Load the libraries

library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Set the Working Directory

projectoneWD <- "C:/Users/Joeyc/Documents/School/Fall 2020/Data 110/Datasets"
setwd(projectoneWD)
getwd()
## [1] "C:/Users/Joeyc/Documents/School/Fall 2020/Data 110/Datasets"

Loading in the data

Joey <- read.csv(file.choose())

Mutate the GDP to show in trillions of dollars

Joey2 <- mutate(Joey, gdp = ((gdp_percap * population)/1000000000000))

Chart 1

JoeyC <- filter(Joey2, country == "Nigeria"|country == "Ethiopia" | country == "Egypt, Arab Rep." | country == "Congo, Dem. Rep." )

ggplot (JoeyC, aes( y = gdp, x = year, color = country)) +
  xlab("Year") +ylab("GDP($ trillion)") + 
  ggtitle("GDP of Most Populated African Countries") +
  geom_point() +
  geom_line() + scale_color_brewer(palette = 'Set1')
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 row(s) containing missing values (geom_path).

Joey3 <- Joey2 %>% group_by(region, year) %>% summarise(gdp = sum(gdp, na.rm = TRUE))

Chart 2

ggplot(Joey3, aes(x = year, y = gdp)) +
         xlab("Year") + ylab("GDP($ trillion)") +
         ggtitle("GDP by Region") +
         geom_area(colour = "white", aes(fill = region)) + scale_fill_brewer(palette = 'Set2')