\[ \frac{d^2 U}{dx^2} = 0 \]
\[ \begin{aligned} U''(x) &= 0 \\ U'(x) &= C_1 \\ U(x) &= C_1 x + C_2 \end{aligned} \]
Inside: Fixed temperature
\[ U(0) = C_2 = u_i \]
Solution so far:
\[ \begin{aligned} U(x) &= C_1 x + C_2 \\ &= C_1 x + u_i \end{aligned} \]
\[ \begin{aligned} J(L)A &= h A\left(U(L)- u_o \right) \\ J(L) &= h \left(U(L)- u_o \right) \end{aligned} \]
\[ \begin{aligned} J(L) &= h \left(U(L)- u_o \right) \\ U(L) &= \frac{J(L)}{h} + u_o \end{aligned} \]
\[ \begin{aligned} J(x) &= -k U'(x) \\ J(L) &= -k C_1 \\ \end{aligned} \]
\[ \begin{aligned} U(L) &= C_1 L + u_i \end{aligned} \]
\[ \begin{aligned} C_1 L + u_i &= \frac{J(L)}{h} + u_o \\ C_1 L &= \frac{-k C_1}{h} + u_o - u_i \\ (hL + k) C_1 &= h(u_o - u_i) \\ C_1 &= \frac{u_o - u_i}{L + \frac{k}{h}} \\ \therefore U(x) &= \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \end{aligned} \]
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
Ch11.2Ex1 <- function(h) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Wall thickness (meters)
k <- 0.5 #Conductivity of brick
#h <- 10 #Convective heat transfer coeff
U <- function(x){(uo-ui)/(L+k/h)*x+ui}
Ch11.2Ex1 <- function(h) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Wall thickness (meters)
k <- 0.5 #Conductivity of brick
#h <- 10 #Convective heat transfer coeff
U <- function(x){(uo-ui)/(L+k/h)*x+ui}
curve(U,xlab ="x (meters)",
ylab ="Temperature (C)",
type = "l",col="blue",xlim=c(0,L),ylim=c(0,ui))
abline(h = uo, type="l",col="red")
legend("topright", legend = c("Wall Temperature", "Outside Temperature"), col = c("blue","red"),
lty = c(1,1)) }
Ch11.2Ex1(10)
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
Ch11.2Ex1 <- function(h) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Thickness
k <- 0.5 #Conductivity
#h = heat transfer
Ch11.2Ex1(5)
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
Ch11.2Ex1 <- function(h) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Thickness
k <- 0.5 #Conductivity
#h = heat transfer
Ch11.2Ex1(100)
\[ U(x) = \left(\frac{u_o - u_i}{L + \frac{k}{h}}\right) x + u_i \]
Ch11.2Ex1 <- function(h) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
L <- 0.15 #Thickness
k <- 0.5 #Conductivity
#h = heat transfer
\[ \begin{aligned} J(x) &= -k~ U'(x) \\ J(L) &= -k ~C_1 \\ & = -k \frac{u_o - u_i}{L + \frac{k}{h}} \\ & = \frac{u_i - u_o}{\frac{L}{k} + \frac{1}{h}} \end{aligned} \]
\[ J = \frac{u_i - u_o}{\frac{L}{k} + \frac{1}{h}} \]
\[ J = \frac{u_i - u_o}{\frac{L}{k} + \frac{1}{h}} \]
Ch11.2Ex2 <- function(L,k) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
#L = thickness (meters)
#k = Conductivity
h <- 10 #Convective heat transfer coeff
(U <- (ui-uo)/(L/k+1/h)) }
Ch11.2Ex2(0.15,0.5)
[1] 37.5
Ch11.2Ex2(0.005,0.8)
[1] 141.1765
\[ J = \frac{u_i - u_o}{R}, ~R = \frac{L}{k} + \frac{1}{h} = R_1 + R_2 \]
Here
Resistance to heat flow through material, \( L/k \), increases with width of the material \( L \) and decreases with the conductivity \( k \), as we might expect.
\[ J = \frac{u_i - u_o}{\frac{1}{h_i} + \frac{L}{k} + \frac{1}{h_o}} \]
Ch11.2Ex3 <- function(L,k) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
#L = thickness (meters)
#k = Conductivity
hi <- 10 #Convective heat transfer coeff
ho <- 10 #Convective heat transfer coeff
(U <- (ui-uo)/(1/hi + L/k + 1/ho)) }
Ch11.2Ex3(0.15,0.5)
[1] 30
\[ R = \frac{1}{h_i} + \frac{L_1}{k_1} + \frac{L}{k} + \frac{1}{h_o} \]
Ch11.2Ex4 <- function(L,k) {
ui <- 20 #20C = 68F
uo <- 5 #5C = 41F
#L = thickness (meters)
#k = Conductivity
hi <- 10 #Convective heat transfer coeff
ho <- 10 #Convective heat transfer coeff
L1 <- 2 #R2.0 batts have L1/K1 = 2.0
k1 <- 1 #R2.0 batts have L1/K1 = 2.0
(U <- (ui-uo)/(1/hi + L1/k1 + L/k + 1/ho)) }
Ch11.2Ex4(0.15,0.5)
[1] 6