x = "Weekly",
    title = "Continued Unemployment Claims in Nevada",
    subtitle = str_glue("{min(claims$date)} through {max(claims$date)}"),
    caption = "Illustration by Joe Long", y = "", x = "") 

  ggplot(data=month,aes(x=reorder(month,year),y = Ave_count,fill=month)) +
  geom_bar(stat = "identity")+
  labs( title = "Continued Unemployment Claims in Nevada",
    subtitle = "Past 12 moths", x="Monthly",y="",
    caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") 

## Initial Claims in New York (NYICLAIMS)

claims <- 
  "NYICLAIMS" %>% 
  tq_get(get = "economic.data", 
         from = "2019-01-01") %>% 
  rename(claims = price) 


claims %>% 
    ggplot(aes(x = date, y = claims)) +
    geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "New Unemployment Claims _ New York State",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("Weekly from {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

tail(claims[,1:2],n=12) %>%
  kable() %>%
  kable_paper(full_width=F) %>%
  column_spec(1, color =  "blue") %>%
  column_spec(2, color =  "red") %>%
  kable_styling()
date claims
2020-07-25 85294
2020-08-01 74187
2020-08-08 52794
2020-08-15 62698
2020-08-22 62683
2020-08-29 63366
2020-09-05 64734
2020-09-12 61897
2020-09-19 69790
2020-09-26 64678
2020-10-03 64156
2020-10-10 66385
claims<- claims %>%
  mutate(
    year = year(date),
    month =  month(date, label = T, abbr  = T),
    week = week(date))
    
month <- claims %>%
             group_by(year,month)%>%
             summarise(Ave_count =sum(claims))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
ggplot(data=month,aes(x=reorder(month,year),y = Ave_count,fill=month)) +
  geom_bar(stat = "identity")+
  labs( title = "New Unemployment Claims in New York state",
    subtitle = "Past 12 moths", x="",y="",
    caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") 

Continued Claims (Insured Unemployment) in New York State (NYCCLAIMS)

claims <- 
  "NVCCLAIMS" %>% 
  tq_get(get = "economic.data", 
         from = "2019-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
      geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "Continued Unemployment Claims (Insured Unemployment)_ New York State",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("Weekly from {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

tail(claims[,1:2],n=12) %>%
  kable() %>%
  kable_paper(full_width=F) %>%
  column_spec(1, color =  "blue") %>%
  column_spec(2, color =  "red") %>%
  kable_styling()
date claims
2020-07-18 346138
2020-07-25 327954
2020-08-01 335968
2020-08-08 240346
2020-08-15 228203
2020-08-22 221599
2020-08-29 216187
2020-09-05 206166
2020-09-12 203408
2020-09-19 190613
2020-09-26 173629
2020-10-03 157205
claims<- claims %>%
  mutate(
    year = year(date),
    month =  month(date, label = T, abbr  = T),
    week = week(date))
    
month <- claims %>%
             group_by(year,month)%>%
             summarise(Ave_count =sum(claims))
## `summarise()` regrouping output by 'year' (override with `.groups` argument)
  ggplot(data=claims,aes(x=date,y = claims,fill=month)) +
  geom_bar(stat = "identity")+
  labs(
    x = "Weekly",
    title = "Continued Unemployment Claims in New York",
    subtitle = str_glue("{min(claims$date)} through {max(claims$date)}"),
    caption = "Illustration by Joe Long", y = "", x = "") 

  ggplot(data=month,aes(x=reorder(month,year),y = Ave_count,fill=month)) +
  geom_bar(stat = "identity")+
  labs( title = "Continued Unemployment Claims in New York",
    subtitle = "Past 12 moths", x="Monthly",y="",
    caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego") 

Unemployment Rate in Tennessee (TNUR)

claims <- 
  "TNUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "Unemployment Rate in Tennessee (TNUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

Unemployment Rate in Arizona (AZUR)

claims <- 
  "AZUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "",
      y = "",
      title = "Unemployment Rate in Arizona (AZUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

Unemployment Rate in Florida (FLUR)

claims <- 
  "AZUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "Monthly",
      y = "",
      title = "Unemployment Rate in Florida (FLUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

Unemployment Rate in Ohio (OHUR)

claims <- 
  "OHUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "Monthly",
      y = "",
      title = "Unemployment Rate in Ohio (OHUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

Unemployment Rate in Ohio (ILUR)

claims <- 
  "ILUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "Monthly",
      y = "",
      title = "Unemployment Rate in Illinois (ILUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

Unemployment Rate in WISCONSIN (WIUR)

claims <- 
  "WIUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "Monthly",
      y = "",
      title = "Unemployment Rate in WISCONSIN (WIUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist() 

Unemployment Rate in WASHINGTON (WAUR)

claims <- 
  "WAUR" %>% 
  tq_get(get = "economic.data", 
         from = "2015-01-01") %>% 
  rename(claims = price) 


  claims %>% 
    ggplot(aes(x = date, y = claims)) +
       geom_rect(aes(xmin= dmy('01-01-2020'), xmax=dmy('01-10-2020'), ymin = -Inf, ymax = Inf),
                   fill = "white", alpha = 0.02)+
    geom_line(color = "blue",size=1) + 
    labs(
      x = "Monthly",
      y = "",
      title = "Unemployment Rate in WASHINGTON (WAUR)",
      caption = "Data source: FRED St. Louis Federal Reserve \nIllustration by @JoeLongSanDiego",
      subtitle = str_glue("From {min(claims$date)} through {max(claims$date)}")
    ) +
    theme_economist()